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Foreword 

Computer modeling pervades today all fields of science. For the study of com­
plex systems, such as the environment, it has become an indispensable tool. 
But it is also a tool that is often misunderstood and misinterpreted. These 
dangers are particularly pronounced in the environmental sciences, an area 
of interest and concern not only to scientists, but also to the general public, 
the media, policy makers and powerful interest groups. We cannot experiment 
with our planet. The only quantitative tool available for the assessment of the 
impact of our actions today on the future environment and living conditions of 
later generations is numerical modeling. The better the general understanding 
of the potential and limitations of numerical models, the better the chances 
for a rational analysis and discussion of environmental problems and poli­
cies. But in addition to the more recent political issue of human impacts on 
the environment, numerical models play an important role for the forecasting 
of natural environmental variability, such as tides and storm surges or the 
weather, or for the interpretation of environmental changes in the past, such 
as the relation between the Late Maunder Minimum of the sunspot cycle from 
1675 to 1710 and the winter half year cooling at the end of the 17th century. 

The reasons for misunderstandings and misinterpretations of numerical 
model results are manifold. The more complicated a model, the more difficult 
is the explanation of the model structure to the non-expert, and the more 
readily will the gullible be inclined to over-interpret the model results, while 
the sceptic may simply shrug his shoulders and comment "trash in, trash 
out". Conversely, simple models are necessarily based on idealizations and 
hypotheses that are equally difficult to assess and appreciate for somebody 
who has not been involved in the detailed analysis of the many different, 
generally complementary, ways of viewing and reducing a complex system. 

Apart from the basic difficulty of conveying the structure of a numerical 
model to the non-expert (what is established science, what are the hypothe­
ses, what is the data base, what are the numerical approximations?), many 
misunderstandings arise from the many diverse applications of models. In the 
environmental sciences, numerical models are used to analyze, understand, 
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infer, initialize, assimilate, project or predict, to name only a few categories, 
and the assessment of model performance depends strongly on the relevant 
application type. The performance of a numerical weather model, for example, 
is judged on its ability to predict detailed weather patterns 3 to 15 days in 
advance. Whether the model is able to compute the global climate, given the 
greenhouse gas emissions, 100 years from now, is irrelevant. Conversely, a cli­
mate model used for such projections need not necessarily yield reliable short­
term weather predictions. Furthermore, the reliability of long term climate 
projections will generally depend more strongly on the assumed greenhouse 
gas emissions than on the climate model itself. Nevertheless, the assessment 
of model performance depends in both cases on the confidence in the basic 
processes represented in the models, many of which will be common to both 
classes of model. Thus some degree of cross-coupling in model assessment is 
inevitable. 

But how can confidence be established in the realistic representation of 
the basic processes of a complex model that, as modelers themselves often 
complain, are just as complicated and difficult to understand as the real world 
which they are designed to emulate? Apart from long experience, which is 
difficult to convey and may raise suspicions of long-grown professional myopia, 
a standard approach is model reduction: the simplification of a model to a 
level at which the internal workings of the model do indeed begin to become 
transparent and understandable. But then one must demonstrate that one has 
not thrown the baby out with the bath water, that the model world that one 
now understands is still a reasonable approximation of the real world. 

Fortunately, it is not the task of a foreword writer to answer such difficult 
questions, but only to congratulate the authors on addressing these thorny 
issues in both depth and width and with a truly commendable clarity. In their 
presentation, Peter Miiller and Hans von Storch draw on a wealth of illuminat­
ing examples from their personal experience in developing and working with 
numerical models in a wide variety of applications, ranging from the trans­
port and deposition of lead in Europe, to tides, predictions of El Nino and 
state-of-the-art weather forecasts. The scientific development is interwoven 
with stimulating observations on the philosophy of validation or the public 
perception of environmental problems. Both the environmental modeler and 
the non-expert in the field will find the book a rewarding and broadening 
experience. 

Kiebitzreihe, October 2003 Klaus Hasselmann 



Preface 

Computer models are a major tool in modern environmental systems analysis. 
These models are based on the integration of a set of approximate dynamical 
equations. They provide detailed information about the state and evolution 
of the system. They serve as a substitute or virtual reality that is employed 
for simulation and experimentation impossible with the real system. These 
"quasi-realistic" models must be distinguished from "cognitive" models that 
strive for maximum reduction of complexity. 

Numerical experiments with quasi-realistic models allow the derivation or 
testing of hypotheses. Simulation of actual and hypothetical regimes provide a 
basis for understanding, analysis and management of a system. Quasi-realistic 
models share with reality the property that they do not offer immediate dy­
namical insight. They require further statistical and dynamical analyses to 
yield understanding. Models are validated by model-data comparison in pa­
rameter ranges for which observational data exist. Their usefulness, appeal 
and danger lie, however, in the option of applying them outside the validated 
parameter, or configuration, range. 

Important issues in quasi-realistic modeling are: 

• The reduction of model output to useful scientific and practical knowledge. 
• The fidelity and trustworthiness of models when applied beyond the vali­

dated parameter range. 
• The influence of the experimenter on the virtual model reality. 

The main conclusions of the book are: 

• Models in general and quasi-realistic models in particular are major tools 
to expand our knowledge about environmental systems. 

• Models of environmental systems are neither true or untrue, nor valid or 
invalid per se; rather they are adequate or inadequate, useful or not useful 
to answer specific questions about the system. They describe larger or 
smaller parts of reality, but never all of reality. 
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• The validation of models by comparison with data is an important prere­
quisite for applying models. Validation does not provide new insight about 
the system, but only insight about the model. New knowledge about the 
system is gained by applying models to new situations outside the validated 
range, with all the risks that such an extrapolation entails. 

• Models are a tool only. They do not disclose new knowledge by themselves. 
The act of generating new knowledge still depends on the modeler, on his 
or her skill in setting up the simulation or experiment, in asking the right 
questions, and in applying the right methods to analyze the model output. 

These points are illustrated by numerous examples drawn from atmospheric 
and oceanic sciences, especially from efforts to model oceanic tides and the 
climate system. 

The book is organized as follows: In Chap. 1 all the main topics of the 
book are sketched: the epistemological role of models, the characteristic prop­
erties of environmental systems, the two systems, tides and climate, from 
which we draw most of our examples, the components of quasi-realistic com­
puter models, typical applications of such models, and the main technical, 
philosophical, economic and social issues. This introduction is non-technical 
and self-contained. Chapter 2 describes the components of quasi-realistic com­
puter models in detail. Validation, data assimilation and calibration, i.e., the 
combination of models and observational data are discussed in Chap. 3. The 
dynamics of tides and climate are further elaborated upon in Chap. 4. The 
different applications of environmental models, either for applied purposes 
or for basic research, are discussed in Chaps. 5 and 6. The conclusions are 
given in Chap. 7. Technical and mathematical details are relegated to a set of 
appendices which cover dynamics, numerics, statistics and data assimilation. 

Choosing an appropriate title for this monograph was not easy. We orig­
inally called the book "Computer Modeling in Environmental Sciences" but 
then opted for "Computer Modeling in Atmospheric and Oceanic Sciences" 
since all our examples are drawn from these two sciences, in which we have 
actively been involved. But our general discussions apply to other environmen­
tal sciences as well, and we hope to reach readers from these other sciences. 
Also the subtitle of the book "Building Knowledge" needs an explanation. 
Alternatives to "building" were "construction" and "acquiring". We wanted 
to express our understanding that knowledge is nothing absolute, drawn from 
a firm stock of objective truth. Instead it is the process of constructing skilful 
explanations for complex phenomena. Of course, this process is not an arbi­
trary process that results in arbitrary insights. It is a rational process that 
is guided by continuous comparisons with new observations - but it is also 
guided by our contemporary understanding of the governing dynamics. Thus, 
understanding is developed by consistently combining previous knowledge and 
new observations. Eventually, we decided that the term "building" would be 
best to describe this process, because it describes the fact that any new knowl­
edge builds upon previously acquired knowledge. Of course, this process is not 
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foolproof and may lead into dead ends and into inadequate understandings, 
when the preconceived knowledge is weighted too strongly, and conflicts with 
new observations are downplayed - a phenomenon well documented in Lud­
wig Fleck's [38] analysis "Genesis and Development of a Scientific Fact" and 
Thomas Kuhn's [90] analysis "The Structure of Scientific Revolutions". But 
the process of building knowledge is at the heart of science and is what makes 
science such an exciting and rewarding human enterprise. 

This book is about one tool to build knowledge: quasi-realistic computer 
models. 
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1 

Introduction 

Know thy tools! 
"Models" have become an indispensable tool in environmental sciences. 

The impossibility of conducting experiments with real environmental systems 
forces scientists to rely on the substitute reality provided by models, espe­
cially computer models. For most environmental scientists it seems intuitively 
clear what models are, but a closer examination reveals many different views. 
Indeed, curricula in meteorology, oceanography and other environmental sci­
ences usually do not include classes that discuss the role and utility of models 
in a systematic manner. Instead, young scientists are confronted with a large 
variety of models, whose limits are not properly defined and whose specific 
purposes are not explicated. It is the purpose of this book to fill this gap. 

The book is based on the premise that the optimal and responsible use of 
computer models requires that one understands 

• what models are, 
• what they are based on, 
• how they function, 
• what their limitations are, 

and then, most importantly, 

• how models can be used to generate new knowledge about the environ-
mental system. 

This understanding is important since far-reaching decisions about the envi­
ronment are based on computer modeling; and a computer model can be the 
source of valuable information and significant insight in the hands of the able 
scientist and the source of delusion and misconceptions in the hands of the 
dilettante. 

There exist, admittedly, many books about modeling, but most of them 
consider modeling either as a technical task, dealing with the manipulation 
of differential equations and numerics (e.g., [171]), or consider the classical 
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models of physics (e.g., [61], [118]) or economy (e.g., [117]). We, on the other 
hand, will discuss primarily quasi-realistic computer models that create a 
substitute reality. These models provide detailed information about the state 
and evolution of an environmental system. They can be used for simulations 
and experiments that are impossible with the real system. 

In this Introduction we sketch the main aspects of computer modeling in 
environmental sciences. In Sect. 1.1 we reflect upon the word "model" and the 
epistemological role of models. In Sect. 1.2 we define environmental systems 
and discuss some of their relevant properties. The systems tides and climate 
from which we draw most of our examples are introduced in Sects. 1.3 and 1.4. 
The components of quasi-realistic computer models are described in Sect. 1.5, 
different applications of these models in Sect. 1.6, and fundamental technical, 
philosophical, economic and social issues in Sect. 1.7. We will come back to 
all these topics in the remainder of the book. 

1.1 Models 

The word "model" has many different meanings. The "American Heritage 
Talking Dictionary" offers: 

1. A small object, usually built to scale, that represents in detail another, 
often larger object. 

2. a. A preliminary work or construction that serves as a plan from which 
a final product is to be made: a clay model ready for casting. b. Such a 
work or construction used in testing or perfecting a final product: a test 
model of a solar-powered vehicle. 

3. A schematic description of a system, theory, or phenomenon that accounts 
for its known or inferred properties and may be used for further study of 
its characteristics: a model of generative grammar; a model of an atom; 
an economic model. 

4. A style or design of an item: My car is last year's model. 
5. One serving as an example to be imitated or compared: a model of deco­

rum. See note at ideal. 
6. One that serves as the subject for an artist, especially a person employed 

to pose for a painter, sculptor, or photographer. 
7. A person employed to display merchandise, such as clothing or cosmetics. 
8. Zoology. An animal whose appearance is copied by a mimic. 

To this list we can add many special meanings in various scientific dis­
ciplines: For instance, geographers speak of a matrix of numerically given 
locations and altitudes as a digital terrain model. 

In this book we deal, of course, with definition 3 above: "A schematic 
description of a system, theory, or phenomenon that accounts for its known 
or inferred properties and may be used for further study of its characteristics". 
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We define it more specifically: A model is an analog of a real system in the 
mind, computer or laboratory. 

We therefore have to distinguish between cognitive, computer and labora­
tory models. Cognitive models aim at understanding and comprehension and 
are "simple". Computer and laboratory models are generally quasi-realistic 
and can be used to create a substitute reality or a virtual laboratory. Empha­
sis in this book will be on quasi-realistic computer models that create such a 
substitute reality. 

Our definition of the word "model" is similar to its traditional use in the 
philosophy of science. There, prominent philosophers like Mary Hesse [61] con­
sider models as an "image". These images share some properties with reality. 
These common properties are called positive analogs. Other model properties 
are known to not occur in reality or reality has properties that are not repre­
sented or misrepresented in the model. These are the negative analogs. Still 
other properties of the models are neutral analogs. It is not known whether or 
not they are valid in reality. If one hypothesizes that certain neutral analogs 
are actually positive ones then the model provides new hypotheses and, pos­
sibly, new information about reality. 

These philosophers of science also view models, contrary to us, as a pre­
liminary form of a scientific theory. Their models are based on ad hoc formu­
lations that satisfy observed aspects and other knowledge about the process 
under study. They are often brilliant inspirations of individuals. E = mc2 . 

Such models are "simple". They are cognitive models according to our def­
inition. Often, a model of process A is another process B, which is already 
understood. The pendulum becomes a model for surface waves. Sound waves 
become a model for the propagation of light. Different models of the same 
process eventually lead to a theory of the process. Thus models are a prelude 
to theory in this school of thought. 

Quasi-realistic computer models, on the other hand, are not based on 
ad hoc choices by brilliant individuals. Instead, they are systematically con­
structed by a community of scientists. The models are based on theoreti­
cal first principles, augmented by phenomenological insights. They require 
well-informed choices concerning the representation of variables, the approx­
imation of equations, the parameterization of unresolved processes, and the 
discretization of equations, among many other things. Quasi-realistic envi­
ronmental models are not precursors to any kind of grand theory about the 
environment. Instead, they are laboratories. 

A term related to model is that of a metaphor, often used in cultural 
sciences. "The essence of metaphor is understanding and experiencing one 
kind of thing in terms of another" [91] 1. The relationship between metaphors 
and models is described by Serres and Farouki [150] as follows: 

1 "Our ordinary conceptual system, in terms of which we both think and act, is 
fundamentally metaphorical in nature. The concepts that govern our thought 
are not just matters of the intellect. They also govern our everyday functioning, 
down to the most mundane details. Our concepts structure what we perceive, how 
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Models offer reproducible partial explanations for phenomena that are 
too complex to allow for a complete description. Thus, models are not 
universal; they are valid only in a certain context and if certain as­
sumptions are fulfilled. In this they resemble metaphors which can also 
only be stretched to a certain point without becoming excessively ab­
stract and, thus, misleading. Models, however, differ from metaphors 
to the extent that the former are flexible and capable of being adapted 
to meet scientists' needs, whereas metaphors either fit or do not fit a 
given situation. In the latter case they have to be discarded. 

1.2 Environmental Systems 

An environmental system is a segment of the natural environment. Examples 
are the ocean, the tides, the climate, forests, and the carbon cycle. Such 
environmental systems are: 

• unique, 
• complex, 
• open, and 
• policy relevant. 

Here we only discuss the first three properties. The policy relevance is 
discussed in Sect. 1.4.3 in the context of climate. 

Environmental systems are unique. No two systems are sufficiently alike 
that one can infer the properties of one system from the properties of the 
other system with certainty. 

Environmental systems are complex. As does the word "model", the word 
"complex" has many meanings. Here we use the word for systems that have 
many interacting degrees of freedom. For environmental systems these degrees 
of freedom are also distinct or qualitatively different. 

The number of degrees of freedom is the number of values that is needed 
for a complete description of the system. In the case of the atmosphere the 
system is described by state variables such as the air velocity, the temper­
ature, the humidity, the air pressure and others (Sect. 4.2.3). These state 
variables are continuous functions of position. At each position the function 
can assume different values. The specification of the state variables thus re­
quires an infinite number of values. The system has an infinite number of 
degrees of freedom. Because the state variables are spatially correlated one 
may approximate the continuous functions by piecewise constant functions, 

we get around in the world, and how we relate to other people. Our conceptual 
system thus plays a central role in defining our everyday's realities. If we are right 
in suggesting that our conceptual system is largely metaphorical, then the way 
we think, what we experience, and what we do every day is very much a matter 
of metaphor." [91] 
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constant over a finite number of grid cells. Then, the number of degrees of 
freedom is the number of grid cells times the number of state variables. An 
alternative is to expand the continuous functions with respect to an infinite 
set of (orthogonal) basis functions, like sinusoids on the real line or spherical 
harmonics on the sphere, and truncate the infinite series. Generally, the num­
ber of grid cells (or retained basis functions), and hence the number of degrees 
of freedom, is not well-defined. One usually opts for the smallest number that 
allows for a sufficiently accurate description of the overall system, but even 
this smallest number is usually fairly large for environmental systems such as 
the atmosphere. 

The second important aspect of a complex system is that the different 
degrees of freedom interact or are coupled to each other. The time evolution 
of one degree of freedom depends not only on itself but also on the other 
degrees of freedom. "Everything depends on everything else". The coupling is 
due to the nonlinearities in the dynamics of the system. 

A third important aspect of complex environmental systems is that the 
many interacting degrees of freedom are distinct or qualitatively different. 
They and their time evolution need to be treated individually. They cannot 
be related to each other by simple scaling or similarity laws. As a consequence 
environmental systems exhibit strong inhomogeneity and irregularity. 

As a typical example consider the formation of fronts in coastal seas. It 
depends on many factors. It depends on radiation which is affected by the dis­
tribution of clouds. It depends on the surface mixed layer which is affected by 
the spatial pattern of winds and gusts. It depends on the rainfall in the catch­
ment which again depends on the presence of clouds. And so on. Thus, many 
qualitatively different degrees of freedom interact with each other, differently 
in different locations. 

Qualitatively different degrees of freedom are even more pronounced in 
ecosystems where the interaction between physical, chemical and biological 
components and processes requires an interdisciplinary approach. 

Environmental systems are open. They are not isolated. They are under 
the influence of a variety of factors that are external to them. These exter­
nal factors can be human influences, astronomical influences, or influences 
from other components of the environment. The emission of greenhouse gases 
into the atmosphere by automobiles is a human influence on climate, the 
Milankovitch cycles are an astronomical influence, and the volcanic emission 
of sulphate aerosols and radiatively active gases into the atmosphere repre­
sents an influence from another environmental component. The bathymetry 
of the ocean and the coastline, including man's modifications, are also exter­
nal factors. It is impossible to account for and specify all external factors. 
The specification of the emission of greenhouse gases, for example, requires 
the forecasting of human behavior and ingenuity - which can hardly be done. 
Even the factors that one can account for are usually not completely known. 
The bathymetry of the ocean, for example, is available only in approximate 
form. 
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The openness of the system has a profound consequence. The ability of a 
model to reproduce observations may be due to the skill of the model or due 
to the influence of relevant external factors that are neglected in the model. 
Thus, environmental models cannot be verified2 . 

Most of the examples in this book will be drawn from two environmental 
systems: tides and climate3 . The tides are a relatively simple system. They 
are well described by contemporary models. In contrast, climate is a much 
more complex system. It has more state variables, more degrees of freedom, 
and stronger nonlinearities. Nevertheless, contemporary quasi-realistic climate 
models are considered to describe the climate system sufficiently well to allow 
for scenario building and other applications. In the next two sections we give 
a general overview of the phenomena and the modeling efforts. In Chap. 4 the 
dynamics of tides and climate will be discussed in more detail. 

1.3 Tides 

Tides are waves with very long wavelengths that cause the regular fall and rise 
of sea level observed at most coastlines. 4 They are caused by the gravitational 
attraction of the moon and sun. Tidal rhythms have always affected man 
living at open ocean coasts and controlled their lives (see Fig. 1.1). Vital 
issues such as navigation and coastal protection depend on knowledge about 
ocean tides. (The Greeks and Romans knew almost nothing about tides since 
the Mediterranean Sea is too small for tidal generation. Alexander the Great 
lost his fleet in India due to unexpected strong ebb currents). Here we discuss 
briefly the role of the tides in environmental systems and different kinds of 
modeling approaches. 

1.3.1 The Role of Tides Within Environmental Systems 

Tides exert significant control on marine systems by 

2 With verification we mean the assertion that a model provides the right re­
sponse to forcing for the right reasons. For a detailed discussion refer to [127] 
and Sect. 3.1. 

3 It would have been a challenge to include as a third example marine ecosystems. 
Such ecosystems are even more complex and are influenced by even more factors 
than climate, with nonlinear interactions among all scales and state variables 
(species, substances). There is not even consensus about the relevant state vari­
ables. Marine ecosystem models have not yet matured to a state where they can 
reliably be used for management decisions. For these reasons we decided to not 
include this exciting topic and limit ourselves to tides and climate. 

4 The text of this subsection was to a large extent provided by Jurgen Siindermann, 
Hamburg. 



1.3 Tides 7 

Fig. 1.1. Low and high t ide in the Fundy Bay. From Defant [25] 

• advect ing matter and energy, 
• generating t urbulence and mixing, and 
• providing an amphibic environment with moving coast lines. 

In open seas, freely connected to the world ocean, tidal currents are always 
present, at any depth down to the bottom of the ocean. Tidal currents are 
periodic, but due to nonlinear effects, which are especially strong in shallow 
waters, they do not cancel out when averaged over one period. A steady 
residual current is the result (see Fig. 1.2). These residual currents condition 
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Fig. 1.2. Residual currents of the M2 tide in the North Sea [12] 

the hydrographical, morphodynamical and biological environment and have 
important implications for the marine environment. 

Mixing is the second important process that tides exert on the environ­
ment. In coastal seas, the periodic tidal excursions represent mesoscale mo­
tions and move water parcels up to 20 km within half a day. When com­
bined with other irreversible processes these excursions can lead to significant 
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horizontal mixing. Second, tidal flows generate a turbulent bottom boundary 
layer, which is nearly fully mixed. It can extend into a significant part of the 
water column and destroy thermohaline fronts and prevent the formation of 
stratification. Indeed, because of strong tides no stable stratification can be es­
tablished in the southern North Sea even in summer; this has a severe impact 
on the primary production in this region. In the deep ocean, tidal currents 
interacting with topography generate internal or baroclinic tides5 . They are 
assumed to be an important part of open ocean vertical mixing. 

The morphodynamical evolution of the coastal zone and the recruitment 
strategies of many marine organisms are conditioned by the tides in many 
areas. 

Oceanic tides are also contained as a prominent signal in many geophysical, 
geodetical and astronomical records. Tides cause short-period and long-term 
changes of the gravity field and the shape of the earth, of the length of day and 
the position of the poles. The respective sciences are therefore very interested 
in a precise knowledge of ocean tides. Vice versa, the tidal signals in these often 
extremely accurate measurements (orbits of satellites, Lunar Laser Ranging, 
Very Long Baseline Interferometry) provide independent terrestrial data for 
the validation of tidal models. 

1.3.2 Different Modeling Approaches 

Tidal elevations show an often complicated but always regular behavior. The 
phases are related to the moon's and sun's position, which has been recognized 
from early on. From tidal records simple and extremely reliable rules could 
be established for the forecast of tidal elevations, such as (i) high water (low 
water) occurs every 12 hours and 25 minutes, (ii) every second high water (low 
water) is smaller (daily inequality), and (iii) every two weeks tidal ranges are 
high, in between they are low. 

This and other tidal behavior has been investigated by various modeling 
approaches: 

• harmonic analysis, 
• hydraulic models, 
• equilibrium models, and 
• dynamic models. 

The harmonic analysis represents the tidal signal as a superposition of 
harmonic tidal constituents (partial tides) with certain celestial (not oceanic) 

5 The tidal currents caused by the gravitational attraction of the moon and sun 
extend nearly uniformly through the water column. They are therefore often 
referred to as external or barotropic tides. In contrast, internal or baroclinic tides 
are currents of tidal frequency but with significant vertical structure. They are a 
byproduct of the barotropic tides. 
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frequencies . The exact amplitudes and phases of the constituents can be ob­
tained by a harmonic analysis of a long-term tidal record. At the beginning 
of the 20th century machines performed this analysis for a limited number 
of tidal constituents (Fig. 1.3) . Nowadays, harmonic analysis is done using 
computers. 

Fig. 1.3. The mechanical tide simulator operated at the German Hydrographic 
Institute. From Defant [25] 

Tidal elevations can now be forecasted by this harmonic expansion and 
extrapolation method with sufficient accuracy and reliability for several years 
in advance. Official tide tables are mostly based on this method. There remains 
a certain deficiency at shallow water coasts: here the observed tidal curves 
show a non-sinusoidal shape which cannot be approximated by even a high 
number of partial tides. Higher harmonics are required. 

A hydraulic model (Fig. 1.4) is another, more natural and suggestive, way 
to model tides. Here the tidal phenomenon is simulated within a hydraulic ap­
paratus, assuming the validity of certain hydrodynamic similarity laws. The 
currents and elevations in the apparatus are governed, like in nature, by grav­
ity, geometry and friction and are forced, like in nature, at the boundary. 
For a while such hydraulic models were very popular for engineering applica­
tions. But they are restricted to the local scale (usually the Coriolis force is not 
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Fig. 1.4. The hydraulic tidal model of the Bundesanstalt fiir Wasserbau in Ham­
burg. From Siindermann and Vollmers [163] 

represented) and require high experimental effort. Today they are mainly used 
for guiding constructions and for process studies. 

Figure 1.4 shows a hydraulic model of Jade Bay, a tidal inlet in the south­
ern German Bight6 . The bay is approximated to have a circular geometry, 
with a diameter of 10 km, and a 6.25 km long and 4 km wide channel to the 
open sea. The bay is assumed to have a uniform undisturbed water level of 
15 m. The photograph shows the miniaturized bay, with a reduction factor of 
10-3 in the horizontal and 10- 2 in the vertical, seen from the "sea". Thus, 
the miniaturized model bay has a diameter of 10 m, the channel is 4 m wide 
and 6.25 m long. The undisturbed water depth is 15 cm. At the entrance to 
the channel a wave with an amplitude of 1.51 cm and a period of 7.45 minutes 
is excited (corresponding to 1.51m and 12h 25min's). The water levels and 
the current speeds and directions are recorded. Figure 1.5 shows the current 
directions right behind the corner on the left side of the bay shortly before and 
after high tide, given by a time exposure photograph. In both photographs a 
cyclonic flow appears, with a net inflow shortly before the high tide, and a 
net outflow shortly after. Records of current velocities during one tidal period 
are displayed in Fig. 1.6, together with the result of a numerical model. 

6 We discuss this case in some more detail, as we will revisit it in Sect. 4.1.4 and 
in Sect. 6.1.1. 
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Fig. 1.5. Currents in a simulation with the hydraulic tidal model shown in Fig. 1.4 
shortly before and after high tide (see inlet). The area shown is at the corner between 
the circular bay and the channel, on the right hand side of the photograph in Fig. 1.4. 
From Siindermann and Vollmers [163] 

The most promising approach to model tides is, however, to consider the 
ocean as a fluid governed by physical laws. These laws are encoded in the 
basic equations of fluid dynamics (Sect. 2.1). These equations describe quan­
titatively the response of a fluid to external forcing (astronomical forcing in the 
case of tides) in a given (geometrical) environment. Assuming that the earth 
is totally covered by an ocean of uniform depth, Newton was able to calcu­
late the equilibrium response of the ocean to the tide-generating astronomical 
forces. His model explains the above-mentioned tidal periods and inequalities, 
and even global tidal ranges. His model is also adequate to understand the 
spatial structure of the long-period tides (from two weeks upwards; Fig. l.7a). 
It fails, however, to explain the complex oscillation structure of the diurnal 
and semi-diurnal tides (Fig. l.7b). Newton's "equilibrium model" is too sim­
ple. It does not account for the effect that gravity waves propagate with a 
finite phase speed. The shorter period tidal waves cannot follow the moon's 
or sun's orbit. Tides become a transient phenomenon. This results in com­
plicated oscillation patterns, which are further modified by the continental 
boundaries. 

Newton's equilibrium model is a cognitive model. It explains in a maximum 
simplified manner some general features of the tides. However, it cannot be 
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Fig. 1.6. Comparison of tidal currents obtained by the hydraulic model shown in 
Fig. 1.4 (dashed) and the numerical model discussed in Sect. 4.1.4 (solid). The 
simulated water level is also shown. From Siindermann and Vollmers [163] 

used for specific planning purposes or for explaining details that arise from 
realistic topography. 

Laplace accounted for the transience of the tides in his "dynamical ap­
proach". "Laplace tidal equations" are a set of partial differential equations 
that form a sound basis for the quantitative description of tides in the world 
ocean. Their drawback is that they are complicated. They cannot be solved 
analytically, even for a sphere covered by an ocean of uniform depth. Again, 
we are faced with the practical limitations of a cognitive model. 

Significant progress towards the realistic modeling of the tides was achieved 
by solving Laplace tidal equations numerically. The differential equations are 
discretized and turned into a set of algebraic equations. The problem is re­
duced to the manipulation of a large but finite set of numbers, which can be 
carried out by computers. One arrives at a numerical model of the tides. In 
principle, these numerical models can be designed to represent reality ever 
more accurately. The resolution can be increased. More and more processes 
can be included, such as bottom friction which is important in the shallow 
parts of the oceans. The results of such numerical models become closer and 
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Fig. 1. 7. Amplitudes and phases of the fortnightly (a) and semi-diurnal M2 (b) 
ocean tide, simulated with a quasi-realistic numerical model. These simulations have 
not yet taken into account the processes of tidal loading and self-attraction as in 
Fig. 5.33; satellite data have also not been assimilated as in Fig. 5.35 [151] 
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closer to reality. They become quasi-realistic7 models. These models must, 
however, still be analyzed and interpreted in order to understand the system. 

A simulation of Jade Bay with the hydraulic model is compared in Fig. 1.6 
with a simulation from a numerical model. The currents are simulated in 
both models similarly, lending credit to both models. However, the numerical 
model is more powerful, as it additionally provides information about the 
water level, which could not be measured in the hydraulic model. We will 
later see (Sect. 6.1.1) that the numerical model has other advantages over the 
hydraulic model as well. For this reason, tidal studies are no longer done with 
hydraulic models. 

Quasi-realistic tidal models, on the other hand, are suitable for various 
practical purposes. They may be used for numerical experiments, e.g., to study 
the effect of self-attraction of the ocean, for detailed forecasting, and for the 
analysis of satellite data. 

The dynamics of tides is further discussed in Sect. 4.1. 

1.4 Climate 

The word "climate" is used here to mean the statistics of weather. It thus 
includes not only mean values but also variances, extreme events and other 
statistical descriptors. Weather is then a realization of climate. 

As tides, climate has in all times been an important constraint for peo­
ple. In fact, in the not-too-distant past climate was understood solely as the 
statistics of weather as far as it affects people. There was no "climate" of 
Antarctica or Mars. 

Here we briefly describe the historical development of climate science, dis­
cuss qualitatively quasi-realistic climate models and comment on the societal 
relevance of climate. 

1.4.1 Historical Development 

The science of climate has developed along two separate lines aimed either at 

• describing the geographic variations of climate, or 
• understanding climate as a "thermodynamic engine". 

These lines have now merged and given way to an interdisciplinary systems 
analysis approach. 

The geographic descriptive approach views climate as a resource or limiting 
factor. Climate is therefore a local or regional object. In areas where tempera­
tures fall below the freezing point, palm trees do not grow, and the agronomist 
is advised not to grow citrus trees. Therefore, not surprisingly, climatology as 

7 We use the notion quasi-realistic instead of realistic because models are always 
approximations and therefore reflect only part of reality. 
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Fig. 1.8. One of Vladimir Koppen's climate maps of the world [88]. The figure 
caption is in German 

a science began with the description of local and regional climates, and the 
various regional charts were combined into world maps. The global climate 
was perceived as the sum of regional climates. Famous representatives of this 
line of research are Vladimir Koppen [88], Eduard Bruckner [155] or Julius 
von Hann [172] . Koppen's maps are even nowadays in use. They classify the 
surface of the world into climatic zones, which are determined by the amount 
of precipitation they receive, and the temperature regime. Dynamical quan­
tities such as the wind are considered secondary. One of Koppen's maps is 
reprinted in Fig. 1.8. 

The weather services pursue this traditional line of research by providing 
"climate normals" for planning purposes in traffic, agriculture, tourism, and 
for other applications. Such normals are not only mean values derived from, 
say, a 30-year interval, but also the probability for extreme events (such as 
100-year storm surges) . 

The "thermodynamic engine" approach, on the other hand, aims at un­
derstanding why climate is as it is. This approach developed parallel to the 
geographic descriptive approach over the course of the last centuries. Examples 
are George Hadley's explanation of the trade wind system8 (see Fig. 1.9), Im­
manuel Kant's postulation of a continent south of the Indonesian archipelago 

8 For an interesting review of the history of ideas concerning the general circulation 
of the atmosphere, of which the trade wind system is a part, refer to [103]. 
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Fig. 1.9. Hadley's concept of thermally driven vertical cells, which are deflected by 
the rotation of the earth, creating the equator-ward directed trade winds [103] 

- at that time unknown to Europeans - based on wind observations from 
merchant vessels, and Arrhenius' [3] hypothesis about the impact of air-borne 
carbon dioxide on near-surface temperatures. Interestingly, all these theories 
turned out to be essentially correct, in spite of the severely limited observa­
tional evidence that was available to these researchers. As a demonstration, a 
modern sketch of the general circulation (Fig. 1.10) is juxtaposed to Hadley's 
17th century concept. The two figures have many common elements. 

The present state of climate is understood to be determined by the con­
dition that the incoming solar or shortwave radiation balances the outgoing 
thermal or longwave radiation. This principle is encoded in the concept of the 
energy balance model, depicted in Fig. 1.11. In tropical latitudes, the earth's 
surface and the atmosphere gain more energy from the sun than they lose to 
space as thermal radiation. The excess energy is transported poleward first 
by the Hadley Cell and then by horizontal eddies to mid-latitude and polar 
regions (Fig. 1.10), where less solar radiation is received than lost to space. 
Thus the atmosphere acts like a thermodynamic engine, heated at the tropi­
cal surface, and cooled at mid and high latitudes. This engine is doing work 
- causing the movement of mass which we call winds. The ocean functions 
differently. In the present geological period, the deep ocean is cold, close to 
freezing. Thus, the ocean is stably stratified. Any circulation involving both 
the upper and lower layers of the oceans requires a mechanism that connects 
the two layers. Such a mechanism is convection in subpolar regions, where 
sea ice is formed and the surface waters are cooled by the atmosphere. Both 
processes cause the ocean water to become denser. Convection sets in. Sur­
face water sinks down to deeper levels and displaces water there, which moves 
along the conveyor belt, as sketched in Fig. 1.12. Thus, the ocean circulation 
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Fig. 1.10. A sketch of the general circulation of the atmosphere. The mid latitudes 
are characterized by unsteady (but statistically quasi-stationary) states [177] 

may also be seen as a thermodynamic engine, with densification taking place 
at subpolar regions9 . The work done by this engine takes the form of ocean 
currents that transport thermal energy from low to high latitudes. 

The two approaches to climate, the geographic descriptive and the thermo­
dynamic engine approach, have long been separated. They are now reconciled 
after meteorology and oceanography began to comprehend their systems, the 
atmosphere and the ocean, as parts of a giant geophysical machinery, named 
"climate". This and global observing systems, partly operating from satellites, 
new biogeochemical techniques for reconstructing past climate states, and, 

9 Here we mean the circulation that involves both the upper and lower layers of the 
ocean. At the ocean surface various circulation patterns also develop in response 
to wind forcing and bathymetric features. 
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Incoming solar radiation 

Fig. 1.11. Balance of incoming and outgoing energy fluxes from the earth's surface, 
the atmosphere and space. Units are W m-2 [174) 

foremost, the development of quasi-realistic climate models and supercom­
puters caused a change in the paradigm of climate research, from describing 
an anthropocentric environment to understanding, modeling and predicting 
climate, using systems analysis techniques. This development was advanced 
by the concerns about anthropogenic climate change, which added urgency 
and need for applying climate-related knowledge. 

A major insight of climate research is the understanding that one must dis­
tinguish between local, regional, planetary and global climate. Global features 
are defined as the mean of many local features. The global mean near-surface 
temperature10 is such a global feature. It can directly be determined from 
energy balance models without any knowledge about local aspects. The ma­
jor features of the general circulation of the atmosphere, such as the tropical 
meridional cells and the jet streams associated with baroclinic instability and 
the formation of storms, constitute the planetary climate. It is fairly well 
simulated by an aquaplanet , a planet covered entirely by water, without any 
mountains, coasts and vegetation. The distribution of continents and the pres­
ence of the large mountain ranges, such as the Himalaya, the Andes, the Rocky 
Mountains, Antarctica and Greenland, only modifies this planetary climate. 

10 It is defined as the globally averaged air temperature at 2 m height above the 
ground. 
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Fig. 1.12. "Conveyor belt" of the global oceanic circulation, involving both the 
upper and deep ocean 

Current "low-resolution" general circulation models describe this planetary 
climate well. Once the planetary scale state of the atmosphere is set, the re­
gional and local climates emerge as the result of an interplay between the 
planetary climate state and local physiographic features such as geographical 
location, local topography, proximity to the ocean and land use [174]. 

1.4.2 Quasi-realistic Climate Models 

When we refer to climate modeling in this book, we mean "quasi-realistic 
global climate models", which are under construction since the 1960s [107]. 
Such models attempt to account for as many as possible mostly physical 
processes, in order to simulate the detailed evolution of the atmosphere, the 
ocean, the cryosphere and perhaps some other climate components such as 
biogeochemical cycles or vegetation. These models resolve spatial scales of a 
few hundred kilometers. Their temporal evolution ranges from days to several 
hundred and even thousands of years. 

We do not consider conceptional models that , for example, try to explain 
the latitudinal extension of the Hadley Cell, nor idealized models such as 
energy balance models nor integrated assessment models, which combine dy­
namically strongly reduced climate models with rudimentary economic mod­
els. We also do not consider process models that, for example, study the 
diurnal circulation in an Alpine valley, the injection of volcanic aerosol into 
the stratosphere or the formation of fronts in the North Sea. We focus on 
quasi-realistic models. "Quasi-realistic" climate models are assembled from 
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sub-models of the atmosphere, the ocean, the cryosphere and other climate 
components. These sub-models are based on dynamical equations. These are 
usually balance equations for mass, momentum and energy for the respective 
medium and equations characterizing the medium. After discretization these 
equations can be solved on computers. Unfortunately, these equations must 
include the effect of small-scale processes that are not resolved by the model 
but affect the resolved scales and processes. Such subgridscale processes in­
clude convection, cloud formation, precipitation, the absorption and emission 
of radiation, surface friction, ice formation, run-off and many more. They are 
labelled "physics" in the jargon of climate modelers. In the energy balance of 
the atmosphere they often constitute the dominant sources and sinks. Since 
these subgridscale processes are not explicitly resolved, their effect on the 
resolved scales must be parameterized. The functional form of "parameteri­
zations" is mostly physically motivated, but the choice of crucial parameters 
depends on empirical findings and on the "success" of the parameterization 
scheme when implemented into a climate model. All environmental models 
contain such parameterizations, often in very disguised form. Not including a 
process is also a form of parameterization. From an epistemological point of 
view this is somewhat dissatisfying. However, because all scales of the climate 
system interact, parameterizations are an indispensable element of climate 
models. 

These quasi-realistic climate models are the only tool for investigating the 
dynamics of climate and for deriving detailed scenarios. Thus it is of utmost 
importance for the users of information provided by climate models to be 
aware of the limits of such models. The two most important limits are: 

• Global climate models simulate well-resolved phenomena satisfactorily, 
but fail for processes and patterns that are hardly or not resolved. "Well 
resolved" are planetary scales of several hundred and more kilometers, 
whereas "hardly or not resolved" are regions such as the islands of Hawaii, 
Israel or the North Sea. Climate models thus do not give any immediate 
information about detailed ecological and economical impacts of climate 
change since these require information on regional and local scales. 

• Climate models do not forecast. They simulate plausible realizations of a 
random process. Different initial conditions lead to different trajectories 
but identical statistics. 

It should also be kept in mind that climate research is more than meteo­
rology or oceanography; it is an interdisciplinary systems analysis approach. 
The underlying dynamics of the climate system is discussed in more detail in 
Sect. 4.2. 

1.4.3 Societal Relevance of Climate 

Climate has at all times been perceived by people as an important factor for 
human life and its organization. Greek philosophers as well as thinkers from 
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the Enlightenment took such influences for granted. Even today, this view 
seems to be firmly implanted, at least in the western view of the world. More 
sophisticated, allegedly scientific versions were put forward in the last cen­
tury by "climate determinists" such as Ellsworth Huntington [66] (see also 
[156]). These climate determinists went so far as to assert that the appear­
ance of people, their physical and intellectual capabilities and attitudes are 
determined by the climatic conditions. Similarly, Markham [109] claimed in 
1947 that the progress of civilization was steered by peoples' growing ability 
to create favorable in-door climates, helping England to rise to a global power 
in spite of its suboptimal climatic conditions. These concepts were formulated 
so broadly that they could not be falsified [157]. The concepts were actively 
rejected by social scientists such as Emile Durkheim since the beginning of 
the 20th century by pushing the axiom that "social issues are explained by 
social factors". Durkheim's axiom is still strictly accepted by many social sci­
entists today, and this is one of the obstacles to interdisciplinary co-operation 
between natural and social sciences. A more adequate position, avoiding both 
extremes of rejecting any role of the natural environment and of assigning it 
a dominant role, was formulated by the geographer Wilhelm Lauer [96]: 

Climate shapes the theater in which human existence - the history of 
the human race - takes place, sets borders for that which can happen 
on the earth, but certainly does not determine what happens or will 
happen. Climate introduces problems that man has to solve. Whether 
he solves them, or how he solves them, is left to his fantasy, his will, 
and his formative activities. Or, expressed in a metaphor: climate does 
not compose the text for the development drama of mankind, it does 
not write the movie script, that does man alone. 

A somewhat milder form of climatic determinism, for instance represented by 
Eduard Bruckner at the turn of the 20th century, was the hypothesis that 
changing climatic conditions would increase or decrease the nations' possi­
bilities in dealing with peoples' health, agricultural production or long-range 
transport [155]. This claim is interesting insofar as the analysis of the vul­
nerability of societies to climate changes was certainly correct at that time, 
but proved to be irrelevant within very few decades, simply because of the 
pharmaceutical progress made, the improved agricultural practices and the 
large-scale introduction of railroad traffic. Two recent cases, one reported by 
Reiter [139] about the spread of mosquito-borne diseases (Malaria) and one by 
Klinenberg [86] about the deadly heat wave in Chicago in 1995, support this 
conclusion. In both cases it had been hypothesized that climate had a signifi­
cant impact on health and mortality. A closer analysis, however, revealed that 
changes in the efficiency of the health system is the key for understanding the 
different spread of malaria, and that recent adverse social practices (isolation 
of the poor elderly) was the main cause for the high mortality during the heat 
wave in Chicago. 
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On the other hand, single extreme weather events, like wind-, hail- or rain 
storms have severe impacts on humans and the economy. The same is true for 
climatic anomalies, like the extended drought during the Dustbowl episode 
in the 1930s. But also in these cases the impacts are often aggravated by 
insufficient preparedness and unsustainable use of the environment. 

An important aspect is, however, that the political discourse is not so much 
about the real impact of weather and climate on society, but much more about 
society's perception of weather and climate impacts. And this perception is 
often rather different from the real impacts. Examples are given by Kempton 
and Craig [81] and Kempton et al. [80]. One such example is that the past 
weather is falsely remembered as regular and consistent with the seasons. 
In the past, the seasons were more clearly separated, but nowadays, they 
have become more disorderly. This perception has been examined by Rebetez 
[138] in some detail with respect to "White Christmas" in Switzerland. Thus, 
scientific knowledge is competing in the public arena with other knowledge 
claims, which are based on historical, social and cultural constructions. 

On the other hand, society is influencing climate, through changing land 
use and the emissions of anthropogenic substances into the atmosphere. Land 
use changes mainly affect local and regional scales; emissions of aerosols from 
burning coal and forests have mainly a regional effect, but the emission of 
greenhouse gases is leading to changes on the global scale. These anthro­
pogenic changes have until now been rather minor but detectable [197] and 
are expected to increase at an accelerated speed in the next decades. The im­
pacts of this "Global Warming" are not really understood and will emerge in 
parallel with other significant changes in economic activity, societal attitudes 
and social and cultural practices. Thus, some climatic impacts may actually 
turn out to be insignificant in the future, even if the same impacts today 
would be markedly harmful. And conversely, present societally insignificant 
changes may have severe effects in the future. In view of this perspective it 
is advisable to resort to the precautionary principle and to try to reduce an­
thropogenic climate change as much as possible without significant social and 
other repercussions. The Kyoto protocol is considered a first step in this di­
rection, even though it now has a mostly symbolic value and will not directly 
limit the expected climate change in a significant way. 

The term "Global Warming" has become a household term, which needs 
no explanation when used in the news [169]; however its content is mostly 
severely misunderstood [80]. Again, public knowledge is not aligned with sci­
entific knowledge. Because of this mismatch, climate science is no longer "nor­
mal science" [90] driven by curiosity, but "postnormal science" [42], [11], [144], 
which is characterized by high uncertainty and high risks. In a postnormal 
framework, the concept "science speaks to power" is no longer valid [10]; 
instead, different opinions, nurtured by different knowledge claims, are com­
peting with each other and the attention of the public and, eventually, of the 
policy makers. 
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1.5 Quasi-realistic Computer Models 

Here we discuss some general characteristics of quasi-realistic computer mod­
els. The more technical aspects are discussed in Chap. 2. 

The need for quasi-realistic modeling 

Quasi-realistic models are the only tool to address a variety of problems in 
environmental sciences. The main reason is that certain experiments11 cannot 
be performed in reality. They are either impossible, impractical or unethical. 
For global systems such as the tides or the climate one can simply not perform 
experiments. One cannot change the amount of solar radiation, the position of 
the moon and sun or the shape of the continents. There are global experiments 
that we do perform, such as the release of carbon dioxide into the atmosphere, 
but we would like to anticipate the outcome of this experiment rather than 
to wait for it. For environmental systems, we also do not have the "controlled 
conditions" required for meaningful experimentation, because environmental 
systems are open and are influenced by all kinds of unaccountable factors. 
The uniqueness also limits experimentation. No two systems are sufficiently 
alike that results from experiments with one system can be applied to other 
systems. Even if experiments can be done it may be unethical to perform 
them. This is particularly the case in the biological and medical sciences. 
Thus quasi-realistic models are needed. 

Dynamics 

In this book we consider models that are based on dynamical equations. These 
dynamical equations represent the laws of nature for the system under con­
sideration. Computer models can also be based on kinematic extrapolation 
or on analogs. These models are not considered in this book. The assertion 
that models are based on dynamical equations sounds more innocent than it 
is. The question is whether the system to be described is characterized by 
a unique set of dynamical equations "representing the laws of nature". In 
general the answer will be negative. The need to approximate the laws and 
include parameterizations implies that different formulations, using different 
approximations and containing different parameterizations, are possible. This 
is the major problem in the case of tides and climate. In the case of ma­
rine ecosystems one encounters the additional problem that the relevant state 
variables are not even known12 . 

11 Following the American Heritage Talking Dictionary an experiment is: "A test 
under controlled conditions that is made to demonstrate a known truth, examine 
the validity of a hypothesis, or determine the efficacy of something previously 
untried". 

12 In the case of tides, the state variables are the vertically averaged currents and 
the water elevation. In the case of the atmosphere or ocean, the state variables 
are the fluid velocity, the temperature, the pressure and the humidity (salinity). 



1.5 Quasi-realistic Computer Models 25 

In this book we consider only cases for which it is not a problem to for­
mulate the dynamical equations that represent the laws of nature. These laws 
state the causes for change and evolution. They are cause and effect state­
ments. The premier example is Newton's second law. It states that the ac­
celeration of a particle is given by the force acting on the particle. The force 
is the cause. The acceleration is the effect. The field of physics that studies 
the motion of particles under the action of forces is called dynamics. Here we 
broaden this meaning and call dynamics all natural laws that state a cause 
and effect relationship. Dynamical models thus view a system as a causal net­
work and ascribe changes of the system as being the effect of particular causes 
acting on or within the system. The cause and effect relations are called dy­
namical laws. The dynamical laws for a fluid system, such as the ocean or 
atmosphere, are the subject of fluid dynamics and are described in standard 
textbooks like [129], [63] and [45]. A brief summary is offered in Appendix A. 

A short discussion of the role of empiricism may be in order at this point. 
Whether dynamical equations are known or not, the future development of any 
system may be estimated by means of empirical extrapolation. Extrapolation 
is applied when an observational record shows sufficient regularity. One then 
extrapolates this regularity to predict the future evolution of the system. Such 
extrapolation has been used since ancient times in astronomy, with consider­
able success. The Greek philosopher Thales correctly predicted a total eclipse 
of the sun in 589 BC. Extrapolation does not give the causes for the evolu­
tion of the system. Today it is used to predict tidal currents and elevations 
by harmonic analysis of the tidal record (cf. Fig. 1.3). The extrapolations in 
astronomy and tidal analysis are deterministic. Often an observational record 
shows irregular behavior but with some structure in it. One set of events is fol­
lowed often but not always by some other set of events. In this case, statistical 
methods allow extrapolation and prediction. Statistical extrapolation is un­
certain. It does not predict a specific evolution but an ensemble of evolutions. 
From such an ensemble one can construct the typical or averaged evolution 
and quantify the uncertainty. Statistical extrapolations also do not give the 
causes of the evolution. Such extrapolations are not unscientific but are not 
considered in this book. 

Computational formulation 

In general, the dynamical equations cannot be solved analytically but must 
be solved numerically. This requires computational algorithms and codes. The 
issues that are germane to the computation of oceanic and atmospheric flows 
comprise the field of computational geophysical fluid dynamics. It is a sub­
discipline of the general field of computational fluid dynamics. However, com-

In the case of a marine ecosystem, the state variables could be the abundance of 
groups of species, phyto- and zooplankton, bacteria, nutrients, but they could also 
include key species. Different from purely physical systems, there is no consensus 
about the the state variables for ecosystems. 
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putational geophysical fluid dynamics has developed independently and in 
isolation from other fields of computational fluid dynamics such as aerody­
namics. The main reason is that geophysical flows are more complex and less 
understood than aerodynamic flows and results are not as easily verified as 
aerodynamic computations are - by wind tunnel or controlled in-flight mea­
surements. Also, much of aerodynamics is concerned with flows for which the 
Mach number, the ratio of fluid to sound speed, is order one or larger. In­
deed one of the major aerodynamic problems is the accurate modeling of the 
supersonic shock structure without introducing unphysical oscillations and 
without smearing out the gradients. Geophysical flows on the other hand are 
low Mach number flows of a stratified, rotating, multicomponent fluid. The 
major challenge is the simultaneous computation of the many processes that 
affect such a flow rather than the highly accurate computation of a single 
process. For this reason computational geophysical fluid dynamics has devel­
oped on its own and has been somewhat conservative and slow in adopting 
the highly advanced algorithms of computational aerodynamics such as flow 
adaptive grids. 

For many years, numerical problems were considered less relevant for 
tidal and climate studies, apart from the problem of designing a posi­
tive, monotonous and mass-conserving advection scheme (such as the semi­
Lagrangian method). Recently, new challenges have emerged for efficient im­
plementation of numerical codes on vector and parallel computers. It is ex­
pected that informatics and applied mathematics will play a more important 
role in environmental science in the future. 

1.6 Applications 

In providing a virtual reality, quasi-realistic computer models can be employed 
for various purposes. In particular, "experiments" impossible with the real sys­
tem can be carried out. In the framework of fundamental sciences, such models 
allow the testing of hypotheses and extended simulations. Typical hypothe­
ses concern the relevance of certain processes. Simulations generate complex 
data sets that allow detailed diagnostic studies of processes for which ade­
quate observational evidence is lacking. In applied science, such models serve 
to interpret sparse and uncertain observational data, to forecast future states 
and to derive detailed scenarios of plausible future developments. Clearly, the 
separation into fundamental and applied sciences is blurred. In Chaps. 5 and 
6 these applications are elaborated upon in some detail. Here, we want to give 
a first brief sketch of the spectrum of these applications. 

Hypothesis testing 

Experiments with computer models allow the formulation and test of hypothe­
ses. Such experiments are called numerical experiments. 
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The aim is to understand and comprehend the system. The typical question 
is: what are the most important processes governing the system? Thus, such 
experiments are a tool in fundamental sciences. On the other hand, the impact 
of some human interference may also be studied in a numerical experiment. 
Then the effort is part of applied sciences. Some typical examples follow. 

Example 1.1. A typical fundamental science question is the effect of cirrus 
clouds on climate. To answer this question three climate model simulations 
were performed which differed in the specification of cirrus clouds only [101]. 
In the first case, a standard parameterization was used, which gave a rather 
realistic vertical distribution of tropospheric and lower stratospheric temper­
atures. In the second simulation, the cirrus clouds were assumed to be black, 
and in a third one to be transparent. It turned out that black cirrus clouds lead 
to markedly increased tropospheric temperatures, by virtue of the greenhouse 
effect, with a concurrent cooling of the lower stratosphere. In the simula­
tion with transparent cirrus clouds the effect was opposite. The conclusion 
drawn from these three experiment was that the radiative processes in cirrus 
clouds are first order processes. Without their proper inclusion, the simula­
tion of the tropospheric and lower stratospheric temperature would deviate 
markedly from observed values. 

Other problems can be addressed in a similar manner: the effect of vege­
tation, the release of large volumes of melt water into the Atlantic at the end 
of the last glacial period, or the barrier effect of the American isthmus on the 
global oceanic circulation. 

Example 1. 2. A problem in tidal modeling is the role of gravitational self­
attraction of the ocean. This problem can be addressed by running a tide 
model twice, once with and once without self-attraction. The difference be­
tween the two simulations is indicative for the relative importance of the pro­
cess "self-attraction" and tells the experimenter whether this process should 
be included in future simulations with this model or if the inclusion increases 
the complexity and computational load without having a significant effect on 
the results. 

Example 1. 3. The predictability of climate and its components is another 
problem that can be investigated with the help of two simulations of the same 
model. Initialize the model with two slightly different states. After a certain 
time the concurrent states of the two runs will differ like any two randomly 
selected states. Then the limit of predictability has been surpassed. This limit 
is a few days in case of mid-latitude weather and often much longer in the 
tropics and subtropics, due to the El Nifio phenomenon. 

Example 1.4. The effects of a bridge crossing the 0resund, between Denmark 
and Sweden, on the currents in the 0resund and on the flushing of the Baltic 
Sea have also been addressed by numerical experiments. Results are directly 
related to managerial decisions. 
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Some of these numerical experiments are also called sensitivity experiments 
since they determine how sensitive a model result is to changes in the value 
of a parameter or to the inclusion or omission of a process. For instance, one 
speaks of "the sensitivity of the mean atmospheric temperature to changes in 
the atmospheric composition". 

Simulation of present and past states 

The dynamics of actual and past regimes is of major interest for environmen­
tal sciences. What is the energy cycle of the atmosphere? How much eddy 
potential energy is transformed into eddy kinetic energy in cyclones? These 
questions can easily be answered by analyzing an atmospheric model, whereas 
the observations are currently not sufficient for such an analysis. Also the re­
construction of paleoclimatic states is a topical task in contemporary climate 
science. While some features may be deduced from various proxy data, such 
as isotope ratios in ice cores and width of tree rings, a spatially complete and 
dynamically consistent reconstruction can be made only with a climate model 
subjected to the appropriate forcing conditions such as land-sea distribution, 
atmospheric composition and orbital parameters. 

Another application is the reconstruction of pathways and depositions of 
substances which have been emitted into the ocean or atmosphere. We will 
discuss in detail the case of lead after the burning of leaded gasoline was 
legally regulated in Europe (see Sect. 5.2.3). In this case, the spatially and 
temporally detailed reconstruction serves as a means to assess a posteriori the 
success of the regulation. 

Simulation of likely future states 

Apart from academic applications, there are a number of operational appli­
cations, most importantly the forecasts of weather13 . Weather forecasts are 
part of everyday life. They go routinely into all kinds of planning activities. 
Spatial and temporal accuracy is important. Forecasts of the tides, ideally 
combined with forecasts of the wind effect on the water level, are also stan­
dard information that goes into operational decisions about ship traffic and 
other coastal activities. The forecast of extreme events, such as storm surges, 
is another example. 

In all cases, the aim of the modeling effort is to get useful information 
about the state of the system. Attempts for a better understanding of the 
system are not made. 

13 The two terms forecast and prediction are often used interchangeably. In this 
book, however, we use the term "forecast" for efforts to specify an unknown 
state in the future, whereas the term "prediction" is used in a broader sense. It 
covers not only forecasts but also efforts to answer "what-if" questions, such as 
to predict the outcome of an experiment about the influence of a certain factor 
on the system. 
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Simulation of plausible future states 

Predictions of the detailed future development of the atmosphere are limited 
to lead times of mostly a few days, at least in mid-latitudes. Society and stake­
holders thus request a different type of prediction, namely the prediction of 
plausible future statistics of the atmosphere, conditional upon certain human 
activities. These conditioning human activities are almost never themselves 
predictable, so that the statistics of the atmosphere can also not be predicted. 
Instead, one refers to scenarios. When the assumptions about the human 
activity are plausible, then the scenario is plausible. When the assumptions 
are likely, the scenario is likely. When the assumptions describe an unlikely 
development, then the scenarios are unlikely. 

Such scenarios are indeed the most intriguing applications of quasi-realistic 
climate models for the public. The best-known examples are the scenarios of 
future anthropogenic climate change, issued for example by the Intergovern­
mental Panel on Climate Change (IPCC) in its Assessment Reports. They 
describe the effect of the accumulation of carbon dioxide and other green­
house gases and aerosols in the tropo- and stratosphere (see Sect. 5.3). Other 
scenarios study the effect of large-scale deforestation or the climatic impact 
of nuclear war. 

Two common aspects of all these scenarios are that they are not forecasts 
and that they are usually not confirmed. The conditioning events might not 
take place at all, or the conditioning events may be changed by the availability 
of the scenarios, or effects might only appear in the far future. Unfortunately, 
scenarios often undergo a metamorphosis from something plausible or possible 
to something certain on their way from economic science to climate science 
to climate impact research to the public. A special problem emerges if con­
servative risk estimates are used in every step of the chain of assessments. 
Concatenating conservative estimates of risks sometimes results in unlikely 
worst case scenarios. 

Examples of more regional or local scenarios include the effect of burning 
oil wells in Kuwait, the fate of waste heat from power plants, the impact 
of water quality regulations by the European Commission on the quality of 
dredging material in the port of Rotterdam, and the effect that the deepening 
of the shipping channel in the river Elbe may have on the tidal regime in 
Hamburg. 

These simulations are a part of applied science. The typical question is how 
does the state of the system change if forcing, boundary or initial conditions 
are modified. 

Data analysis 

A relatively new application of quasi-realistic models is the "dynamically con­
sistent interpolation" of irregularly distributed inaccurate observational data. 
In all the applications mentioned so far, the model is the primary source of 
information. It might have used observational evidence for the specification 
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of boundary and initial conditions or parameterizations. But the knowledge 
gain comes from the information contained in the dynamical equations. In the 
case of the data analysis, the basic concept is different. The data are consid­
ered primary. The model is "only" used to fill the spatial and temporal gaps 
between the data "points" 14 . 

Data analysis is an application of a more general method called data as­
similation, which is discussed in [141]. Data assimilation is based on a set of 
"dynamical equations" that approximately describe the evolution of the state 
variables and a set of "observation equations" that relate the observations 
approximately to the state variables. The unknown state - for instance a de­
tailed weather map - is then estimated by optimally blending the observations 
with dynamical forecasts. 

Such data analysis is routinely done in weather analysis and forecasting. 
Complete 3- or 4-dimensional synoptic representations of the atmosphere are 
constructed. They allow the study of processes which are not directly ob­
servable, such as the global meridional transports of heat and water. Data 
analysis is also applied, in a more experimental mode, to the El Nino and La 
Nina phenomenon, the state of the global ocean, the water quality in coastal 
waters, or the wave and current fields in the entrance area of ports. 

Fig. 1.13 sketches the different purposes of various models, generating 
either practical knowledge to be used in social contexts or in generating dy­
namical insight to further scientific knowledge. 

1.7 Issues 

Quasi-realistic computer models are used extensively in environmental sci­
ences, with the aim to generate new knowledge. But the models generate 
numbers, huge amounts of them, and not knowledge. Knowledge needs to be 
constructed from these numbers. An important first epistemological issue is 
thus how to turn these numbers into useful knowledge. A second epistemolog­
ical issue is the basis for trusting the knowledge so generated. How can we be 
sure? Also, running quasi-realistic computer models is a human activity and, 
like any other human activity, subject to political and economic constraints 
and social and psychological conditioning. These are important issues and are 
dealt with in the respective sciences. Here we highlight some major aspects. 

Reduction of information 

Computer models generate huge amount of numbers. These numbers explicate 
the information contained in the dynamical equations and initial conditions. 
These numbers need to be reduced to useful information and knowledge. This 

14 In many cases the observations are in fact measurements taken at discrete points, 
but in some cases measurements also provide fields, as is the case for satellite 
retrievals. 
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Fig. 1.13. Sketch of the different purposes of models, in generating either practical 
knowledge to be used in social contexts or dynamical insight to further scientific 
knowledge 

requires a careful design of the numerical experiments and simulations so 
that proper reduction techniques indeed disentangle the complex output of 
the mathematical model. Often this reduction is accomplished by statistical 
methods, assuming that complex deterministic systems, such as the climate, 
behave in many respects like structured random systems. 

In a fundamental science context, the ultimate goal of a model is often 
to understand a dynamical relationship, e.g., the stability of the Gulf Stream 
and its sensitivity to spatially changing fresh water forcing. Then reduced, 
i.e., cognitive models need to be fitted to the numbers. Care and ingenuity 
are required to identify, isolate and extract the relationship to be studied from 
all the other dynamical processes represented in the model. 

In an applied science context, the purpose of the model is often to answer 
specific questions of a client. Such clients usually do not have a great deal of 
understanding of the dynamics but are merely interested in, say, the possible 
impact of climate change on agriculture. Then the information relevant to the 
client needs to be extracted. 

These aspects are dealt with in Chaps. 5 and 6. 
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New and old models 

Computer modeling is a rapidly developing field. Increase in computer power, 
advances in numerical algorithms, and new dynamical insights all make com­
puter models age quickly. Within atmospheric and oceanic sciences, the life 
span of computer models is now about 5 years. This, of course, does not imply 
that the results obtained with these models become obsolete on the same time 
scale. Most of the old model results remain valid. The results from the new 
models do not replace the old model results but improve on them and add 
detail to them. Only rarely does a new model generation affect a "paradigm" 
shift in our basic comprehension of the functioning of the system. 

Care must, however, be taken that the transition from one model gener­
ation to the next is not done haphazardly. As will be discussed throughout 
this book and again in Chap. 6 the new models need to be validated by inde­
pendent observational evidence, but they also need to be put into the context 
of previous models. Only then can the new information that the new models 
provide be trusted. The trustworthiness of models is, of course, the major 
issue in modeling. 

Trustworthiness 

Models are only an analog of reality. They are incomplete, and in this sense 
they are always "wrong". Models cannot be verified. It cannot be demon­
strated that they produce the right results for the right reasons. Models can 
only be validated. It can only be demonstrated that their results are consis­
tent with observations. Models are validated by model-data comparison in 
parameter ranges for which observational data exist. Their usefulness, appeal 
and danger lie, however, in the option of applying them outside the validated 
parameter range, or, in Hesse's terminology, in the use of neutral analogs. 
To what extent can we trust such extrapolations? What is the basis for such 
trust? This trust does not only rest on hard sciences like physics but mostly 
on plausibility and other subjective assessments. 

We deal with the problem of validation in more detail in Sect. 3.1. 

Model builder and users 

Quasi-realistic modeling in environmental sciences requires the cooperation of 
many scientists from different disciplines and a complex infrastructure. Envi­
ronmental scientists work together with applied mathematicians and statis­
ticians in large research centers that maintain dedicated computer centers, 
supported by hard- and software specialists. Computer modeling is "Big Sci­
ence", with all the advantages and problems that such an approach entails. 
Among the advantages are the pooling of resources and the focus of activities. 
One major problem is that no single scientist comprehends all aspects of com­
puter modeling any more, from the dynamics of the environmental system to 
the archi.tecture of computers. A particular division has arisen between model 
builders and model users, where the model users do not necessarily understand 
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the inner workings of the model and code any more. This is like driving a car 
without knowing how a combustion engine works, which is fine in most cases 
but can lead to disastrous consequences in certain situations. Other issues of 
big science are to justify and secure its substantial funding and to efficiently 
organize and administer such an enterprise. Quasi-realistic models are not a 
common tool. It is a rich man's tool. Certain groups and countries cannot 
afford it. 

Social and psychological conditioning 

Computer models and their virtual reality are created by the model builder 
and user. Whether a model is sensitive to changes in forcing and configura­
tion is for the most part a matter of the system, but can in part be controlled 
by a skillful modeler. And there are many social and psychological mecha­
nisms to induce the modeler to do just that, partly consciously and partly 
unconsciously. 

There are no universal safeguards against such possible manipulation. 
Most manipulations are usually not a conscious act, but a social process, 
fueled by the wish of scientists to present results consistent with the current 
paradigm, to confirm plausible hypotheses and to promote funding and ca­
reers (see critique of the ENSO forecast community voiced by Landsea and 
Knaff [94]). In addition, certain properties of models are "socially favored", 
for instance high sensitivity. Journals like Nature and Science prefer "inter­
esting" articles, i.e., disquieting or exciting scientific news. Also, attention 
by the general media helps funding and recognition of the researcher - and 
such attention is more easily obtained by alarming results than by reassuring 
results. 

The classical peer-review process helps to avoid obvious excesses, but it 
also conservatively hampers the emergence of new concepts [38], [90]. An­
other safeguard is that modeling groups usually do not work independently 
but within a now global scientific, administrative and social network. This is 
especially true for groups working on scientific issues of general interest, such 
as the Global Warming problem. Scientists from all over the world interact, 
by direct cooperation, by meeting at conferences, and by reading each others 
publications. In the process they cross check their results. If the differences 
are too large, the reasons for it are identified, the models are corrected or 
modified, and a new more uniform set of results emerges. Nevertheless, this 
laudable scientific practice still leaves room for some subconscious collective 
biases. Thus consistency among models is not always a strong argument for 
the validity of the models, but may reflect a strong social convergence process 
among the model building institutions. 
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Computer Models 

In this chapter we describe the basic elements that go into the construction 
of computer models and the salient properties of such models. The computer 
models in this book are based on dynamical equations that represent the laws 
of nature for the system under consideration. These dynamical laws are partial 
differential equations in space and time for a set of state variables. These 
equations can in most cases not be solved analytically but must be solved 
numerically. This requires first the discretization of the equations, both in 
space and time. The continuous problem with its infinite number of degrees 
of freedom is reduced to a discrete problem with a finite and manageable 
number of degrees of freedom. The discretized equations are then turned into 
a computer code that can be executed on a computer. This code then is the 
computer model. 

The output of these computer models are numbers. These numbers must 
be interpreted and analyzed in order to derive useful knowledge. Formally, our 
models constitute dynamical systems, and concepts from dynamical systems 
theory are useful in this interpretation, especially when the same computer 
code is executed many times under slightly different (initial) conditions. In 
many cases, it is also useful to consider the model output as a realization of 
a stochastic process, though it is generated by a deterministic algorithm. 

In Sect. 2.1 the process of deriving the governing differential equations 
is reviewed, which includes several closures through parameterizations and 
approximations. These equations are transformed into a discrete, finite form 
(Sect. 2.2), which allows for a digital implementation on a computer (Sect. 2.3). 
In Sects. 2.4 and 2.5 models are related to dynamical systems theory and to 
stochastic concepts. Finally, in Sect. 2.6 different types of forecast, exploiting 
initial conditions and external forcing, are discussed. 
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2.1 Dynamics 

2.1.1 The Fundamental Laws 

The dynamical laws for a fluid system such as the ocean or the atmosphere 
are the subject of fluid dynamics. First the state variables that describe the 
fluid must be specified. In the case of the ocean or atmosphere the state vari­
ables are usually the velocity, the pressure, the temperature and the salinity 
(humidity). Then the fundamental laws of physics, namely the conservation 
or balance laws for mass, momentum and energy are formulated in terms of 
these state variables. The resulting equations contain coefficients, such as the 
density and heat capacity that must be specified in terms of the state vari­
ables. These specifications rely on thermodynamic laws. The equations also 
contain terms that account for the fact that the ocean or atmosphere is not 
a continuous fluid but consists in reality of discrete molecules. These molecu­
lar effects are accounted for by phenomenological or molecular flux laws. The 
basic dynamical equations for a fluid thus consist of: 

• the balance equations for mass, momentum, and energy, 
• the thermodynamic specifications of the fluid, and 
• the phenomenological flux laws. 

These basic dynamical equations must be augmented by suitable bound­
ary conditions. The equations and boundary conditions also contain external 
parameters, such as the gravitational acceleration or the rate of the earth's 
rotation that must be specified by the modeler. 

These dynamical equations are derived and described in Appendix A.1. 
They are well established and experimentally proven. There is no problem 
with these basic laws. Problems arise when these laws are applied to real 
systems. 

2.1.2 The Closure Problems 

An environmental system consists of many interacting components that form 
a causal network. The causal links are dynamical processes. When one applies 
the laws of fluid dynamics to such a system one encounters three closure 
problems since it is impossible in a dynamical model 

• to represent all processes within the system, 
• to incorporate the surroundings, and 
• to resolve all scales. 

The first closure problem arises from the fact that more and more 
components and processes need to be incorporated for a complete description 
of the system. It becomes impossible to consider all components and processes, 
as is demonstrated by the following two examples. 



2.1 Dynamics 37 

Example 2.1. Cloud formation. Consider the atmospheric component of a cli­
mate model. At the most basic level the atmosphere is treated as a one­
component system. It simply consists of air. One only needs to consider a 
single mass balance equation. At the next level one takes into account that 
air actually consists of dry air and water vapor. One treats the atmosphere as 
a two-component system with two mass balance equations, one for dry air and 
one for water vapor. However, this description is still not complete since water 
vapor can turn into clouds which consist of water drops or ice crystals. These 
phase changes are accompanied by release or gain of latent heat. To include the 
formation of clouds into the dynamical description of the atmosphere one must 
consider three balance equations for water: one for each phase. These balance 
equations must include source and sink terms that account for the condensa­
tion/ evaporation, deposition/sublimation and melting/freezing of water. One 
also needs to add to the internal energy equation terms that account for the 
latent heat released or required for these phase changes. Appropriate forms of 
these balance equations can be found in Appendix A.5.1. 

However, this is not sufficient. Upon closer examination one finds that 
the formation of cloud drops or ice crystals is a fairly complicated process. It 
consists of two stages. A nucleation stage and a growth stage. Formation of 
clouds requires a supersaturated atmosphere for which the water vapor pres­
sure is larger than its equilibrium value. Cloud drops (or ice crystals) then 
form spontaneously. Drops of small radii form more likely than of large radii. 
However, for a drop to be stable the latent heat released by condensation 
must exceed the surface tension work required to form the drop. This is only 
the case if the drop radius is larger than a certain critical radius. This critical 
radius decreases with increasing supersaturation. For typical supersaturations 
occurring in the atmosphere the critical radius is fairly large and spontaneous 
nucleation hence very rare. This is true in a "clean" atmosphere. However, the 
atmosphere contains hygroscopic aerosol particles such as NaCl or (NH4 )2S04 . 

Condensation at these particles lowers the critical radius since the resulting 
solution has a lower equilibrium pressure than pure water. The atmosphere 
appears more supersaturated. Cloud drops are primarily formed from these 
aerosol particles, the cloud condensation nuclei. To correctly model cloud for­
mation one thus needs to know the distribution of cloud condensation nuclei. 
These are formed naturally (like sea salt from breaking waves or dust from 
volcanic eruptions) or anthropogenically (like 804 by burning of fossil fuels). 
The issue is further complicated by the fact that the critical radius depends 
on the size of the aerosol particle. We not only need the number of aerosol 
particles in a certain volume but also their size distribution. 

After nucleation, cloud drops grow by diffusion of water vapor towards 
the drop. The latent heat released by condensation diffuses away from the 
drop. These two processes are described by the phenomenological flux laws. 
It is found that the growth rate of cloud drops depends on the drop size. 
One thus needs the size distribution of cloud drops. Further growth of cloud 
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drops is enhanced by collision and coalescence until rain drops are formed 
that precipitate. 

Example 2.2. Radiation. Similar considerations apply to the energy balance 
of an atmospheric model. There are different forms of energy: mechanical, 
internal and radiative energy, among others. Energy can be transformed from 
one form into another. Radiative energy is converted to internal energy when 
radiation is absorbed by matter. Internal energy is converted to radiative 
energy when matter emits radiation. These absorption and emission processes 
depend on the wavelength of the radiation. One must distinguish between 
short-wave or solar radiation and long-wave or thermal radiation. To model 
these processes one needs separate balance equations for internal and radiative 
energy. The radiative energy equation must further be split up into one for 
solar radiation and one for thermal radiation. Explicit forms of the radiative 
energy equation can be found in Appendix A.5.2. 

The absorption and emission processes also depend on the concentration 
of various radiatively active constituents in the atmosphere, such as water 
vapor, clouds, carbon dioxide and ozone. One thus needs balance equations 
for all the radiatively active constituents. Absorption and emission might also 
be accompanied by chemical reactions. These photochemical reactions are 
discussed in Appendix A.5.3. 

These two examples are not academic but at the core of climate modeling. 
Climate is determined by the balance of the incoming solar radiation and the 
outgoing thermal radiation (cf. Fig. 1.11). The cloud cover determines how 
much of the incoming solar radiation is reflected. As described above, the de­
tails of these radiative and cloud formation processes depend in a complicated 
manner on the wavelength of the radiation and on the concentrations of ra­
diatively active gases, aerosols and dust particles, which in turn depend on 
processes at the air-sea interface, volcanic eruptions, human activities, and 
other processes. As one might imagine there is no end to this causal network. 
The closer one looks, the more components and processes must be included. 

There is no obvious point where to cut this causal network. This prob­
lem constitutes the first closure problem. It arises because the environmental 
system is a complex system. It consists of an unmanageably large number of 
interacting components. 

A second closure problem arises because the system is open. It in­
teracts with its surroundings. The system exchanges mass, momentum and 
energy with its surroundings. This exchange must obey the boundary condi­
tions in Appendix A.4 which state that certain fluxes and variables have to 
be continuous across the bounding interface. These continuity conditions are 
useful for the prediction of the system only if a sufficient number of fluxes 
and variables are prescribed at the interface. Thus models of the ocean as­
sume prescribed values of the momentum, heat and fresh water flux at the 
air-sea interface. These prescribed boundary conditions represent the effect 
of the surroundings on the system, the effect of the atmosphere on the ocean. 
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However, we can never prescribe these boundary conditions exactly. One rea­
son is that the surrounding is affected by the evolution of the system. This is 
obviously true in the above example. The evolution of the ocean affects the 
atmospheric circulation, which in turn affects the values of the fluxes at the 
air-sea interface. The specification of the boundary conditions represents our 
second closure problem. 

The specification of external parameters represents a related closure prob­
lem. External parameters such as the rate of rotation of the earth and the 
geopotential in the momentum balance are not truly external parameters. 
The gravitational potential is determined by the distribution of mass, and 
mass is redistributed by ocean currents and atmospheric winds. Gravitational 
self-attraction has indeed become an issue in tidal modeling. Similarly, the 
rate of rotation of the earth also changes because of mass redistribution (af­
fecting the moment of inertia) and angular momentum exchanges within the 
earth-moon system. There are no truly external parameters. Specification of 
parameters represents a closure problem. The decision of what can safely be 
treated as an external field or parameter depends on the goal of the modeling 
effort, the time scales of the involved processes and other contingent factors 
and requires considerable insight into the functioning of the system. 

A third closure problem arises because one cannot resolve processes at 
arbitrarily small temporal and spatial scales. One can only manage a coarse­
grained or discrete description. This might not look like much of a problem 
since one is usually only interested in such coarse information. An average 
wind speed of 10 m/s in the North Sea is valuable information for estimating 
the height of the waves in that area, but the wind may be considerably larger 
during spatially and temporally limited gust events. These small-scale features 
have a significant effect on both wave generation and the mixing of the upper 
ocean. They also have a significant effect on the wind stress. Formally, the 
flux of momentum across the boundary is given by 

F = Cvu2 

where Cv is the drag coefficient and u the air velocity (See Appendix A.8.1). 
The air velocity consist of a mean value, indicated by a bar, and a fluctuation 
about this mean, indicated by a prime 

u = u+u' 

This decomposition is called the Reynolds decomposition. The mean momen­
tum flux across a boundary thus consists of two parts F = Cvii.2 + Cvu'2 • 

The first term describes the flux of momentum due to the mean wind and the 
second term the wind stress exerted by the fluctuating velocity. The impor­
tant point is that the second term, u'2 , does not vanish. There exists a mean 
momentum flux 

Fedddy = Cvu'2 
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which is caused by the unresolved fluctuating components. This flux is called 
the subgridscale or eddy, or Reynolds flux. Such fluxes also occur for other 
quantities such as heat and salinity or humidity. The details are discussed in 
Appendix A.6. The important point is that these fluxes affect the resolved 
scales but are determined by the unresolved scales. One needs to know the 
subgridscales to calculate the coarse-grained fields. This constitutes a closure 
problem. It is a manifestation of the advective and other nonlinearities in the 
dynamical equations which couple scales. 

2.1.3 Parameterizations 

The need for parameterizations arises because of the closure problems. When 
one cuts the causal network at any point, one has to account for the effect of 
the components and processes that are being cut off on the components that 
are explicitly calculated. When a certain part of the environment is singled 
out, one has to account for the effect of the surroundings. When a certain 
coarse graining is adopted one has to account for the effect of the unresolved 
processes on the resolved ones. Parameterization is the specification of these 
effects in terms of the resolved variables or "external" parameters. However, 
there is no way to accurately account for these effects other than by actually 
including the processes that are being excluded, adding the surroundings to 
the system that is being modeled and resolving the unresolved scales. All pa­
rameterizations of these effects are just patch-up jobs. It is not clear whether 
these effects can be expressed in terms of the resolved variables or prescribed 
as external parameters. Parameterizations are most often educated guesses, 
approximative at best. Parameterizations thus introduce errors into the dy­
namical equations and hence into the model. 

The statement that parameterizations introduce errors is obvious for a 
climate model that prescribes the cloud cover and the surface albedo rather 
than calculating them. It is also true for the parameterization of subgridscale 
fluxes. Since these fluxes arise from coarse graining in much the same way 
as molecular fluxes, they are often modeled mimicking the molecular or phe­
nomenological flux laws. Eddy diffusion coefficients are introduced instead of 
molecular diffusion coefficients. These eddy diffusion coefficients are, however, 
a property of the subgridscale flow, not a property of the fluid. They need to 
be readjusted if the resolution changes. We are not on solid ground any more. 
Parameterization of eddy fluxes are not on a par with the phenomenological 
flux laws. 

Climate and other modelers try to alleviate the closure problems by in­
cluding more and more components and processes into their models, by con­
sidering larger and larger systems, and by increasing the resolution of their 
models. Thus processes that need to be specified become resolved. However, 
these effor.ts only push the boundary. They do not solve the closure problem. 
The climate system has an infinite number of interacting degrees of freedom. 
A climate model can only explicitly calculate the evolution of N degrees of 
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freedom. The effect of the unresolved degrees of freedom must be prescribed 
however large N is. 

As one resolves more and more processes the character of the dynamical 
equations changes. This change of structure has an interesting implication 
for the mathematician. When asked by the mathematician: "What are the 
governing equations?", the modeler has to reply with the question: "At what 
resolution?". The character of the equations may change abruptly when the 
grid spacing L1x is changed. Thus, the limiting process L1x -+ 0 is not properly 
defined and standard concepts in numerical mathematics, like "consistency" 
and "convergence" are not applicable. 

2.1.4 Approximations and Representations 

In contrast to parameterizations, approximations are applied to the resolved 
dynamics in order to eliminate processes and aspects that are considered mi­
nor or irrelevant. A typical approximation for the atmosphere and ocean is the 
shallow water approximation, which is described in Appendix A.9.2. Other ap­
proximations are the planetary and quasi-geostrophic approximations. These 
approximations, their validity, and their applicability are the topics of text­
books. In our context, they represent a more technical aspect. 

Dynamical equations can also be formulated in different coordinate sys­
tems and by using different but equivalent sets of dependent variables. One 
might use height or isopycnal coordinates. Instead of velocity one might use 
vorticity and divergence. Such different representations are described in Ap­
pendix A.10.1. Different choices have different properties and some choices 
are better suited for certain problems than others. 

In summary, models are based on the integration of a set of approximate 
dynamical equation. The word "set" means that only a limited number of state 
variables '1/J(x, t) are chosen to describe the system. In the case of tides, these 
are usually the surface elevation (or water depth) and the horizontal volume 
transport (or depth-integrated horizontal velocity). In the case of the ocean 
or atmosphere the state variables are usually the velocity, the pressure, the 
temperature and the salinity (humidity). These state variables are functions of 
position x and time t. Once the state variables are chosen one makes appropri­
ate approximations to the basic dynamical laws, parameterizes subgridscale 
and other unresolved processes, specifies external parameters and chooses a 
suitable representation. One then arrives at a set of dynamical equations for 
the state variables. These equations are partial differential equations in space 
and time. They consist of a set of prognostic equations that govern the time 
evolution 

fklf;(x, t) = A['lj!(x, t); x, t; O:(x, t)] (2.1) 

and a set of diagnostic equations that relate different variables 

B['l/;(x, t); x, t; f3(x, t)] = 0 (2.2) 
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Here A and B are differential operators in space and a(x, t) and /:J(x, t) sets 
of parameters that describe the external fields and parameterizations. These 
differential equations have to be augmented by appropriate initial and bound­
ary conditions. It is these equations that the dynamicist hands down to the 
numerical mathematician. They are valid only for certain parameter ranges, 
and - uncommon for mathematicians - only for certain space/time scales. 

2.2 Numerics 

The dynamical equations of fluid flows are a set of coupled nonlinear partial 
differential equations (PDEs). These PDEs can be solved analytically only for 
highly idealized cases. Solutions for even modestly realistic situations must be 
obtained numerically. 

When a PDE is solved numerically the continuous functions are repre­
sented by their values at preselected discrete points in space and time. Deriva­
tives are replaced by finite differences. This is the standard grid method. Alter­
natively, the continuous functions are expanded into a finite truncated series 
of basis functions. The differential operators then act on the basis functions 
with known results. Hybrids of these method also exist. All these numerical 
methods reduce the continuous problem with its infinite number of degrees 
of freedom to a discrete problem with a finite and manageable number of de­
grees of freedom. This reduction of course introduces errors, truncation errors. 
Numerical methods must be designed to keep this truncation under control. 
The method must be stable. Otherwise the numerical solution "explodes" and 
becomes useless. 

As an example consider the linear differential equation 

du 
- = -"(U 
dt 

with initial value u(t = 0) = u0 and 'Y > 0. It has the solution u(t) = u0 e--Yt, 

which tends to zero fort---+ oo. Using the forward difference or explicit scheme, 
we get 

or 
Un+l = (1 - "(Llt)un 

For Llt > 2h the value lunl increases monotonically with n and the solution 
is unstable. A sufficiently small time step is required for stability. 

Other important aspects of numerical schemes are their accuracy and effi­
ciency. These and other more technical aspects like consistency, convergence, 
forward, backward, and centered differences, and explicit and implicit schemes 
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are discussed in Appendix B.21 . The details depend on whether the underlying 
PDE is elliptic, parabolic or hyperbolic. 

When constructing numerical algorithms for atmospheric and oceanic flows 
new issues come into play because of the specific nature of these geophysical 
flows. First of all, geophysical flows are very anisotropic2 . The vertical direc­
tion is distinctively different from the horizontal directions. Indeed, as will be 
discussed in Appendix A.10, it is often advantageous to replace the vertical 
coordinate by a dynamical variable such as the (potential) density, pressure 
or entropy and introduce isopycnal, isobaric or isentropic coordinate systems. 
Discretization is then done in these new coordinate systems. So the finite 
difference grid is not necessarily a regular grid in physical space. A second 
issue is that the equations describing geophysical flows contain more than 
one dependent variable. This leads to the possibility of "staggered" grids3 . 

As mentioned above, finite difference grid methods are not the only way to 
discretize the equations. The spherical geometry of the earth makes atmo­
spheric flows amenable to spectral methods where the variables are expressed 
as a truncated sum of spherical harmonics. The complex shape of the ocean 
basins, on the other hand, makes finite element methods attractive for ocean 
modeling. Spectral element methods try to combine the advantages of spectral 
and finite element models. These methods are discussed in Appendices B.4 
and B.5. 

Formally, the numerical discretization is usually done in two steps. The 
first step is the discretization in space, by either using the grid, spectral or 
finite element method. At any instant of time the state of the system is then 
described by the state vector, denoted by 1/J(t). It is the collection of all state 
variables at all grid points, or the spectral expansion coefficients of all state 
variables, or the coefficients of all state variables in a finite element expansion. 
The dimension of this state vector is the number of state variables times 
the number of grid points, or basis functions, or finite elements. The partial 
differential equation (2.1) becomes an ordinary differential equation (ODE) 

d 
dt 1/J(t) = A[1/J(t); t; a(t)] (2.3) 

with an algebraic operator A. The diagnostic equations and boundary condi­
tions become absorbed into the operator A and parameter a(t). We will use 
this equation as a prototype for our discussion. Final discretization in time 
leads to a discrete map 

1 Useful introductions into the numerical treatment of differential equations, with 
particular emphasis on the needs in atmospheric and oceanographic modeling 
are provided by Arakawa [1], Arakawa and Lamb [2], Haidvogel and Beckmann 
[51], Haltiner and Williams [54), Kantha and Clayson [76], Mesinger and Arakawa 
[113], and Washington and Parkinson [186). 

2 A flow is called anisotropic if its characteristics depend on its direction. 
3 A grid is staggered when separate grids are used for different variables. For further 

details refer to Appendix B.3. An example is shown in Fig. 4.5. 
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(2.4) 

where i is the discrete time index. This discrete map is then turned into a 
computer code. This computer code is the final product. It calculates 1/Ji for 
i = 1, 2, ... , given 1/Jo and O:i for i = 0, 1, .... 

Stability, accuracy and efficiency are the most important properties of nu­
merical algorithms. Stability requires a small time step and hence a large 
number of operations. Accuracy can be increased by increasing the resolu­
tion but this implies a larger number of operations and hence decreases the 
efficiency. Trade-offs must be made which are ultimately determined by the 
available computer resources. 

2.3 Computers 

The performance of digital computers has increased dramatically since their 
invention in the late fifties of the last century. 4 The clock speed of the central 
processing unit (CPU) is now5 below a nanosecond, thus allowing a single 
processor to perform several gigaflops, i.e., about 109 to 1010 floating point 
operations per second. One can now store several gigabyte in core memory. 
Disc storage has also increased to thousands of gigabytes. These increases are 
indeed dramatic and now allow calculations which were not feasible just a few 
years ago. However, despite all this progress there are limitations.6 

One limitation is that digital computers have a finite word length. Cur­
rent computers use 32 or 64 bit words, which allows representing a floating 
point number to about 9 or 15 significant decimal digits. Because of this lim­
ited machine accuracy, floating point operations are only approximate and 
contain a round-off error. These round-off errors may accumulate and are a 
principal limitation of the accuracy of numerical calculations on digital com­
puters. Furthermore, due to the round-off errors, identical instructions may 
produce slightly different results on different machines or even when compiled 
with different compilers. Stability of the numerical algorithms used is there­
fore very important. Decreasing the truncation error of a numerical algorithm 
beyond a certain point becomes counterproductive because the increase in 
round-off errors exceeds the decrease in truncation error. The machine accu­
racy can be doubled by software instructions but at the expense of the speed 
of the calculation. 

The second major limitation of digital computers is the speed of their cen­
tral processing units, which might come to their physical limits in the future. 

4 In writing this section, we were competently helped by Dr. Joachim Biercamp 
from the German Climate Computer Center in Hamburg. 

5 in 2003 
6 In the past 30 years, the computational efficiency of microprocessors has dou­

bled every 18 months, on average - at a stationary price level. Specialists expect 
that this regular increase, named Moore's law, will continue, at least until about 
2010 [49]. 
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To increase the performance with constant clock speed one has developed vec­
tor processors. Vector processors can process several operations concurrently 
in one clock cycle, thus they are more effective but also much more expen­
sive then traditional scalar processors. Another way to increase performance 
is to use more than one processor. Modern supercomputers use hundreds of 
vector processors and so called massively parallel processing systems may use 
thousands of cheaper scalar processors simultaneously. The theoretical peak 
performance of today's most powerful systems thus reaches several terafl.ops. 
However, the efficiency gained from such machines depends on the ability of 
a code to adapt to such machines. It is not always easy, sometimes even im­
possible, to vectorize given algorithms and to distribute them efficiently onto 
different processors. Consequently the gap between the theoretically achiev­
able peak performance of a computer and the effective sustained performance 
which can be reached with a complex numerical model has become wider in 
recent years 7 . Writing an efficient code is nowadays a matter of vectorizing 
and/or parallelizing the code. It requires detailed consideration of the archi­
tecture of the specific computer on which the code is to be run. 

Another relevant issue is portability. A model's lifetime is longer than that 
of a computer and in a collaborative scientific environment it is often desired 
to run it on more then one platform. Thus there is a tradeoff between efficiency 
on a given machine and the possibility to run the code on different machines. 

Another contemporary problem with running complex models on fast com­
puters is the problem of efficiently and timely storing the results of the cal­
culations. This transfer of data from the central processing unit to another 
computer, responsible for storing and administrating large amounts of data, is 
far from simple and requires significant investments in hardware and software. 
An even greater problem arises in retrieval and processing of data. Data which 
have been written step by step during a simulation and are stored in hundreds 
and thousands of big files may be needed all at once to obtain information on 
the temporal evolution of a simulated system. 

The finite computer power is the limiting factor of what problems can or 
cannot be done. The modeling community thus demands, and correctly so, 
larger and faster computers. But it must be kept in mind that modeling is 
not just a computational problem. Because of finite computer power, one can 
only solve equations that contain a limited number of physical processes. It 
requires considerable insight into the dynamics of a given problem to deter­
mine which processes can be neglected or parameterized and which processes 
must explicitly be calculated, and to formulate the corresponding set of equa­
tions. This is the task of the (fluid) dynamicist who is still at the basis of the 
modeling enterprise. 

7 Moore's law holds for peak performance only. The increase in sustained perfor­
mance has been slower, especially for earth system modeling codes, that combine 
various components, such as the atmosphere, the ocean, the vegetation and the 
cycles of matter into one model. 
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When more computer power becomes available, two options for the model­
ers arise. One option is to increase the lengths and number of integrations, for 
instance by generating ensemble simulations. The other option is to increase 
the resolution and to include new processes, for instance by introducing atmo­
spheric chemistry into climate models. The former task is straightforward, but 
the latter task requires considerable input from the dynamicist. Formulations 
and parameterizations for the new processes are needed. The existing equa­
tions and parameterizations need to be reformulated to be consistent with the 
increased resolution (cf. Sect. 2.1.3). 

2.4 Models as Dynamical Systems 

Computer models are based on discretized dynamical equations that are sets 
of ordinary differential equations (ODEs) or discrete maps, such as equations 
(2.3) and (2.4) above. These equations are examples of dynamical systems. 
For discussion purposes consider the autonomous system 

d 
dt 'ljJ(t) = A['ljJ(t); a] (2.5) 

where the algebraic operator A and the parameter a do not depend on time. 
The solution of this equation depends on the initial condition 'ljJ(t = 0) ='I/Jo 
and on the parameter a. Thus 

For a specific initial condition and parameter value the solution is a trajectory 
in the N-dimensional phase spanned by 'ljJ =('!/Ji, ... , '!/JN) 

t---+ F[t; 'ljJ0 , a] 

If solutions for different initial conditions are considered, F becomes a time 
and parameter-dependent mapping of the phase space into itself 

'I/Jo ---+ F['ljJ0 ; t.a] 

very much like a fluid flow. Dynamical systems theory studies the geometric 
and topological properties of this mapping, rather than the properties of a 
single trajectory. The properties of the mapping generally depend on the pa­
rameter a. All definitions, concepts and results of dynamical systems theory 
are about this mapping. The mapping is called conservative if it conserves 
the phase space volume, and dissipative if it does not. A subspace is called 
an attractor if all trajectories converge onto this subspace. Such an attractor 
can have a very complex structure, with any dimension between 0 and N, 
including fractal dimensions8 . A point 'l/J'f< that satisfies A['l/J*] = 0 is called a 

8 The fractal dimension d of an object in a multi-dimensional space is the exponent 
of increase of mass (or any other property) when the radius of the object is 
increased. See also [16]. 
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fix point. Fix points can be stable and act as attractors for their neighborhoods 
or be unstable. 

The fl.ow in phase space might be quite complex. A given finite volume 
element might be stretched out into ever finer filaments until the whole phase 
space is covered. A dynamical system is said to be chaotic when points in phase 
space that are initially close together diverge from each other at a sufficiently 
fast rate. The formal definition requires at least one of the Lyapunov expo­
nents9 to be positive. Such chaotic systems have limited predictability (i.e., 
become unpredictable beyond a certain time lag, see Sect. 2.6) since initial 
conditions are never known with infinite precision. In general, the character 
of the fl.ow in phase space is related to the spectrum10 of the operator A. 

These and other concepts and results are covered in textbooks such as [16] 
and [187]. 

Dynamical systems are deterministic. Nevertheless, they can exhibit quite 
irregular behavior, due to the nonlinearities of the system. Irregular behavior 
can thus be generated internally. It does not need to be imposed externally 
by irregular geometry or forcing or by randomness. This was a major insight. 

Concepts from dynamical systems theory have been very useful for low 
dimensional systems. A famous example is the Lorenz system [102] with a 
dimension N = 3, which is supposed to describe features of convective sys­
tems. Fix points can be determined. Their stability as a function of control 
parameters can be determined. Numerical experiments can be performed to 
map out the attractor. 

The application of dynamical systems concepts to high-dimensional sys­
tems, such as a quasi-realistic climate model, is more problematic. The de­
termination of the spectrum of the operator A is computationally not within 
reach; and neither is the systematic exploration of the complete phase and 
parameter space. One tries to get by, by studying just one trajectory in phase 
space, or a few, but without any strict and solid results. Nevertheless, there 
is the consensus that many of these higher dimensional systems are chaotic, 
in particular systems that are turbulent, exhibit instabilities and are strongly 
affected by phase transitions. Many atmospheric phenomena, such as cyclo­
genesis and convective rainfall, fall into this category. Nevertheless, typical 
dynamical systems properties are not always found in these systems. A par­
ticular point in question is the emergence of multiple equilibria in chaotic 
systems. This phenomenon is "interesting" and hence studied extensively -
with low-dimensional models. However, large-scale multiple equilibria have 
not yet been detected in the instrumental observational record of the atmo­
sphere (see Sect. 6.3.2) nor in long-term simulations with atmospheric models. 

9 Lyapunov exponents are the eigenvalues of the matrix A*, obtained through 
linearization of A at the point 'I/; in (2.5). A positive Lyapunov exponent indicates 
that an initial disturbance grows. The Lyapunov exponent varies in phase space. 
In parts of the phase space the system may be chaotic, in others not. 

10 The spectrum of A at 'I/; is the set of eigenvalues of the linearized operator A* 
at 'l/J. 



48 2 Computer Models 

Oceanic models (see Sect. 6.1.4) and paleoclimatic data, on the other hand, 
point to multiple equilibria and hysteresis effects. 

2.5 Models as Stochastic Systems 

There are two reasons to introduce randomness and statistics into environ­
mental modeling: 

• model output can often not be distinguished from random behavior, and 
• the model equations are inexact. 

As to the first reason, deterministic but chaotic dynamical systems often 
show an irregular behavior that cannot be distinguished from stochastic or 
random behavior. This fact is demonstrated in Fig. 2.1. It shows two time se­
ries. One represents the sum of 20 chaotic but purely deterministic processes. 
The other series is a series of random numbers which are realizations of a 
normal random variable, whose first two moments match those of the deter­
ministic time series. While the two series are different at any time instant, 
their overall characteristics are very similar. The histogram of the determin­
istic time series is indeed close to a normal distribution, as a consequence of 
the Central Limit Theorem11 . 

When one accepts this similarity, the solution of the model equations can 
be interpreted as a realization of a random or stochastic process. It dos not 
matter whether or not the process is really stochastic, as long as it cannot 
be distinguished from the output of a stochastic process12 . The mathematical 
construct of randomness is just a convenient and efficient tool to bring order 
into seemingly irregular and unstructured data13 . 

Meteorological observations and climatic variables are in fact sufficiently ir­
regular that they are efficiently described by random distributions (e.g., [182]), 
in terms of extreme events, the range of variations, or temporal and spatial 
correlations. On the other hand, attempts to identify distinct nonlinear de­
terministic structures in the data sets fail in almost all cases. Therefore it has 
become common in meteorology and climate science to consider at least the 
instrumental observational record as the result of a stochastic process, which 

11 The similarity is usually rationalized by asserting that the evolution of the deter-
ministic system is caused by independent impacts and equating independent im­
pacts with random impacts. Randomness models independence. The exact mean­
ing of these statements is pursued in the foundations of complex system theories. 

12 The old philosophical question of whether or not "God plays dice" may have a 
similar answer. God's actions may not be understood by us humans and appear as 
random but this does not exclude the possibility that God actually acts according 
to a plan. 

13 The adequacy of conceptualizing randomness as the highly irregular outcome of 
a deterministic process is underlined by the fact that random number generators 
on computers are specific deterministic formulae. 
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Fig. 2.1. Sum of 20 chaotic deterministic processes and a series of random numbers, 
whose first two moments match those of the time series of the sum (left). Frequency 
distribution of the sum of the 20 chaotic processes (right). From von Storch et 
al. [177] 

is conditioned upon a variety of external and internal parameters. An impor­
tant implication is that the identification of "signals" requires the discrimina­
tion between internal variations and the effect of, say, changed parameters or 
boundary conditions. 

The tides are a much more regular deterministic systems and "signals" 
are easily detected, without the use of statistical tests or other statistical 
techniques. However, as soon as a system is influenced by weather, mostly as 
a forcing factor, it inherits the inherent randomness of weather. Examples are 
storm surges. 

The second reason is that the dynamical equations are inexact. First they 
have undergone considerable approximations (Sect. 2.1.4), such as the elim­
ination of sound waves in ocean and atmospheric modeling, and numerical 
manipulations (Sect. 2.2), such as the replacement of differential operators 
by difference operators. Second, the parameters, forcing functions, initial and 
boundary conditions are not exactly known. To account for the inexactness of 
parameterizations sometimes the concept of randomized parameterizations is 
invoked [173], [98], [97]. Random "noise" is introduced into the formulation of 
certain parameterizations, according to the Bayesian credo that every uncer­
tainty should be modeled as a random process. Then, the dynamical equations 
become a set of stochastic differential equations. Equation (2.3) becomes 

:t 'lf;(t) = .X(t)A['lf;(t); t; a(t)] + ~(t) (2.6) 

where .X(t) and ~(t) are random processes, introducing multiplicative and 
additive "noise" to the equation. The solution 'lf;(t) now becomes a random 
function. 

There are numerous examples that such a replacement of a deterministic 
model by a random model is indeed a good strategy. Consider the drag of 
the sea surface on atmospheric flows. It is parameterized by a drag law with 
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Fig. 2.2. Scatter diagram of simultaneous measurements of the drag coefficient 
Cv and of the wind speed U at 10 m height. The straight line is a regression line. 
After De Cosmo et al. [24) (@ (1996) American Geophysical Union. Reproduced by 
permission of American Geophysical Union) 

a wind-dependent drag coefficient, but observations (see Fig. 2.2) show that 
the drag coefficient actually varies in an apparently random manner. Part of 
the variations may be due to measurement problems. Part of the variations 
might be eliminated by including dependencies on other resolved variables, not 
just the wind speed. But a significant part of the variations will be related to 
unaccountable, local features that can only summarily be described as random 
noise. 

Stochastic dynamical systems are often called complex systems. Their ba­
sic properties are described in textbooks (e.g., [64]). The basic probabilistic 
and statistical concepts that we will employ in this book, such as random vari­
ables, distributions, correlation functions and spectra, are briefly described in 
Appendix C. A more complete account of statistics in climate sciences is of­
fered by von Storch and Zwiers [182]. 

2.6 Predictability 

An important application of models is to forecast (or to predict) and pre­
dictability (or more accurately its limit) becomes an important issue. Pre­
dictability arises from both the knowledge of the initial condition and the 
dynamics. Consequently one has to distinguish between two different types of 
forecasts. 



2.6 Predictability 51 

2.6.1 Limit of Predictability 

In chaotic systems the evolution depends sensitively on the initial conditions. 
Differences in initial conditions grow exponentially. Though the evolution is 
deterministic it is predictable only for a limited time14 . This time is called 
the limit of predictability. This time is usually estimated by considering the 
correlation function 

l 1T p(T) = lim - dt 1/J(t)'lj;(t + T) 
T-+oo T 0 

The time T* where p( T) reaches zero is considered to be the limit of pre­
dictability. After that time, the state of the systems no longer depends in any 
identifiable systematic manner on the initial state. This does not imply that 
the state at time t is independent of the initial state at time t = 0. Different 
initial states will lead to different states at later times, but the character of 
this link becomes undeterminable. In case of mid-latitude weather this limit 
of predictability is of the order of many days; in case of El Nino it is many 
months, possibly even a few years. 

Note that this definition of the limit of predictability uses a statistical 
concept, the correlation function. More properly, dynamical systems concepts 
should be invoked, but cannot for high-dimensional systems, as discussed in 
Sect. 2.4. 

How does the limit of predictability enter the solution and affect forecasts? 
The evolution equations (2.3) can be integrated forward in time to determine 
the future state of the system. This calculated future state depends both on 
the initial condition '¢0 and on the parameter vector a(t). 

As an example consider the evolution equation 

d 
dt 1/;(t) = r'lj;(t) + T/(t) 

which describes a forced oscillator. It has the solution 

1/;(t) = 1/;(ta)er(t-ta) + 1t dT G(T - t)T/(T) 
ta 

(2.7) 

with the Green's or influence function 

G(t) = e"'t 

The behavior of this solution depends critically on the real part of the coef­
ficient r. For Re[r] < 0 the oscillator is damped. The influence of the initial 

14 Note that chaotic behavior does not imply catastrophic behavior. A chaotic sys­
tem has neither to move towards totally new states nor to change quickly and 
dramatically. Instead the system moves towards known states. Which states the 
systems moves to, however, depends very sensitively on the initial conditions. 
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conditions dies away and for large times the solution is solely determined by 
the forcing. For Re[r] = 0 the influence of the initial conditions persists. In the 
case Re[r] > 0 the oscillator is unstable. The influence of the initial conditions 
becomes dominant. 

More general systems have characteristics similar to our simple example 
and their solutions may formally be written 

'ljJ(t) = F ['l/J(t0 ), t - t0] + 1t dT Q(T - t)ry(T) 
to 

(2.8) 

where the operator F and the Green's function operator Q represent the inter­
nal dynamics and are independent of the forcing 17. One must now distinguish 
two kinds of forecasts. 

2.6.2 Forecast of the First Kind 

There are systems for which the initial conditions become unimportant. "Ini­
tial transients" die away and the solution is essentially determined by the 
external forcing 

'ljJ(t) = J_tto dT y(T - t)ry(T) (2.9) 

Such systems are in principle predictable for infinite times, as long as the 
external forcing T/ is predictable. An example are the tides, as long as the 
geological configuration of the earth and the internal dynamics Q remain un­
changed, and the external forcing T/ remains known. In the case of the global 
tides T/ is the tidal potential of the moon and sun. In the case of the tidal inlet 
Jade Bay, T/ is the prescribed tidal water level at the open boundary to the 
North Sea. 

For other systems, the influence of the initial condition is dominant and 
the solution is given by 

'ljJ(t) = F ['ljJ(to), t - to] (2.10) 

for t > t 0 . For chaotic systems this solution is only useful for times smaller 
than the predictability time T*. In both situations, the equations (2.10) and 
(2.9) forecast the future state of the system. These are forecasts of the first 
kind. 

The most prominent example of this type of forecast are weather fore­
casts. Note that the progress made by the National Meteorological Center in 
predicting weather for several days in advance (see Sect. 5.1.3 and Fig. 5.6) 
comes not only from improving the numerical model F, but equally from an 
improvement of the determination of the initial state '1jJ(t0 ). 
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2.6.3 Forecast of the Second Kind 

Predictability arises from both the knowledge of the initial state and the 
external forcing. After the limit of predictability T*, the initial state carries 
no more predictive value. For longer times the deterministic operator F may 
be replaced by a stochastic operator R. The solution 'lf;(t) then takes the form 

(2.11) 

and is now a random variable as well. The stochastic process R does not 
only represent the effect of the not-exactly known initial conditions but may 
also represent other processes that have not been accounted for in detail, as 
discussed in Sects. 2.1.4 and 2.5. 

Once a stochastic description has been adopted, the type of forecast 
changes. In general, the parameters of the stochastic process R, such as the 
mean, standard deviation and lag-correlation, depend on T/· Assume, however, 
for simplicity that R is independent of the external forcing and that it has 
zero mean. Then, the state variable 'lf;(t) becomes a random variable, which is 
conditioned15 by the external forcing. Any forecast becomes a forecast of the 
statistical distribution of 'lj;. In practical terms this is mostly the conditional 
expectation 

E('l/;(t)IT/(T)) = ltto dT Q(T - t)T/(T) (2.12) 

This type of forecast is called forecast of the second kind. They specify 
conditional probability distributions. Since time-averaging reduces the role of 
the "noise" R in many not-too-nonlinear systems, the (conditional) expecta­
tion of an ensemble of forecasts has often a smaller error than the individual 
forecasts16 . 

Seasonal climate forecasts are an example of such forecasts of the second 
kind. Aiming at forecasting the seasonal mean of temperature or precipitation, 
an atmospheric model first exploits the information contained in the initial 
state, and later, after 10 days or so, the information provided by the persis­
tent tropical sea surface temperature. When run in an ensemble mode, such 
forecasts attempt to simulate the probability distribution explicitly. These 
distributions are conditioned only weakly by the initial state and strongly by 

15 A random variable is "conditioned" if its parameters, like the mean or the vari­
ance, depend deterministically on some external variables. 

16 If the real evolution is considered a random realization of the (correctly predicted 
uni-modal) ensemble of possible realizations, then an exact forecast is not possible. 
In that case, it is best to offer the mean of the ensemble as the best guess of 
the actual evolution. In fact, the expected mean square error between the real 
evolution and a randomly chosen forecast is twice the mean square error between 
the real evolution and the mean evolution. 
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Fig. 2.3. Sketch of the predictive skill of systems that evolve under internal chaotic 
dynamics and depend on (inexactly known) initial states ((2.10) , continuous line), 
of systems that are mainly controlled by external forcing ((2.9), dashed line), and 
of systems that are both under internal and external control ((2 .11), dashed-dotted 
line) 

the sea surface temperature. Sometimes other factors can be used for condi­
tioning such forecasts, as for instance the presence of volcanic aerosols in the 
stratosphere. 

The predictive skills for the three different cases, (2.9, 2.10, 2.11), are 
qualitatively sketched in Fig. 2.3. The skill of a system evolving mostly under 
internal chaotic dynamics drops off to "no skill" within its limits of predictabil­
ity, while a system under the control of known external forces keeps an almost 
constant level of skill. A system controlled by both internal dynamics and 
external forces exhibits a high skill for initial times when initial conditions 
dominate and at later times a constant, usually low level of skill, when the 
external control is dominant. Of course, the relative importance of external 
and internal factors does not need to be stationary, so that the predictability 
may change with time. More quantitative measures of skill are introduced and 
discussed in Sect. 5.1.5 and Appendix C.2.4. 

The determination of forecast skills and its dependence on exogenous con­
ditions is one of the challenges of modern weather forecasting. 
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Models and Data 

Models are one part of environmental sciences. Observational data are an­
other part. Here we consider the interaction between these two parts. This 
interaction takes many forms. Here we consider 

• the validation of models, where model results are compared with observa­
tional data to assess how "realistic" the model is (Sect. 3.1), 

• data assimilation, where model results are combined with observational 
data to obtain a better field estimate or prediction (Sect. 3.2), and 

• the calibration of models, where model parameter are estimated from data 
(Sect. 3.3). 

3.1 Validation 

Models are validated by model-data comparison. There are some "philosoph­
ical" problems with this comparison, which are discussed first. On a technical 
level model-data comparison is a statistical problem. Both the observational 
record and the model output are viewed as merely one realization of an en­
semble of equally likely realizations consistent with the exogenous conditions. 
The comparison can take the form of a statistical test or the form of an esti­
mate, estimating the "skill" of the model. A number of specific methodologies 
and concepts have been developed by the environmental science community. 

A particular problem arises in model-data comparison and causes con­
siderable confusion in the scientific community. What does the output of a 
model represent? In case of a grid-point model, does the number calculated 
at a grid point represent the real world value at that location? In our un­
derstanding, this is not the case. In view of our discussion of the Reynolds 
decomposition in Chap. 2 we suggest interpreting the value at a grid point 
as a mean value over the associated grid box or even over a somewhat wider 
neighborhood. In fact, the model equations, with all their parameterizations 
are not "the equations" of the system but the equations for the system at 
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the chosen resolution (cf. Sect. 2.1.3). That is, the model does not simulate 
local values but mean values averaged over a certain neighborhood. The same 
rationale must be applied when spectral models or finite element models are 
used. 

Observations, on the other hand, are mostly local observations; exceptions 
are observing systems such as satellites, which produce area-averaged data. 
Thus, most model-data comparisons suffer from a built-in inconsistency be­
tween the model data and the observation data. If the considered variable is 
sufficiently smooth, i.e., if it has a correlation length larger than a grid box 
diameter, then the point observation may be considered very similar to the 
grid box average. The correlation length may be very different for different 
variables. The geopotential height at 500 hPa in the atmosphere is a rather 
smooth field, it varies only over hundreds of kilometers, whereas convective 
precipitation changes strongly on spatial scales of a few kilometers. Even the 
same variable can have different correlation length in different circumstances. 
An example is sea level elevation, which is rather smooth in the open ocean, 
but near the coast line an area average can differ significantly from the mea­
surement right at the shoreline (cf. Fig. 3.1). When the correlation length of 
the considered variable is short, then two approaches can be used: either an 
observation model is constructed to relate grid point values to local data (see 
Sect. 3.1.3), or a series of observations in the grid box is averaged. 

3.1.1 Validation as a Philosophical Problem 

Models, like theories and other cognitive constructs, can never be verified. 
Even if they correctly predict reality under one set of circumstances one can­
not be sure that they will also do so under a different set of circumstances. 
The logician concludes from this fact that models can only be falsified but not 
verified. They are false if they do not "predict" 1 reality correctly. This cate­
gorical statements is, however, not appropriate for models of environmental 
systems where the notion of correct or incorrect prediction is not well-defined. 
The appropriate notion is how well does a model reproduce reality? The ques­
tion is not whether a model is right or wrong but how good it is. Quantitative 
measures need to be developed for answering this question. The purpose of 
the model needs to be included. Verification also implies the concept that the 
model predicts reality for the right reasons. As discussed, we can never be 
sure about this because environmental systems are open [127], [132]. 

For the above reasons one introduces the weaker concept of validation. 
One only requires that the model results are consistent with observations. 
One does not claim that the model is "correct" but only that it "works" . 

1 In many disciplines, the term "prediction" refers to attempts to describe future 
states. Here, however, the term is used in a more general sense, namely as an at­
tempt to specify the outcome of an experiment that, e.g., simulates the frequency 
of certain extreme events. 



3.1 Validation 57 

A useful concept is that of analogs. Following the philosopher of science 
Hesse [61], models have positive, neutral and negative analogs with reality, or 
among each other. Positive analogs are common properties, and a validation 
strategy should show that they prevail both in reality and in the model. Neu­
tral analogs are properties for which it is not known whether they are common 
properties, and negative analogs are properties that are not shared by model 
and reality. In case of climate models, positive analogs are the conservation of 
mass, energy and momentum, neutral analogs are the sensitivity to changing 
greenhouse gas concentrations, and negative analogs are the propagation of 
sound waves in the ocean or atmosphere and the existence of a time step in 
the numerical code. Because of the negative analogies, all models are "wrong" 
in a trivial sense. The task of validation is to determine the positive and neg­
ative analogs and to assess whether the extent of the positive analogs makes 
the model suitable for certain applications. 

The added value of modeling comes from assuming that the neutral analogs 
are actually positive ones: that a response of a model to a forcing is actually 
the response that the environmental system would show if subjected to the 
forcing without any other changes. A forecast prepared with a model is hoped 
to coincide with the actual development to be observed in the future. 

One aspect should be stressed. Even if a model is validated, i.e., the exis­
tence of a series of relevant positive analogs confirmed, there is no certainty 
that these analogs are still positive, when the model operates with parameters 
outside the range covered by the empirical evidence used for validating the 
model. If a climate model describes the present climate well, this is no proof 
that it describes paleoclimatic states or Global Warming well. There may be 
numerous good reasons to believe in a model's skill in doing so, but there 
remains always the possibility, albeit sometimes a small one, that relevant 
aspects of the non-observed part of the parameter space are not sufficiently 
taken into account. 

3.1.2 Some Common Approaches 

Different validation approaches are commonly in use: 

A model is used to reproduce a certain time period with good observational 
coverage, often a special observation campaign. Then, the observations are 
directly compared with the numbers generated by the computer model. When 
such episodes are simulated satisfactorily, it is hoped that the model will do 
well also under other, non-observed conditions. 

The model is checked whether it satisfies cognitive models that are known 
to be valid for the real world. Examples of such cognitive models are the 
conservation laws for mass, energy, momentum, enstrophy and angular mo­
mentum and the geostrophy of large scale flows. An example is Ulbrich's and 
Ponater's [167] comparison of the atmospheric energy cycle according to Saltz­
mann (see [130]) in a model simulation with analyses of the real circulation. 
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Forecast skills. As has already been pointed out, we restrict the word "fore­
cast" to a model application where a dynamical model is used to predict in 
detail a future state, exploiting knowledge about the dynamics of the sys­
tem and knowledge about the initial state (see Sect. 2.6). Examples are the 
standard weather forecast (Sect. 5.1.3), forecasts of storm surge water levels 
(Sect. 5.1.2) or ofriver streamflow, or of algae blooms in marine environments. 
In Sect. 5.1 we discuss different forecasts and their interpretations. 

All these forecasts are not perfect but suffer regularly from mispredictions. 
Forecasts generally have only a limited forecast skill. As discussed in Sect. 2.6 
this limitation may be due to chaotic dynamics, as in the case of the weather or 
algae bloom forecast, or due to the inability to correctly prescribe atmospheric 
drivers like wind or precipitation, as in the case of river streamflow or storm 
surges. 

The forecast is a number (or an array of numbers). To define skill measures, 
it needs to be compared with a corresponding observation. To do so, the two 
variables are considered realizations of a bivariate random variable. When the 
forecast is done repeatedly for different situations then one has many realiza­
tions or samples {(forecast 1,observation 1), ... , (forecast n,observation n)}, 
on which statistical analyses can be performed. The model is considered skill­
ful, if the two components, observed and predicted, of the bivariate random 
variable co-vary closely. Erratic, unrelated variations are indicative that the 
forecast is not useful, either because the model is insufficient or because the 
forecast time is beyond the predictability limit. A number of such statisti­
cal skill measures are in use. Some of them are discussed in Sect. 5.1.5 and 
Appendix C.2.4. 

In simulations, there is no direct correspondence between the time in real­
ity and the time in the model. Instead simulations generate possible trajecto­
ries in phase space, which are considered possible outcomes of the real world. 
Consistency with the record of real world observations is assessed by compar­
ing statistics generated by the model with the same statistics derived from the 
observational record. Such statistics can be simple means and variances, but 
can also be more complex quantities, like covariances between state variables 
or between a state variable and a forcing factor, time lag covariances, spectra 
and empirical orthogonal functions (see Sect. C.2). 

Of course, it is best that a model be validated with data representative 
for as large a part of the parameter space as possible. Thus, tide models 
should be run for many different bathymetric and coastline configurations, 
and climate models should be used for seasonal forecasting and paleoclimatic 
reconstructions. 
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3.1.3 Validation as a Statistical Problem 

Mathematically, validation is a statistical problem. No model prediction ever 
coincides exactly with observations. To make a meaningful comparison one 
has to assign errors both to the model and the observations. 

Formally, one combines the simulated state vector 1/Ji for all time steps 
i = 1, ... , K into the model vector 1/J = ( 1/J 1 , ... , 1/J K). The dimension of the 
model vector is the dimension of the state vector times the number of time 
steps. This model vector is regarded as an estimate of the true model vector 
1/Jt with an associated error -y. Thus 

The error "Y comprises all the errors introduced into the model by approximate 
equations, parameterizations, inexact boundary and forcing fields, numerical 
discretization and other uncertainties. 

Similarly, we combine all observations into an observation vector w. Its 
dimension is the number of observations. The observation vector is regarded 
as an estimate of the true vector Wt with an associated error A. Thus 

w =Wt +A 

The error A accounts for instrumental, environmental and sampling errors. 
Most often the state vector of the dynamical model cannot be measured in its 
entirety. Measurements are usually available only at a few locations and at a 
few times, and these locations and times usually do not coincide with the grid 
points and time steps of the dynamical model. Furthermore, model variables 
at grid points and time steps must be interpreted as averages, as we pointed 
out. In addition, observations often do not consist of measurements of state 
variables but of some other quantity which is related to the state variables. 
The state variable in a quasi-geostrophic model is the streamfunction which 
must be related to temperature and salinity if only these are observed. Even 
more extreme are proxy data such as lake warves or tree rings which must be 
related to water level and temperature. All these circumstances are accounted 
for by introducing an observation equation 

(3.1) 

where the operator C relates observation and model. In many cases C is just a 
projection, i.e., an operator that selects from the values at all grid boxes the 
values for those grid boxes where measurements' are taken. However, when the 
local observations do not coincide with a grid box value, or when the local 
observation do not represent a state variable at all, then C becomes a more 
complicated operator and specific efforts are needed to specify it. An example 
of an observation model is shown in Fig. 3.1 where the observed water level 
w at a coastal tide gauge is related to the near coastal sea level 1/J calculated 
in a model. According to this observation model, the water level measured at 
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Fig. 3.1. Example of an observation model C which relates the near coastal water 
level 1/; calculated from a North Sea model (horizontal axis) to the observed shore­
line water level w (vertical axis). Reprinted from [95) (© (1999), with permission 
from Elsevier) 

the shore is somewhat higher than in the open water for moderate sea levels; 
for storm surge levels the water level at the coast line rises significantly above 
the level calculated in the open water. 

Inserting the model vector 'ljJ into the observation equation (3.1) gives a 
model estimate for the observations 

This model estimate needs to be compared with the actual observations w. 
This is a statistical problem. Different types of statistics can be considered, 
such as moments , covariances, teleconnection patterns and different types of 
comparisons can be performed, such as confidence bands, hypothesis testing 
and recurrence analysis. Some of these statistics and comparisons are discussed 
in Appendix C. Figure 3.2 sketches a particular comparison, the comparison 
of means. Another particular statistics is the skill of a forecast which is a 
quantitative measure to assess the usefulness and relative merits of different 
forecast schemes. Applications are given in Sect. 5.1.3 and technical details 
in Appendix C.2.4. The above formalism can easily be generalized to account 
for the fact that the operator C relating model and observations is not exact 
but also contains errors. 
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Fig. 3.2. Validation by model- data comparison. Given a set of observations w and 
model predictions 1/J one first uses the observation equation to calculate the model 
estimate wm of the observations and then considers the distance C =II w - wm II 
between wand wm . If this distance C is smaller than a critical value Ccritical then 
the model and data are deemed to be consistent. Distances and critical values are 
often based on the covariance matrices of w and wm, given by the ellipsoids. Model 
and data are then consistent when the ellipsoids sufficiently overlap 
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3.2 Data Assimilation 

Data assimilation (DA) refers to techniques that combine dynamical mod­
els with observational data in order to obtain a better product. The better 
product might be a better estimate of a field, a better estimate of a model 
parameter, a better prediction, or a better substitute reality. Observational­
ists use dynamical models to extract reliable information out of observational 
data. DA then becomes "dynamically consistent interpolation". Modelers use 
observations to force their models to stay close to reality and control the loss 
of predictability. DA then becomes the data analysis of operational weather 
forecasting. These and other DA techniques have a common conceptual and 
mathematical background which comes from estimation and control theory. 
Here we describe the basic concepts of DA. Details are given in Appendix D. 
Examples of DA are given throughout the book. 

Philosophically, DA is the farthest away from the classical paradigm that 
separates measurements and observations from physical laws and theory. It 
not only realizes that models require data to yield useful predictions but also 
that data require models to extract useful information. The utility of data 
becomes model dependent. 

Data assimilation (DA) consists of three basic components: 

• a dynamical model, 
• a set of observations, and 
• an assimilation scheme. 

For the dynamical model one takes 

1/Ji+1 = Ai['lf;i; a] + Ei (3.2) 

where i is the discrete time index and Ai a generally nonlinear operator that 
comprises the dynamics of the system. It depends on a set of parameters 
a = (a1 , ... , aL)· The model (3.2) differs from (2.4) by the error term Ei 

which takes into account effects like (cf. Sects. 2.1 and 2.2): 

• the operator Ai is inexact because it does not include all dynamical pro­
cesses, 

• the boundary conditions and external forcing fields are not exactly known, 
• the spatial discretization requires uncertain parameterization of subgrid 

scale processes, and 
• the discretization in time introduces truncation errors. 

The second component of DA is a set of observations. If the observations 
are combined into an observation vector Wi then DA assumes that there exists 
an observation equation 

(3.3) 

which relates the observation vector wi to the state vector 'I/Ji. Here Ci is again 
a generally nonlinear operator and 6i the observational error, representing 
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instrumental, environmental and sampling errors and other uncertainties. The 
time index i must be identical in the dynamical model 3.2 and the observation 
model 3.3. In most cases, the time interval into which observations have been 
binned is much longer than the time step of the numerical algorithm used to 
solve the dynamical model. In this case, the time step of DA is thus given 
by the sampling procedure of the data and not by the original time step of 
the dynamical model. The collection of data into time bins also contributes 
to the error 1k The dimension of the state vector is M. The dimension of 
the observation vector is N. In environmental sciences one is generally in a 
situation where one has sparse data, N « M. The observations represent a 
weak constraint on the model. An example of an observation model was shown 
in Fig. 3.1. 

In the case N < M the operator Ci cannot be inverted to yield the state 
vector '!/Ji· The state vector is underdetermined. Additional constraints are 
needed to arrive at a unique solution. In DA the additional constraint is 
consistency with a dynamical model. 

The third component of DA is a blending scheme where one combines the 
model prediction '!/Ji with the observation Wi to form an improved estimate 
{pi. The blending scheme depends on whether one wishes to solve a filtering 
problem or a smoothing problem. Assume that data and model predictions 
are available for times i = 1, ... , K. 

A filtering problem combines past and present data to form a "nowcast". 
Formally, the nowcast {); i at time i is derived from all '¢ 1 and w 1 with j :"::: i. 
Such a nowcast can be used to provide optimal initial conditions for a forecast. 
Later, when data and forecast have become available for the time i + 1, the 
procedure can be repeated to estimate {);i+1 , and so forth. 

A smoothing problem combines all data, past, present and future, to form 
an optimal estimate for all times. Formally, {pi for all i = 0, ... , K is derived 
from all '¢1 and w 1 with j = 0, ... , K. 

Although both problems are estimation problems the filtering problem has 
its methodological roots in estimation theory and the smoothing problem has 
its roots in control theory. 

Given the statistics of model error Ei and the observation errors 6i one 
can for any given blending scheme calculate the statistics of the error of the 
estimate {pi. Optimal blending schemes can then be determined that minimize 
this error. This is not as straightforward as it sounds: 

• Assigning quantitative error statistics to models and data involves consid­
erable subjective judgements. What error is introduced into a dynamical 
model because it only represents approximate dynamics and parameterizes 
subgrid scale processes? What errors are introduced into an observational 
model because observations are not taken at grid points or represent proxy 
data? 

• If nonlinear blending schemes are allowed for, then it is not sufficient to 
characterize the model and observation errors by just their means and 
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covariances. Higher-order moments or the full probability distributions 
are needed. 

• Any minimization requires the specification of a distance or norm, often in 
the form of cost, penalty or risk functions. As these names indicate, there 
is no unique objective way to arrive at such a distance. What is costly for 
one purpose might not be costly for another purpose. 

• The minimization problem might not have a (unique) solution or the so­
lution cannot be determined. 

• Even if an optimal blending scheme can be determined it might be im­
practical, computationally excessive or suffer some other drawback. 

For the above reasons a variety of adhoc and heuristic DA schemes have 
been developed. Most of them can be put into a common framework which 
is outlined in Appendix D. This framework is sketched in Figs. 3.3 and 3.4. 
When using any of these schemes it is paramount to 

• understand the a priori statistical assumptions that go into the scheme, 
and 

• determine the error of the blended estimate. 

Methodologically, DA lies between validation and quality control. In val­
idation the model prediction and the observed data are compared without 
any feedback. In DA, model prediction and observational data are combined 
to form an improved estimate. In the filtering problem, data are fed into the 
model to improve the forecast. In the smoothing problem, the model is fed 
into the data to extract dynamically consistent information. In both prob­
lems the data are given. Control theory also determines which data need to 
be taken for optimal control. In our context this would be the determination 
of an optimal observational sampling strategy. 

3.3 Calibration 

Dynamical models 
(3.4) 

generally contain a set of parameters a that characterize the system and 
its interaction with its surroundings. These parameters are coefficients and 
boundary conditions in the original dynamical equations. In an ocean general 
circulation model they include the thermodynamic coefficients of sea water 
(such as the specific heat), the fluxes of momentum, heat and fresh water 
across the air-sea interface, the eddy diffusion coefficients that arise from 
Reynolds averaging, the topography, the earth's rotation rate and gravita­
tional acceleration, and the tidal potential. 
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Determine analysis \f,f by minimizing the distance (costfunction) 

C [1JP] = C0 [lJ!a] +C 1!1[l)!':1] 
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Fig. 3.3. Sequential data assimilation by filtering. At each time step i the analysis 
{/J~ is obtained from the data Wi and the model values 1/Ji by simultaneously mini­
mizing the weighted distance Cf =II Wi - wf II between data and analysis and the 
distance Cf' =II 1/Jf - 1/Ji II between analysis and model. The analysis 1/Jf is used as 
the initial condition for the calculation of the model value 1/Ji+1 at time step i + 1 
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SMOOTHING 
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Fig. 3.4. Data assimilation by smoothing. An optimal field estimate or analysis 
({/J~,;p;, ... ,{p~_ 1 ) is obtained by simultaneously minimizing the distance Ci= 
111/Jg - ¢ 0 11 between analysis and guess of initial condition, the distance cm = 
111/Ja -1/J II between analysis and model prediction, and the distance C 0 =II w-wa II 
between data and analysis. The adjoint method assumes cm = 0. In this case the 
analysis 1/J~ is a solution of the dynamical model for i = 1, ... , K and the initial 
condition 'lf;g is the only control variable 
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In order to execute the model these parameters need to be specified by 
the user. This includes sensitivity studies where the sensitivity of the model 
output to changes in parameters is investigated. In this case the model will 
be executed for different but specified values of the parameter. To asses the 
effect of the heat flux on a certain circulation pattern one would execute the 
model for various different prescriptions of the heat flux. 

Though the parameters need to be specified it does not imply that they 
are well known. Some of them are, such as the earth's rotation rate and 
gravitational acceleration; others are not, especially those parameters that 
come about by closing the system, such as eddy diffusion coefficients. These 
not so well known parameters are often calibrated or tuned by comparing 
model results with observational data. This is again a statistical estimation 
procedure, similar to DA but with the parameter a now being a control 
parameter 2 . An optimal value of the parameter a is determined by minimizing 
the distance between the observations w and the model output wm(a). In 
practice, this is often done through trial-and-error, performing calculations 
for a limited number of parameters and parameter values. There are also 
examples when a rigorous minimization is performed (e.g., [146]), but never 
for the complete suite of all relevant parameters. Technical details are given 
in Appendix D.3.3. 

Though such calibration or tuning of models is widely used three caution­
ary notes are in order: 

• The data that have been used for calibrating a model cannot be used 
for validating a model. Calibration and validation has to be done with 
independent data. 

• A model calibrated by a set of data can be expected to perform optimally 
under circumstances represented by this set of data but not necessarily 
for other circumstances. Diffusion coefficients obtained by calibrating an 
ocean circulation model to observation in the North Atlantic over the past 
ten years might not be optimal for the North Pacific or the future ten 
years. Of course, it is just this very step, in going from a situation where 
the model has been calibrated (and validated) to a situation where it is 
not, that generates new knowledge about the system, but this step involves 
inherent risks, as we have stressed all along. 

• Calibration of, say eddy diffusion coefficients, usually produces numbers 
for these coefficients whereas we expect them to be functions (or formulae) 
that express their dependence on the flow field. These functions are not 
obtained by calibration. One can, of course, assume a certain functional 
form for the eddy coefficients with a certain number of free parameters 
and then calibrate these parameters, but the functional form has to be 
specified a priori by the user. Calibration does not elucidate the underlying 
physics, but it is the understanding of this underlying physics that gives 

2 A control parameter or variable is a variable that is varied in order to find the 
minimum of the costfunction. 
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us the confidence to apply the model outside validated parameter ranges. 
Any model that aspires to predictive capabilities must base its parameter 
specifications on an understanding of the underlying physics rather than 
on mere tuning. 

In summary: Calibration encodes observations into models and results in im­
proved models; validation compares observations and models and improves 
our confidence in models; data assimilation combines observation and models 
and results in better forecasts and field estimates. 



4 

The Dynamics of Tides and Climate 

We refer in our discussion of computer models in environmental sciences 
mainly to two examples, which we consider illustrative and useful for demon­
strating our line of reasoning. The first case is the tides. They represent within 
limits a clear-cut, well-understood almost classical physical system. Its under­
standing has resulted in numerous important societal applications. The second 
case is climate. It is considerably more complex. It comprises not only physics 
but also various other natural sciences such as geology or ecology. It is under 
the influence of significant nonlinearities and stochasticity and can hardly be 
considered a classical system. Its functioning is not yet fully understood. Re­
sults from studies of climate have excited various societal responses. Different 
from the tides, these results are not only of technical nature but are often 
loaded with controversial economic and behavioral implications. 

In Sect. 1.2 we discussed features that make environmental systems dif­
ferent from classical systems such as electric circuits or the thermodynamics 
of gases. These features are the presence of an infinite number of processes 
with non-uniform properties and interactions, which operate on many differ­
ent spatial and temporal scales. In climate modeling, many of these processes 
are highly significant. In tidal modeling only a few are significant. This fact is 
sketched in Fig. 4.1. We have also added the number of significant processes 
needed to model marine ecosystems. These models require the inclusion of 
even more processes than tidal and climate models. Furthermore, there is no 
consensus which processes must be considered key processes and which vari­
ables must be considered state variables. The relatively poor performance of 
models of marine ecosystems is thus not surprising. 

In Sects. 1.3 and 1.4 we have given a general overview about tides and 
climate: the basic phenomena, the history of ideas, and various modeling ap­
proaches. In the following two Sects. 4.1and4.2 we sketch in more detail what 
we know about the dynamics of tidal and climate systems1 . 

1 The text on the tides has been supplied to large extent by Jurgen Siindermann, 
Hamburg. 
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4.1 The Tidal System 

4.1.1 The Nature of Tides 

Tides are forced oscillations of the water masses of the world ocean under the 
influence of the gravitational and centrifugal forces in the celestial three-body 
system earth-moon-sun. The restoring force is earth's gravity. The specific 
oscillation patterns of the world ocean are controlled mainly by its topography 
and the earth's rotation (Coriolis force), much less by viscosity and bottom 
friction. The periods of tides are completely, and very accurately, determined 
from their celestial origin. If one develops the tide-generating potential into 
spherical harmonics, the periods of the dominating modes group into bands: 
semi-diurnal, diurnal, fortnightly, semi-annual (see Fig. 1.7). The amplitude 
of the corresponding partial tide in a specific region of the world ocean de­
pends on the resonance behavior of free gravitational waves on the rotating 
earth (mainly Kelvin waves) in that region. Normally, the semi-diurnal waves 
dominate (as they should on the basis of celestial mechanics), but there are 
regions with mainly diurnal tides or even nearly without tides. In the case 
of local resonance the tidal ranges and velocities can become extremely high 
(see Fig. 1.1) and tidal power plants may be profitable. 

The tide-generating forces are volume forces, which are acting on each 
particle in the water column. Correspondingly, the whole water column is af­
fected, and the tidal currents vary little from the surface to the bottom, except 
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for a shallow, bottom frictional layer (Fig. 4.2). Dynamically, the movement of 
water masses by the forcing fields of the moon and sun causes an inclination of 
the sea surface, representing a barotropic pressure gradient. The tides belong 
to the class of long gravity waves (water depth« wave length) for which the 
hydrostatic approximation holds. The concepts of barotropy and hydrostacy 
imply that the pressure gradient is constant within the entire water column 
and, consequently, the velocities are constant. This vertical homogeneity ren­
ders the tides an essentially two-dimensional horizontal phenomenon. Cor­
respondingly simple two-dimensional tidal models can be designed, without 
compromising realism. 
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m 

0 50 100 cm/sec. 

Fig. 4.2. Vertical profile of tidal velocities. After Sverdrup [164] 

For the generation of tides by the celestial forces a sufficiently large water 
mass is needed. Such autonomous tides are generated only in the three oceans. 
Shelf seas with wide open entrances are affected by tidal waves penetrating 
from the deep ocean. These tides are called co-oscillating tides. Smaller seas 
with little or no connection to the world ocean (like the Mediterranean, the 
Baltic or the Caspian Sea) have almost no tides. Therefore, the tide generat­
ing forces must be implemented in a global tidal model as a forcing term in 
the momentum equation, making this equation a nonhomogeneous differential 
equation. In a shelf sea model the direct celestial forcing can be neglected, but 
the incoming tidal wave must be specified at the boundaries of the model area. 
The model thus takes the mathematical form of a set of homogeneous differ­
ential equations with a transient boundary condition at the open entrance. 

4.1.2 Laplace Tidal Equations 

Quasi-realistic modeling of the tides is relatively simple. Modeling other as­
pects of the physics of the ocean, like the wind driven circulation, is more 
complex. For tides one only needs: 
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• Laplace tidal equations, 
• the topography of the ocean basin, 
• the tide generating potential, and 
• boundary conditions. 

Laplace tidal equations are based on the shallow water equations with two 
additional major assumptions. First, they assume that the density of sea wa­
ter is constant. Second, they neglect all oceanic motion other than of tidal 
origin. Since the gravitational force is a volume force and approximately con­
stant throughout the water column, the tidal currents are depth independent. 
It hence suffices to consider the vertically averaged or barotropic horizontal 
velocity 

1 1~ Uh= hC dz uh +.,, -h 
(4.1) 

where ( is the surface displacement, uh the horizontal velocity and h the depth 
of the ocean. The equations for uh and ( are obtained from the depth-averaged 
horizontal momentum and volume (or mass) balance. They are Laplace tidal 
equations: 

with boundary conditions 

uh · n = 0 at coastlines 

( = ( 0 ( t) at open boundaries 

(4.3) 

(4.4) 

Here gt = 8t + uh · V h is the material or advective derivative, f the Coriolis 
parameter, z the vertical unit vector, R a bottom friction coefficient, Ah a 
horizontal eddy viscosity coefficient, g the gravitational acceleration, c/>r the 
tidal potential of the moon and sun, n the normal vector of the coastline and 
fo(t) a prescribed water level. The bottom friction coefficient is either given 
by the nonlinear form 

(4.5) 

in the spirit of the drag law (Appendix A.8.1) or assumed constant (linear 
bottom friction). Often the tidal potential is written as 

(4.6) 

where (equ is the equilibrium tidal displacement. 
In order to solve Laplace tidal equations one has to specify the parameters 

f, R or cv, Ah and g and prescribe the tidal potential c/>r or equilibrium 
tidal displacement (equ, and the surface elevation fo(t) at open boundaries. 
Laplace tidal equations contain nonlinearities in the advection and bottom 
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friction terms and in the volume balance. For reasonable parameter ranges 
the nonlinearities are, however, weak and do not cause any chaotic behavior. 
Solutions of Laplace tidal equations are thus predictable. They are highly 
complicated, however, as a consequence of complicated bottom topography 
and coastlines. 

If one introduces the depth integrated volume transport 

(4.7) 

instead of the vertically averaged velocity uh, the volume balance becomes 
strictly linear 

8t~ + \7 · Uh = O (4.8) 

The momentum equation is then usually approximated by 

(4.9) 

where Ho is the undisturbed water depth and Fh represents the effect of all 
frictional forces (bottom and lateral friction). All nonlinearities are eliminated, 
except for a possibly nonlinear bottom friction term. This change of repre­
sentation and approximation often has considerable physical and numerical 
advantages (see Sects. 6.3.3 and 5.2.4). 

In a numerical model Laplace tidal equations are spatially discretized and 
integrated forward in time until initial transients have died away. The state 
vector 'ljJ thus consists of the elevations ~i(t) and volume transports Uh,i(t) 
at all grid points i = 1, ... I. The dimension of the state vector is hence three 
times I. Often, forcing at a single tidal frequency is considered. 

When a strictly linear version of the tidal equations is assumed then one 
can solve the equations by expanding the tidal potential ~equ(t), the tidal el­
evations ~i(t) and the tidal transports Uh,i(t) into a sum of tidal harmonics 
exp(-iwjt), j = 1,. .. , J. The complex tidal amplitudes ~i(wj) and U h,i(wj) 
can then be calculated for each tidal component j separately. The time deriva­
tive 8/8t is replaced by -iwj and the problem becomes purely algebraic. No 
time stepping is required. 

4.1.3 Tidal Loading and Self-attraction 

Because of the relative simplicity of the equations and the absence of strong 
nonlinearities, the first numerical tidal models have already provided convinc­
ing results [53], [9], [131], [193], [148]. Later the high accuracy demands ofre­
gional water level forecasts for navigation and coastal protection and the needs 
for correcting geodetical data demonstrated some deficiencies in global tidal 
models. A closer inspection of the problem led to the finding that the conven­
tional Laplace tidal equations needed to be modified to account for three more 
processes, namely the earth tides, tidal loading and ocean self-attraction. The 
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tidal potential causes tides of the solid but elastic earth, called the earth tides, 
which deform the ocean bottom. The moving tidal water bulge also causes an 
elastic deformation of the ocean bottom, the load tides. At the same time the 
water mass exerts variable gravitational self-attraction, depending on its own 
distribution. A numerical experiment with a global tidal model [193] confirms 
the hypothesis that these effects influence the global tides significantly. Fig­
ure 4.3 demonstrates this fact by showing tidal phases from simulations with 
and without these effects. Obviously the inclusion of earth tides, tidal loading 
and self-attraction brings the simulation much closer to the observed values, 
so that the conclusion is warranted that these three processes constitute first­
order processes for the global tidal simulation problem. In shallow seas these 
effect are of minor importance. Technically, these effects can be included by 
modifying Laplace tidal equations as follows. 

Denote the bottom elevation of the earth tide by ~e and the bottom el­
evation of the load tide by 6. If these bottom elevations are included then 
the displacement in the pressure term of Laplace tidal equations is not the 
elevation ~ of the water column but the geocentric elevation 

(4.10) 

In addition, the earth tides, the load tides and the ocean tides redistribute 
mass and modify the gravitational potential (4.6) by amounts c5~~qu• c5~~qu and 
c5~~qu. This modification is the "gravitational self-attraction". The full tidal 
forcing is thus given by 

(4.11) 

The calculation of the earth and load tides must take into account the elas­
tic properties of the solid earth. The calculation of the gravitational self­
attraction involves a spatial convolution with a known Green's function. Un­
der simplifying assumptions these calculations result in factors a and (3 mod­
ifying the elevations and equilibrium tidal displacement in the momentum 
balance (4.9) 

(4.12) 

The factor a is usually taken to be 0.7 and the factor (3 to be 0.953 for 
semidiurnal and 0.940 for diurnal components2 . Equations ( 4.12) and ( 4.8) 
represent the zeroth order physics: volume conservation, momentum changes 

2 The factor a arises from the earth tide €e· It can be derived rather straightfor­
wardly. Since the eigenfrequencies of the solid earth are much higher than the 
tidal frequencies, the earth tide is nearly in equilibrium and both the bottom 
elevation €e = h2€equ and the additional tidal potential c5Cqu = k2€equ are pro­
portional to the equilibrium tidal displacement, €equ, with coefficients h2 ~ 0.6 
and k2 ~ 0.3. The inclusion of the earth tide thus introduces in the V' h-term two 
terms proportional to €equ, and a= 1 + k2 - h2 ~ 0.7. 
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Fig. 4.3. Observed and computed phases of the M2 tide along the west coast of 
Africa. (In degrees referred to the moon's transit at Greenwich). Crosses: observed 
values. Filled/open circles: computed values with/without tidal loading and ocean 
self-attraction [193] 

due to the Coriolis, pressure, astronomical, and frictional forces. Solid earth 
tides, the load tides, and tidal self-attraction are included in an approximate 
manner. The frictional force consists usually of bottom friction, either linear 
or nonlinear, sometimes augmented by lateral friction. 

4.1.4 The Tidal Inlet Problem 

In Sect. 1.3.2 we introduced a hydraulic model (Fig. 1.4) of Jade Bay, a 10-km­
wide tidal inlet in the Southern German Bight. A miniaturized, but still large 
model with a diameter of 10 m, was used to simulate the tidal water levels 
and currents. In the 1960s numerical models were constructed to replace these 
costly coastal engineering devices. In 1972 Siindermann and Vollmers made a 

The factor (3 arises from the load tide !;1, which is caused by the weight of the 
overlying water column, and from the self-attraction terms 8!;~qu and 8!;~qu which 
all depend on the tidal elevation!;. Equation ( 4.12) assumes all these terms to be 
just proportional to !; and thus combine into a single factor (3. A more accurate 
representation allows for different factors for different spectral harmonics. 
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Fig. 4.4. Geometry and variables of the mathematical model of the tides in Jade 
Bay. From Siindermann and Vollmers [163] 

systematic attempt to compare the hydraulic with a numerical model. Here 
we describe their model in some detail to demonstrate the actual structure of 
a tidal model. 

Siindermann and Vollmers based their numerical model on Laplace tidal 
equations (4.2) with the boundary conditions (4.4). Figure 4.4 displays the 
Cartesian coordinates used: u is the velocity component in east-west direction 
x, v the velocity component in north-south-direction y, and e the water level 
relative to an undisturbed level h. They also made some simplifications. Since 
the water body of the Jade Bay is small, the tidal potential V ¢T is neglected. 
Thus, the tidal system is forced through the boundary conditions only. Also 
neglected are the advective terms and the horizontal friction terms in the 
momentum balance. Bottom friction is nonlinear. In this coordinate system 
and under these assumptions Laplace tidal equations become 

OtU +he: e Ju2 + v2u - fv + gaxe = 0 

OtV +he: e Ju2 + v2v +Ju+ gaye = 0 

ate+ 8x(h + e)u + ay(h + e)v = O 

where the "hat" on the velocity has been omitted. 

(4.13) 

A major difference between the hydraulic system and the system given by 
Laplace tidal equations (4.13) is that the hydraulic system does not contain 
a scaled version of the Coriolis force. The tidal equations can be integrated 
with and without the Coriolis term. We come back to this issue in Chap. 6. 

Next we present a few details of the discretization of the differential equa­
tions (4.13). First a suitable grid for the dependent variables, zonal and merid­
ional currents u and v and water level e, must be chosen. Then the differential 
operator must be replaced by difference operators. 

For the dependent variables the staggered C-grid is used (see Sect. B.3), as 
sketched in Fig. 4.5, with grid points marked by "+" for meridional currents 
( v)' "x" for zonal currents ( u) and dots "." for water levels ( e). 
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Fig. 4.5. C-grid used in the Jade Bay study, with + = v-points, x = u-points and 
· = l;-points. From Si.indermann and Vollmers [163] 

The discretization in time is forward and in space central3 

dul Un+l - Un 

dt n Llt 

dul Un+l - Un-1 
(4.14) 

dx n 2Llx 

dul Un+l - Un-1 

dy n 2Lly 

Stability is guaranteed if the Courant-Friedrich-Levy criterion 

11 Llx Lly 
LJ.t< -- --

- ,j2gh' ,j2gh ( 4.15) 

is satisfied. 
We come back to this case in Chap. 6. 

3 Historically, this scheme was named "HN" -method: hydrodynamic-numerical. 
Walter Hansen seems to have been the first to have introduced an HN approach 
in the 1930s and 40s. The first comprehensive documentation is [53]. 
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4.2 The Climate System 

4.2.1 Components and Processes 

The main fluid components of the climate system are the oceans, the atmo­
sphere and the cryosphere4 (Fig. 4.6). They transport and exchange among 
each other matter - mainly water but also other gases and particles - and 
momentum and energy in such manner that the incoming solar radiation is, 
on average, balanced by the outgoing thermal radiation (see Fig. 1.11, and 
Sect. 4.2.4). Total mass and angular momentum are conserved5 . Climate is 
a thermodynamic engine. Motions are driven by the contrast of cooling (net 
long-wave radiation loss) and heating (net short-wave radiative gain). 
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Fig. 4.6. Processes represented in a climate model. From von Storch and Hassel­
mann [178] 

In the atmosphere, matter, momentum and energy are transported by the 
winds. Water vapor, clouds, other gases and aerosols modify the radiative 
properties of the atmosphere, by absorbing, reflecting and emitting radiative 
energy. Winds cause the formation of turbulent boundary layers above the 
land surface, the oceans and the ice sheets. Efficient fluxes of matter, en­
ergy and momentum couple the climatic components through these boundary 

4 Sea ice and even icesheets move and are hence fluids but have a very different 
rheology from air and water. 

5 If exchange of mass with space and of angular momentum with celestial bodies 
is disregarded. 
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layers. The atmosphere is mostly weakly stably stratified, but numerous situ­
ations exist where local vertical instabilities, often reinforced by condensation 
of lifting air, occur; therefore, the atmosphere as a whole is relatively well 
mixed. 

The atmosphere represents relatively little mass and has little thermal 
inertia. Therefore, the atmospheric state at a given time is mostly in a sta­
tistical equilibrium with the thermal state at its lower boundary, i.e., at the 
sea surface, the land surface and the ice sheets. Nevertheless, the role of the 
atmosphere in the climate machinery is vital. The atmosphere controls the 
amount of energy absorbed from the sun and re-emitted into space. It provides 
mechanical energy to mix the ocean, momentum to set up the wind-driven 
currents, and creates density variations at the oceans' surface that drive the 
thermohaline circulation. Its high-frequency variability acts as stochastic forc­
ing on the slower evolving components of the climate system. 

The ocean, on the other hand, has much more mass and larger thermal in­
ertia. Currents, with velocities much slower than those of the winds, transport 
momentum, energy, water, salt, and chemicals. The oceans store large amounts 
of matter, such as carbon dioxide. Near the surface a turbulent boundary layer 
is formed, which is in close contact with the overlying atmosphere and, to a 
lesser degree, with overlying sea ice. In the deep ocean, variations on time 
scales of days and weeks are fairly weak. The deep ocean has only limited 
contact to the upper ocean. The main process connecting the upper with the 
deep ocean is convection. It is triggered in sub-polar oceans when the surface 
waters become denser, as a result of cooling and accumulation of salt during 
sea ice formation. Tides are very relevant in marginal seas, where tidal cur­
rents reinforce the bottom boundary layers. Tides in the open ocean convert 
part of their energy into internal tides at topography. These internal tides 
are believed to provide a major part of the mechanical energy needed for 
diapycnal mixing6 and maintenance of the abyssal circulation. 

The cryosphere comprises ice sheets, like Antarctica or Greenland, ice 
shelves, sea ice and snow areas. Ice sheets appear to the human observer 
as constant, but they actually are fluids like the atmosphere and the ocean, 
but with much smaller velocities. Indeed, ice sheets are larger versions of 
glaciers. The size of glaciers is determined by their mass balance: at high alti­
tudes, mass is accumulated through freezing precipitation; this mass is slowly 
moving downhill to lower altitudes, where the ice is melting. Whether the 
glacier as a whole accumulates or loses water, depends on its height distribu­
tion; above a certain height, precipitation freezes, and below it ice melts. An 
equilibrium is obtained, when the "accumulation" area times the precipita­
tion rate equals the "ablation" area times the melting rate. Ice sheets evolve 
similarly. They efficiently store fresh water, controlling thereby not only sea 
level but also the concentration of salt in seawater. Ice sheets usually vary 
on time scales of thousands of years but paleoclimatic evidence indicates that 

6 Mixing across layers of constant density. 
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sometimes faster changes took place. Mountain glaciers exhibit marked varia­
tions on time scales of tens of years. Sea ice and snow fields have little inertia, 
and are mainly dependent upon the local atmospheric and oceanic conditions. 
They have a significant impact on the exchange of heat and matter between 
the atmosphere, ocean and land surface, and efficiently reflect sun light, thus 
affecting earth's energy balance. 

There are more components to the climate systems. The land surface is 
one such additional component. It stores heat and, more importantly, water. 
The flux of energy and water is also affected by the presence of vegetation. 
Vegetation and soil - which may be seen as one dynamical system - affect 
biogeochemical cycles, since for instance carbon dioxide is stored by plants and 
released by litter. Thus, the biosphere is another significant part of climate. 

People and society are also part of the climate engine, as human action 
determine modifications of the land surface and emissions of climatically rel­
evant substances such as greenhouse gases and aerosols. 

For variations on time scales of hundreds of thousands of years and longer, 
the lithosphere becomes a dominant factor. Weathering of rock, burial of sed­
iments, formation of mountains, changing of land-sea distribution and other 
lithospheric processes have altered climate dramatically [20], [170]. 

From this list, it becomes obvious that climate is not a finite and closed 
system. An infinite number of processes, each with its own dynamics, are 
interacting. Modeling this system requires decision about which processes to 
retain and which to disregard. Some help comes from the fact that most 
processes are characterized by specific time and space scales, as discussed 
next. 

4.2.2 Scales 

In the previous subsection we have attempted an, albeit incomplete, overview 
of climate processes. These processes take place on all space and time scales; 
for the ocean and the atmosphere, this is sketched in Fig. 4.7. Molecular pro­
cesses are disregarded. The shortest time scales are then associated with sound 
waves, micro turbulence and wind seas, which may have spatial scales as small 
as a few centimeters. Boundary layer processes have time scales of minutes, 
and spatial scales of meters. The largest scales of thousands of kilometers, 
have temporal scales of a few days in the atmosphere (planetary waves) and 
hundreds and thousands of years in the ocean ( thermohaline or meridional 
overturning circulation). In both fluids small spatial scales are generally as­
sociated with fast time scales, and large scales with slow variations. This 
behavior is also reflected in the dispersion relations of many wave types (see 
Fig. A.4). It offers a natural ordering of processes. Processes in ice sheets 
can also be ordered in this way. But it should be stressed that this order­
ing is not a universal law for environmental systems. In particular, it does 
not apply to coastal systems, as can be seen in Fig. 4.8 which shows a much 
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Fig. 4. 7. Spat ial and temporal scales of atmospheric and oceanic dynamics. From 
von Storch and Zwiers [182) 
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Fig. 4.8. Scales in coastal research , demonstrating t he simultaneous presence of 
all spatial and temporal scales in this complex environment. Courtesy: Nicolas 
Hoepffner 

more complicated situation without any simple relation between spatial and 
temporal scales. Such ordering also does not apply to ecology. 

An implication of the relation between spatial and temporal scales is that 
climate dynamics is dominated by different processes on different time scales. 
When short time scales are considered, such as daily and weekly variations 
of weather, then oceanic variations related to wind-driven circulation cells or 
the thermohaline circulation are irrelevant. Indeed, in weather forecasts only 
the atmosphere changes. The other components remain fixed. On time scales 
of years, the details of cloud clusters in the atmosphere, fronts in t he ocean 
are as irrelevant as the thermohaline circulation or the dynamics of ice sheets. 
When time scales of many thousands of years are studied, then the atmosphere 
may be considered as being essentially in equilibrium with the slower climate 
components such as the ocean or the ice sheets, while lithospheric processes 
may be disregarded. On time scales of hundreds of thousands of years and 
longer, the dynamics of the oceans and of the ice sheets become also relatively 
unimportant compared to the geological processes modifying the surface of 
earth. 
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When modeling the climate system, in most cases an interval of spatial 
and temporal scales is considered. The larger scale dynamics is fixed. The 
smaller scale dynamics is parameterized. 

4.2.3 The Primitive Equations 

The differential equations used to describe the oceanic and atmospheric dy­
namics on large spatial scales are usually the so-called primitive equations. 
They are derived from the fundamental dynamical laws by a number of ap­
proximations. The most important one is the shallow water approximation. 
It consist of the hydrostatic approximation which neglects the acceleration 
in the vertical momentum balance and the traditional approximation which 
neglects the meridional component of the earth's rotation. The shallow water 
approximation is justified for motions whose aspect ratio, i.e., whose ratio of 
vertical to horizontal length scale, is much smaller than one. The state vari­
ables are the wind or current velocity vector, with the horizontal components 
vh = ( u, v) and the vertical component w, the density p, the specific humidity 
q (atmosphere) or the salinity S (ocean), temperature T, and pressure p. The 
equations are usually expressed in spherical coordinates with longitude(), lati­
tude cp and height z. For the atmosphere one such set of primitive equations is 

where 

( Du UV ) 1 p - - - tancp - fv = ---8op +:Fu 
Dt a acoscp 

( Dv u 2 ) 1 p -+-tancp+fu =--8 p+:Fv 
Dt a a "' 

0 = -azp-gp 
Dp - + p(V' . v) = 0 
Dt 

Dq 
p Dt = gq 
DT Dp 

pep Dt = gT + a Dt 

p = Rm(q)pT 

D 8 u 8 VO 8 
-=-+---+--+w­
Dt at a cos cp 8() a acp oz 

( 4.16) 

is the material or advective derivative7 , f the Coriolis parameter, a the radius 
of earth, Cp the specific heat, a the thermal expansion coefficient, and Rm 
the gas constant. The terms :Fu, :Fv, gq and gT represent the parameter­
ized effects of unresolved processes. The first two equations are the horizontal 

7 It is the material derivative only for scalar fields. For the velocity components gt 
plus the tan cp terms form the material derivative. 
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components of the momentum balance and the third equation is the verti­
cal momentum balance, approximated by the hydrostatic balance. The next 
equation is the mass balance or continuity equation, followed by the balance 
equations for water vapor and internal energy. The last equation is the equa­
tion of state. The variables u, v, p, q and T are prognostic variables; p and w 
are diagnostic variables. 

The terms Fu, Fv, Yq and YT consist of the divergences of the subgridscale 
eddy fluxes (discussed in Sect. A.6). Yq includes in addition a source/sink 
term representing phase transitions (discussed in Sect. A.5.1) and YT includes 
in addition a source/sink term representing the release/gain of latent heat 
by phase transitions and the divergence of the radiative flux (discussed in 
Sect. A.5.2). 

These equations still contain sound waves. The hydrostatic approximation 
only eliminates the vertical propagation of sound waves. To filter out sound 
waves completely one makes the anelastic approximation. There are different 
ways to implement this approximation, depending on the "vertical" coordinate 
used. For the equations 4.16 which use z or height coordinates one usually 
does the following: one first introduces a dynamically irrelevant reference state 
qr(z), Tr(z), Pr(z) with associated hydrostatically balanced pressure Pr(z) and 
only considers the deviation from this reference state; then one replaces the 
density p by the reference density Pr in all terms on the left hand side; then, 
most crucially, one neglects the time rate of change term in the continuity 
equation which then reduces to 

( 4.17) 

and becomes a diagnostic equation. This procedure eliminates sound waves 
completely. Only four prognostic variables, u, v, q and T, remain. The anelastic 
approximation is justified for motion whose phase speeds are much smaller 
than the sound speed, which is 330 m/s in the atmosphere and 1440m/s in 
the ocean. 

In the ocean, the density varies only little within the water column. One 
can thus replace the reference density Pr by a constant density p0 . The continu­
ity equation then reduces to the "incompressibility" condition \7 · v = 0. Mass 
conservation is replaced by volume conservation. The anelastic approximation 
together with this approximation is referred to as the Boussinesq approxima­
tion in oceanography. Explicitly the primitive equations in the Boussinesq 
approximation are given by 

p0 (Du - uv tan<p - fv) = --1-8ep' +Fu 
Dt a acos<p 

p0 ( ~~ + : 2 
tan<p +Ju) = -~8'Pp' + Fv 

0 = -8zP1 - gp' 
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Q = 8zW + '\Jh · Vh (4.18) 
DS 

Po Dt = 9s 
DT 

PoCp Dt = 9r 

p' = p(S, T,pr(z)) - p(Sr(z), Tr(z),Pr(z)) 

where primes denote deviations from the reference state. Note that the den­
sity p' is now a function of the two prognostic variables T and S and the 
independent variable z, through the specified reference state. 

In principle, the equations 4.18 can be solved as follows: Given the values 
of the prognostic variables u, v, T and S at a time step one first obtains 
the density p' from the equation of state. The vertical velocity w can be 
calculated by integrating the incompressibility condition vertically upward 
using the kinematic bottom boundary condition 

where hb is the bottom elevation. The value of the vertical velocity at the 
surface determines the surface elevation ry via 

a 
-ry=w at 

from which the the pressure at the surface can be determined via 

P = pogry 

This value provides the necessary boundary condition to calculate the pressure 
p' by integrating the hydrostatic balance downwards. 

The actual algorithms may differ significantly when a different "vertical" 
coordinate is used and when additional approximations, such as the rigid lid 
approximation, are applied. 

4.2.4 Fundamental Cognitive Models 

As we have already discussed, the understanding of the climate system has 
grown over the centuries. Until the appearance of powerful electronic comput­
ers in the 1950s, all progress was made through idealized cognitive models. 
One such model dates back to the 17th century. It is George Hadley's explana­
tion of the trade wind system in the tropics depicted in Fig. 1.9: Air ascending 
in tropical convection moves poleward. Because of earth's spherical form, an 
air particle dislocated from a position over the equator to an off-equatorial 
has excess angular momentum, causing the particle to move in an eastward 
direction. The return flow at the surface must thus be in a southwestward 
direction, north of the equator, and a northwestward direction, south of the 
equator. This is the trade wind system. 
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Another important step towards comprehending climate was the under­
standing that the temperature at the surface of the earth is an equilibrium of 
incoming solar radiation and outgoing thermal radiation (see Fig. 1.11). This 
conceptual model is the energy balance model, also already discussed. When 
reduced to its bare essentials, it reduces to the simple model sketched in 
Fig. 4.9. The role of gaseous substances in modifying the radiative properties 
of the atmosphere, especially of carbon dioxide, had already been understood 
by Svante Arrhenius in the 1890s [3]. 

oceanic boundary layer 

Fig. 4.9. Energy Balance Model. Fsw stands for short wave radiation, and FLw for 
long wave radiation. From von Storch et al. [177] 

In the early 20th century, scientists began to unravel the structure of 
extratropical storms. Carl-Gustaf Rossby and his colleagues discovered that 
these storms may be understood as unstable waves forming along the "front" 
separating warm and moist air masses originating from the tropics and cool 
and dry air masses formed in polar areas8 . Other important conceptual models 
were developed for the characteristics of the Hadley Cell [60], the general 
circulation of the atmosphere [102], the oceanic wind-driven gyre circulations , 
the western intensification of these gyres [119] , [160] , the conveyor belt, and 
the oceanic mixed layer. 

8 The expression "front" was coined by the Norwegian pioneers in synoptic meteo­
rology, Vilhlem Bjerknes and coworkers, under the impression of the First World 
War (cf. [41]). 
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4.2.5 Natural and Anthropogenic Climate Variability 

Climate changes all the time (Fig. 4.10). This fact has not really been appre­
ciated until recently. Climate was considered unchanging, in the sense that 
one cool season would eventually be balanced by a warm season, in a few 
years time. Even after the detection of massive prehistoric glaciation events, 
meteorologists still maintained the view that climate does not change within 
different historical time periods. This view became opposed by geographers 
and hydrologists who claimed that anthropogenic and other systematic cli­
mate changes are always ongoing. One widespread concern was for example 
that the earth would dry out, caused or at least accelerated by deforestation. 
For an historical account of these developments see [93] or [155]. 

Nowadays, climate research acknowledges the presence of two competing 
processes in the observational record and in any reasonable scenario of ex­
pected future climate evolution. These two processes are anthropogenic climate 
change and natural climate variability. They have similar signatures, namely 
low-frequency climatic modifications, and are therefore sometimes confused. 

"Climate Variability" arises from "natural" mechanisms unrelated to hu­
man actions. One distinguishes between external and internal natural vari­
ability. 

Natural external variability is caused by external forcings such as volcan­
ism, variations in the energy output of the sun or the celestial Milankovitch 
cycles. "Internal variability", on the other hand, is the low-frequency variabil­
ity that arises from dynamical processes within the climate system. 

There are basically two internal processes, which pump energy into low­
frequency variability: non-linear interactions (e.g., [69]) and the accumulation 
of short time-scale "weather noise" [58] (see review by Frankignoul [39]), [29]. 
These mechanisms make climate a particularly complex system, with proper­
ties significantly different from most classical systems. 

Figure 4.10 displays two time series, describing climate variations during 
historical times, derived from historical accounts. Both diagrams present a 
mix of external and internal natural variability. One diagram shows the tem­
perature and wetness of winter half years 1496-1995 in Switzerland [133], the 
other diagram the severity of ice conditions in 1500-1995 in the western Baltic 
sea [89]. 

The Swiss winters have been classified as either warm or cold, wet, dry or 
normal. In the diagram, the number of winter months having been classified 
as cold, cold and wet, or cold and dry are shown as negative values, and the 
number of winter months classified as warm, warm and wet, or warm and 
dry as positive values. The time series is characterized by variability on all 
time scales. The decade-to-decade variations are, according to present knowl­
edge, mostly due to internal climate dynamics, but the outstanding cold two 
decades at the end of the 17th century, named Late Maunder Minimum [104], 
[194], are likely related to an external event, namely a combination ofreduced 
solar output and the extensive presence of volcanic aerosol in the strato- and 
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Fig. 4.10. Time series of historical reports about the severity of winters in Europe. 
Top: Number of winter months in northern Switzerland per decade reported as 
cold or warm (and being at the same time wet or dry) [133] . Bottom: Severity 
of ice conditions during the winters 1500- 1995 in the Western Baltic sea. Vertical 
lines give annual values; the curves represent smoothed values. From Koslowski and 
Glaser [89] 
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troposphere [196] (see also Sect. 6.1.2). Also, the extended cooling from the 
late 15th century to the middle of the 19th century may be related to factors 
like the sun. However, the entire low-frequency variability cannot be ascribed 
to external causes alone; instead a significant proportion is related to internal 
variability. Thus, one cannot expect identical climatic states for the same ex­
ternal forcings. Generally, the shorter the time scale, the less important the 
external influence and the more important the internal dynamics. 

A similar conclusion about the coldness of winters in central Europe is 
suggested by the second time series in Fig. 4.10. It is based on data that 
are totally independent from those used in the analysis of the Swiss winters. 
Again, strong variations (of sea ice cover) from year to year are present, but 
after smoothing the curve, clusters of colder and warmer winters emerge. 
Again, the Late Maunder Minimum episode stands out, as well as the generally 
cool time until the middle of the 19th century. 

The term "Climate Change" is reserved to denote the formation of persis­
tent climatic anomalies that are due to human activities. Examples of such 
activities (see, for example, Cotton's and Pielke's monograph, [19]) are urban­
ization (i.e., the modification of surface fluxes in the boundary layer through 
buildings and streets), desertification and deforestation, and anthropogenic 
emissions of soot (Gulf war in 1991; [5]), aerosols and greenhouse gases. The 
emission of C02 , CFCs and methane, in particular, have been the subject of 
widespread concern because of their implications for Global Warming. 

Though the potential of humankind interfering with climate has had and 
still has profound social and psychological implications, from a dynamical 
point of view it is just another forcing of the climate system. 
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Modeling in Applied Environmental Sciences 
Forecasting, Analysis and Scenarios 

In this and the following chapter, we consider applications of quasi-realistic 
environmental models. Chapter 5 deals with applied research, and Chap. 6 
with fundamental research. Of course the border line between applied and 
fundamental research is far from rigid. For us, applied environmental research 
is driven by the quest for knowledge about the present and future state of 
a system. Thus forecasting and scenario building are in the realm of applied 
research. Fundamental environmental research, on the other hand, is driven by 
the quest for understanding a system. How does a system function? What are 
its significant constituents? Thus derivation and confirmation of hypotheses 
are typical applications in fundamental research. Obviously not all scientific 
applications of quasi-realistic models may be consistently classified into these 
two categories (see Fig. 1.13). 

When computer models are used in applied environmental sciences, the 
main three purposes are (i) the determination of the state of the environ­
mental system ("analysis"), (ii) the forecast of its state in the (near) future, 
and (iii) the description of the consequences of anthropogenic interferences. 
Among the secondary applications are the calibration of models by fitting 
them to observed data, the design of observational networks, and the determi­
nation of model uncertainties. Model uncertainties are, for instance, relevant 
for discriminating between natural and anthropogenic climate change and for 
assessing the significance of extreme values, say of wave climates. We dis­
cuss these applications in this chapter, beginning with forecasting (Sect. 5.1), 
data analysis (Sect. 5.2) and scenarios (Sect. 5.3), and then address secondary 
applications in Sect. 5.4. 

5.1 Operational Forecasts 

5.1.1 Forecast Versus Prediction 

We do not use the two terms forecast and prediction interchangeably. Instead, 
forecasts refer specifically to efforts to estimate unconditionally the state of 
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the system in some future. The term prediction is used in a broader sense; it 
covers forecasts of the future, but it also covers efforts to specify the outcome of 
an experiment, in "what-if"-analyses. Also forecasts conditional upon certain 
external factors, like elevated atmospheric levels of greenhouse gases, are in 
that sense "predictions". 

In general terms, forecasts are estimates of future states and their evolu­
tion. Examples are the maximum temperature tomorrow in Copenhagen, the 
timing of the next high tide at Honolulu, the seasonal mean temperature of 
the contiguous USA during the next winter, or the timing and abundance of 
next year's spring algae bloom in the North Sea. These types of forecasts have 
economic and behavioral utility. It does not matter why the forecast is correct, 
but only that it produces reliable statements useful for the planning of the 
economic, public or personal life. To be useful, forecasts must be specific in 
terms of time, location and variable. Traditional long-term weather forecasts 
as, e.g., published in the "Old Farmers Almanac" in the contemporary USA 
or as asserted by the once famous Rudolf Falb in 19th century Austria [14], 
are often in vague terms: "There will be thunderstorms in late August". Such 
statements are useless simply because they are trivial or entirely random in 
their success [100]. 

Forecasts may be "point" forecasts, e.g., the next high tide will be 30 cm 
above the mean high tide, or "probabilistic", e.g., the next high tide will be 
consistent with a certain probability distribution like a uniform distribution 
between 25 and 30 cm or a Gaussian distribution with a mean of 30 cm and a 
standard deviation of 10 cm. Sometimes, categorical forecasts are also phrased 
in probabilistic terms as in "the probability for next summer's temperatures 
to be above normal is 80%" [182]1. 

Some predictions are actually conditional forecasts as in "if the concen­
tration of greenhouse gases in the atmosphere is increased by about 1 % each 
year, then the global mean temperature will rise by about 3°C in the next 
hundred years". Such predictions are often named "scenarios" as they provide 
plausible evolutions based on some assumptions which may, or may not, prove 
to be valid. We come back to scenarios in Sect. 5.3. 

Predictions are also a tool of fundamental research. An example is "when­
ever the stratification becomes unstable, a vertical exchange of mass takes 
place". This prediction can be used to test the fluid dynamical theory of con­
vection. The classical approach for assessing a scientific theory is to contest it 
by checking its ability to make correct predictions. If all predictions derived 
from a hypothesis are found to be correct, or at least non-conflicting with 
observational evidence, then the hypothesis is accepted for the time being 
and considered a validated theory, maybe even a law [171]. We deal with this 
aspect in detail in Chap. 6. 

1 This phrase is to be interpreted that in 80% of the cases when conditions like 
those at the time of the forecast prevail, temperatures will be above normal. 
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In Sects. 5.1.2-4 we present examples of operational forecasts, with cases 
related to tide and storm surge, weather, and ENSO forecasts. In Sect. 5.1.5 
we address the problem of how to determine the quality or skill of forecast 
schemes. Post-processing forecasts are discussed in Sect. 5.1.6. 

5.1.2 Tide and Storm Surge Forecasts 

Forecasts of tides were originally prepared by harmonic analysis of a tidal 
record and extrapolating the sinusoidal partial tides into the future. At the 
beginning of the last century, this was done with sophisticated analog ma­
chines like the one shown in Fig. 1.3. Nowadays, this method is still in use 
but complemented by computer models that integrate Laplace tidal equa­
tions forward in time, with or without the assimilation of tidal observations. 
Because of the deterministic character, such forecasts can be made for long 
lead times. Annual forecasts are provided in the form of annual tide tables 
(Gezeitentafeln). The Bundesamt fiir Seeschiffahrt und Hydrographie in Ham­
burg provides upon request "tidal predictions for all places where the data 
required for computation are available, and for any period of time". 

For short lead times, information like 

Amrum Wittdiin 

tide high low high low 
day 26.12.2000 26.12.2000 27.12.2000 27.12.2000 
time 13:54 20:25 02:06 08:46 

deviation -0,20m -0,20m ±0,00m -0,lOm 
from mean 

mean high tide: 6.21 m, mean low tide: 3.54 m 

is offered regularly on the Internet for various locations. 
An operational forecast system for various environmental variables describ­

ing the state of the North Sea and the Baltic Sea is routinely used by the 
Bundesamt fiir Seeschiffahrt und Hydrographie in Germany [28]. The system 
is composed of a number of modules (Fig. 5.1) that deal with currents, water 
levels, water temperatures, salinities, ice coverage and the drift and disper­
sion of substances. The system uses as input tidal predictions, meteorological 
and ocean wave forecasts provided by the German Weather Service, and pro­
duces forecasts 48 hours in advance. The forecasts are used by the storm surge 
warning service. The system also prepares drift forecasts for oil, chemicals, and 
floating objects, forecasts of current and water levels as a service to shipping 
and emergency agencies, and water quality analyses. 

As an example, Fig. 5.2 shows the forecast of salinity in the North Sea and 
Baltic Sea. An overview of the state of the art is given by Flather [37]. 
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Fig. 5.1. Bundesamt fiir Seeschiffahrt und Hydrographie-forecast model system. 
It combines the processing of data and forecasts (of weather etc.) with dynamical 
models of the North Sea and Baltic Sea. Courtesy of Bundesamt fiir Seeschiffahrt 
und Hydrographie 

5.1.3 Weather Forecasts 

Numerical weather predictions (NWP) are routinely prepared by national 
weather services throughout the world. The ingredients are a dynamical model 
of the troposphere (named NWP model) , a few specific parameters (like sea­
sonal insolation) , an initial distribution of the relevant meteorological variables 
(like temperature, wind velocities, humidity) and boundary conditions (like 
sea surface temperature or vegetation). Most models are global, but regional 
models are also in use. 

Serious attempts to predict future weather by applying dynamical equa­
tions had already been made at the beginning of the 20th century. The most fa­
mous attempt, and failure , was made by Lewis Fry Richardson2 [140]. Richard­
son used a simplified version of Bjerknes's primitive equations. He prepared 

2 He used an inadequate numerical scheme, see Appendix B.2.2. 



5.1 Operational Forecasts 95 

00 300 Salzgehatt 
36.0 

35 ~:S 
~l8 
31 .0 

30 
29.0 

27.0 

25 
24.0 

600 
20 

21.0 

18.0 

15 15.0 

12.0 

10 10.g 
9. 

• 9:8 
6.0 

5 ~:8 
500 l8 

Venlon"v.J' 
0 0.0 

100 200 300 

Salzgehalt am 11.12.1998 00:00 Uhr (MEZ) 

Fig. 5.2. Salinity distribution in the North Sea and Baltic Sea as predicted by the 
Bundesamt fiir Seeschiffahrt und Hydrographie forecast system, for December 11, 
1998. Courtesy of Bundesamt fiir Seeschiffahrt und Hydrographie 

within six weeks one eight-hour forecast. Even before Richardson, the Aus­
trian Felix M. Exner [35] reported a series of 4-hourly and 12-hourly forecasts, 
which he prepared for the contiguous United States (see [114]): 

Exner assumes that the atmospheric fl.ow is geostrophically balanced 
and that the thermal forcing is constant in time. He uses observed 
temperature values to deduce a mean zonal wind. He then derives 
a prediction equation representing advection of the pressure pattern 
with constant westerly speed, modified by the effects of diabatic heat­
ing. 

In Fig. 5.3 one of Exner's 4-hour forecasts of the surface pressure changes is 
reprinted together with the corresponding observed changes, demonstrating 
some remarkable non-trivial skill of the forecast. 

NWP with computer codes based on dynamical equations began in the late 
1940s with experiments at the Institute for Advanced Studies in Princeton, 
when John von Neumann and Jule Charney began implementing the forward 
integration of dynamical equations on a digital computer [17]. 

This method was first implemented for operational forecasts in the 1950s at 
the International Meteorological Institute in Stockholm, under the leadership 
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Fig. l. 

p, -p, berecbuet; Luftdrucknrinderung vom 3. Januar 1895 8l' bia 12P, in Huudert.tel Zoll 

Fig.2. 

p, -p, beobacbtet; Luftdruckverinderang vom !I. Januar 1895 SP bia 121', in Hundortatel Zoll. 

Fig. 5.3. Exner's weather prediction: 4-hour pressure changes as predicted (top) 
and observed (bottom), in units of 0.01 inch (35] 
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500 hPa 1 October 1954 0300Z 

Fig. 5.4. 500 hPa height field for October 1, 1954. The grid shows the rectangular 
integration area with a grid distance of 300 km. The field is used as initial state for 
the forecast shown in Fig. 5.5. From Bengtsson [7] 

of Carl-Gustaf Rossby. The original model run in 1954 made use of only one 
equation, the barotropic vorticity equation [154]. A rectangular area covering 
Northern Europe (see map in Fig. 5.4) was overlaid by a grid with a mesh size 
of 300 km. The time step was 1 hour. The computer was a "BESK" . It had 
a memory of 512 words of 40 bits each. The preparation of a 1-day forecast 
needed about 30 minutes and 3 x 107 operations. The forecasts were extended 
over 3 days. The day 1 forecast was considered useful. Figure 5.4 shows the 
initial conditions on October 1, 1954 and Fig. 5.5 the three day forecast for 
October 4, 1954, together with the analysis for the same day. The forecast is 
not terribly good, but also not entirely useless. More on the early history of 
numerical weather prediction can be found in [123] and [116]. 

These initial numerical models evolved into operational weather forecast­
ing as we know it today. Progress along the way was due to various factors 
[7]. One important factor was the increase in computer power. In 1998, the 
Fujitsu VPP 700 at the European Center for Medium Range Forecasts inte­
grated 200-variables at 31 vertical levels with a horizontal resolution of about 
50km (T213). One time step was 20min. It executed 5 x 1012 operations per 
forecast day in about 6 minutes. It computed complete 3-dimensional distri­
butions for each time step and each variable. The forecasts were skillful for 
6- 9 days in advance. Other important factors were better observations, im­
proved dynamical equations, better numerical methods, increased resolution, 
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500 hPa 1 October 1954 0300Z+72 hrs. 

500 hPa 4 October 1954 0300Z 

Fig. 5.5. 500 hPa heights for October 4, 1954. Top: barotropic forecast , initiated 
with the field shown in Fig. 5.4. Bottom: analysis. From Bengtsson [7] 
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Fig. 5.6. Development of the skill of weather forecast systems for the Nort hern 
Hemisphere during winter. Left: Root mean square error (RMS) of weather forecasts 
prepared by SMHI and ECMWF since 1979 as a function of forecast day. After 
Bengtsson [7]. Right: Anomaly correlation coefficients (ACC) of observations and 
forecasts prepared by the US National Meteorological Center in 1981/82 to 1989/90 
as a function of t ime lag in days. Operational weather forecasters usually consider 
60% as a threshold for useful forecasts. From Kalnay et al. [75] 

advanced physical parameterizations and a better incorporation of observa­
tional evidence through data assimilation3 . 

The gain in forecast skill is displayed in the left part of Fig. 5.6. It shows 
the root mean square error of t he 1000 hPa height field forecast4 , averaged over 
t he Northern Hemisphere and many cases5 as a function of days forecast ed. 
T he curve "1979" shows the skill of the model of the Swedish weather service 
SMHI in 1979. It reaches an error of over 40 m within one day and shows 
strong error growth thereafter. T he other curves show t he performance of 
the ECMWF model in 1980, 1988 and 1998. The typical error of the SMHI 
forecast of about 40 m for a 1-day forecast was reached by ECMWF with its 
1980 model after about 2 days, with its 1988 model after about 3.5 days and 
wit h its 1998 model after 4 days. Obviously, great progress has been made, 
but this progress seems to level off. 

A similar success has been achieved by t he National Meteorological Cen­
ter of the US Weather Service, as demonstrated in the right part of Fig. 5.6. 
10-day forecasts of the Northern Hemisphere 500 hPa height field in the win­
ters 1981/82 to 1989/90 were analyzed. T he anomaly correlation coefficient6 

3 For a discussion of data assimilation methods, refer to Sect. 3.2 and Appendix D. 
4 The spatial distribution of the height at which the atmospheric pressure is 

lOOOhPa. 
5 For a more detailed discussion of skill scores, refer to Sect. 5.1.5 and Ap­

pendix C.2.4. 
6 The anomaly correlation coefficient is the area averaged correlation between the 

anomalies of the predicted and observed field . 
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was then computed for each winter and for each time lag, one to ten days. 
These anomaly correlation coefficients are plotted in Fig. 5.6 as a function 
of time lag for the different winters. An anomaly correlation coefficient of 1 
indicates a perfect forecast skill (apart from scaling), and an anomaly corre­
lation coefficient of zero no forecast skill at all. Meteorologists consider 0.6 as 
a critical level, with anomaly correlation coefficients above that level indicat­
ing useful forecasts. Obviously, the skill of the weather forecast scheme of the 
National Meteorological Center has steadily improved, with a gain of almost 
two days of useful forecast time. 

An example of a weather forecast for Southeast Asia is shown in Fig. 5.7. 
The target is shown as "ANA", which is the analyzed state on September 12, 
2003 (a randomly chosen date). Also shown are the forecasts for that target 
date, issued 24 hours (1 day), 48 hours (2 days), 72 hours (3 days), 120 hours 
(5 days) and 192 hours (8 days) earlier. These forecast were initialized with 
analyses like the one shown as "ANA". 

The forecast issued 1 day earlier is very good; for instance, it predicts the 
presence of a small cut-off low south of the main North Pacific low pressure 
system. This small scale phenomenon is not foreseen 3 and more days ear­
lier. A closer scrutiny of the maps reveals that the skill in forecasting details 
deteriorates when the forecast lead times becomes longer. After 8 days the 
similarity between forecast and observed state stems from the common late 
summer climatology, such as the tendency of the pressure to be low over the 
North Pacific and high over China. A randomly chosen map from the same 
season would have a comparable similarity with the observed state. This is a 
general result of such NWP models. They do a credible forecast for lead times 
of a few days, but lose their skill after 8 or so days. 

A significant practical problem is the preparation of the initial condition 
for NWP models. It cannot be observed in its entirety. Only isolated point 
measurements of most variables are available, plus satellite images for a few 
spatially distributed variables. In a first step, a weather analysis scheme (see 
Sect. 5.2) combines this information with, or "assimilates" it into, the most 
recent forecast. This step results in a consistent, complete analysis of the 
3-dimensional weather state. In a second step, this state is "initialized", i.e., 
modes of motion not represented in the NWP model are eliminated from the 
initial state7 . 

Predicting weather and weather statistics for many months in advance 
has been a dream of meteorologists from the beginning. The seminal findings 
of Lorenz [102] put a damper on this dream. Chaotic systems can only be 

7 At any given time, the atmosphere is made up of a mix of various modes of motion. 
Some of these modes are relevant for weather forecasting, like Ross by waves, while 
others are irrelevant, like sound waves and meteorological tides. These irrelevant 
modes are not described by weather forecast models. They would require very 
short time steps. The dynamical equations are therefore filtered to suppress these 
modes of motion (see Sect. A.9.1). These modes must also be eliminated from the 
initial state for dynamical consistency. We come back to this issue in Sect. 5.2. 
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Fig. 5. 7. Spatial distribution of air pressure at the surface as analyzed on Decem­
ber 9, 2003 ( "ANA" ) and as predicted for that day 24, 48, 72, 120 and 192 hours in 
advance. Courtesy Central Weather Bureau, Taiwan 

predicted for a limited time, and mid-latitude weather is the most prominent 
example of such a chaotic system. Efforts are underway for the preparation of 
seasonal forecasts for mid-latitude areas by est ablishing ensembles of extended 
forecasts. In the tropics seasonal forecasts are feasible utilizing the prolonged 
persistence of weather anomalies in the tropics. This case is discussed in the 
next section. 
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5.1.4 El Nino Southern Oscillation Forecasts 

Weather anomalies in the tropics persist for much longer times than in mid­
latitudes and become part of climate. To understand their dynamics, and 
thus their predictability, the international research program TOGA 1985-95 
(Tropical Ocean-Global Atmosphere) was initiated. Its main finding was that 
tropical climate variations, and their impact on extratropical areas, must be 
understood as a result of interactions of the ocean and the atmosphere. El 
Nino/Southern Oscillation (ENSO) was identified as the most important mode 
of tropical variation. It is the major mode of natural climate variability on 
the interannual time scale. Its formation is due to complex atmosphere-ocean 
interactions in the Tropical Pacific. Its memory extends over many months 
and originates from the oceanic inertia. 

More specifically, ENSO describes the following mode of variation. It had 
been discovered at the end of the last century [62], [185] that sea-level pres­
sure (SLP) in the Indonesian region is negatively correlated with that in the 
southeast Tropical Pacific. A positive SLP anomaly (i.e., a deviation from 
the long-term mean) over, say, Darwin (Northern Australia) tends to be as­
sociated with a negative SLP anomaly over Papeete (Tahiti). This seesaw 
pattern is called the "Southern Oscillation" (SO). The SO is associated with 
large-scale and persistent anomalies of sea surface temperature in the central 
and eastern Tropical Pacific called "El Nino" and "La Nina". The combined 
phenomenon is referred to as "El Nino/Southern Oscillation" (ENSO). The 
ENSO phenomenon is also associated with large zonal displacements of the 
centers of precipitation. These displacements reflect anomalies in the location 
and intensity of the meridionally (i.e., north-south) oriented Hadley Cell and 
of the zonally (east-west) oriented Walker Cell. 

The state of the Southern Oscillation is conventionally monitored by the 
monthly SLP difference between observations taken at surface stations in Dar­
win, Australia and Papeete, Tahiti. This difference is called the Southern Os­
cillation Index (SOI). Figure 5.8 shows a time series of the SOI since the 
1930s. There are also many other ways to define equivalent SO indices [189]. 
Areal averages of sea surface temperature (SST) are very common. An exam­
ple of such a SST based index is also shown in Fig. 5.8. It is highly correlated 
with the pressure based SOL The most frequently SST-index is the so-called 
Nino 3 index, which is the sea surface temperature averaged over the area 
150°-90°W x 5°S-5°N in the central Tropical Pacific. It will be used below. 

The observed SO indices are rather persistent, though the persistence has 
a marked annual cycle, as displayed in Fig. 5.9. During January and February 
(vertical axis), the lag correlations decay quickly with lag (horizontal axis), 
while in March and April moderate correlations extend for almost a year. 
Later in the year, for instance in September, correlations are high for several 
months, but then drop quickly for longer lead times. 

The ENSO phenomenon was found to be predictable first with empirical 
methods and then later with dynamical models, for a limited time. As an 
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SO and Tropical Pacific SST Indices 
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Fig. 5.8. The conventional Southern Oscillation Index (SOI = pressure difference 
between Darwin and Tahiti; dashed curve) and a sea-surface temperature (SST) 
index of the Southern Oscillation (solid curve) plotted as a function of time. From 
von Storch and Zwiers [182] 

example, we consider the dynamical coupled atmosphere-ocean model used 
by the Center for Ocean-Land-Atmosphere (COLA) [83]. The model consists 
of an atmospheric and an oceanic component. The atmospheric component 
is a global spectral atmospheric general circulation (AGCM) model triangu­
larly truncated at total wave number 30 with 18 unevenly spaced levels in 
the vertical. The ocean model is a Pacific basin version of the Geophysical 
Fluid Dynamics Laboratory (GFDL) ocean model with 1.5° longitude by 0.5° 
latitude resolution in the tropics and 20 levels in the vertical. The oceanic and 
atmospheric components are anomaly coupled. Only the predicted anomalies 
of wind stress and SST are exchanged interactively at the air-sea interface. 

An important task is the initialization of the model, i.e., the preparation 
of the initial state of the coupled model. Since the atmosphere is largely in 
equilibrium with the ocean it is the ocean that needs to be initialized. The 
COLA model uses an iterative procedure that is designed to reduce simulated 
sea surface temperature anomaly (SSTA) errors in the eastern Pacific [83]. 
Neither data from the TOGA TAO array of buoys in the Tropical Pacific nor 
from the TOPEX/Poseidon satellite are assimilated. In fact, the inclusion of 
such in-situ data for initializing the forecast may bear significant potential for 
improving the overall forecast system8 . 

Figures 5.10-15 demonstrate the skill of the COLA model to forecast both 
horizontal distributions as well as the characteristic Niiio-3 index. Figures 5.10 
and 5.11 display the predicted and observed winter (DJF) sea surface temper­
ature anomalies for the El Niiio event 1997 /98 and the La Niiia event 1998/99. 
The prediction lead time is 6 to 9 months in advance, i.e., the hindcasts9 were 

8 Such systems are prepared at NCEP and ECMWF. 
9 A retrospective forecast, or hindcast, is a forecast prepared for a certain time in 

the past, using only data before that time. The advantage of this procedure is 
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Fig. 5.9. Seasonal dependence of the lag correlations of a SST index of the Southern 
Oscillation. The correlations are given in units of 0.01 so that isolines represent lag 
correlations of 0.8, 0.6, 0.4, and 0.2. The row labelled 'Jan' lists the correlations 
between the January values of the index and the values of the index observed 'n lag' 
months later [190] 

prepared with data available in May 1997 and May 1998, respectively. In both 
cases, the hindcast is successful in the Tropical Pacific - which is the main 
objective of the system in the first place - whereas outside that region the 
similarity between hindcasted and observed SSTA is low. The broad warming 
along the equator in 1997 /98 as well the cooling in the winter 1998/99 are well 
reproduced by the dynamical model, even though details, as for instance the 
conditions off the Peruvian coast, are less well captured. The intensity of the 
warming and cooling of the central Tropical Pacific is also well reproduced. 

The COLA model has also been used to hindcast sea surface temperature 
anomalies in the Tropical Pacific since the mid 1960s. Figure 5.12 shows Niiio-3 
indices, as observed and as hindcasted ( +) with a lead time of 9 months. Ob­
viously, the model is quite successful, even though it tends to underestimate 
large values of the indices, for instance in the 91-93 El Niiio event. The cor­
relation between the hindcast, with different lead times, and the observed 
Niiio-3 index is displayed in Fig. 5.13, in the same format as Fig. 5.9, but 
with the base months on the vertical axis inverted. Similarly to the observed 
seasonal characteristics of the persistence of the Southern Oscillation Index, 
the model exhibits maximum forecast skill in March, with remarkable corre­
lations for lags up to 12 months, while forecasts issued in October show high 
correlations only for lead times of up to 5 or 6 months in advance10 . 

that forecasts can be done for many cases and statistics of the forecast skill be 
obtained. Researchers usually evaluate different forecast schemes by hindcasting. 
If the number of cases is not very large - as in the case of ENSO - the outcome 
of this comparison may depend on particularities of the considered cases. 

10 Figure 5.13 is based on fewer numbers than Fig. 5.9. Thus, Fig. 5.13 is subject 
to irregular sample variations. This may explain the large differences between 
neighboring months, like in November or January. It appears plausible that the 
curves should be smooth, as in Fig. 5.9. 
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Fig. 5 .10. COLA-forecasted and observed SSTA for the "El Nino winter" 1997 /98. 
The forecast lead time is 6 to 9 months, i.e., the forecast was prepared with data 
available in May 1997. Courtesy: Ben Kirtman 



106 5 Modeling in Applied Environmental Sciences 
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Fig. 5.11. COLA-forecasted and observed SSTA for the "La Nina winter" 1998/99. 
The forecast lead time is 6 to 9 months, i.e., the forecast was prepared with data 
available in May 1998. Courtesy: Ben Kirtman 
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Fig. 5.12. 9-months hindcasts of Niiio-3 index with a total of 6 different models, 
the average of the six hindcasts ("consensus" model; dashed) and the observations 
to be replicated (solid) . The COLA model hindcasts are given by crosses+ . From 
Kirtman et al. [82] 

Kirtman et al. [82] assessed the state-of-the-art in predicting Niiio-3 
anomalies with several dynamical atmosphere- ocean models. Hindcasts made 
by various research groups with five different dynamical models and one em­
pirical scheme were compared. One of the models is the above mentioned 
COLA model. A seventh model, named consensus model, is the average of the 
forecasts of all 6 models. 

The performance of the hindcasts is compared in terms of several skill 
scores. One such skill score is the correlation between hindcasted and observed 
Niiio-3. These correlations are given in Table 5.1 for the COLA model, the 
NCEP model (which assimilates TOGA- TAO buoy data) and the consensus 
model, and for different lead times. 

From long series of hindcasts, confidence limits for the correlations can be 
determined. When serial correlations are disregarded, then a separation of 0.05 
is sufficient to conclude, with a reasonable risk of 5%, that the correlations are 
different. One would thus conclude from Table 5.1 that the consensus model is 
best for 6 and 12 months lead times, and that COLA fares better than NCEP 
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Fig. 5.13. Correlation between the observed and the COLA-hindcasted Niiio-3 
index. The correlation is computed for different base months (vertical axis) and for 
different monthly lead times n (horizontal axis) . For instance, the value for January 
and n = 3 represents the correlation between Niiio-3 indices in April as observed 
and as forecasted 3 months earlier in the previous January. From Kirtman et al. [82) 
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Table 5.1. Correlations between hindcasted and observed Niiio-3 indices for the 
COLA, NCEP and consensus models 

COLA 
NCEP 

consensus 

6 months 
0.70 
0.75 
0.77 

9 months 
0.67 
0.66 
0.67 

12 months 
0.56 
0.50 
0.63 

for the two longer lead times, while NCEP is more successful for the shorter 
lead time of 6 months. 

Comparisons have also been made by Landsea and Knaff [94] to determine 
how well the models forecast the onset and the decay of ENSO. They studied 
in detail how well various empirical and dynamical models11 forecast the very 
strong warm event in 1997 /98. They concluded that none of the considered 
models adequately captured the detailed life cycle of this very strong ENSO 
event12 . 

As an example, Fig. 5.14 shows the 6-months lead time forecasts of two 
relatively successful models, the COLA and NCEP models, together with the 
observed indices13 . The COLA model fails to anticipate the emergence of the 
event. Only in northern spring (FMA), when the event was already beginning 
to develop, did this model predict a (much too small) warming for late summer 
(ASO). The model's forecast of the event ending in early summer 1998 (MJJ) 
turned out, however, to be correct. On the other hand, NCEP was successful in 
expecting already in fall (SON) of 1996 an onset in MAM 1997, but incorrectly 
envisaged in the winter (DJF) 1998 that the event would extend well into 1998. 
Other models failed to predict the event altogether: onset, peak and decay. 

11 Landsea and Knaff examined all forecasts routinely published in the Experimen­
tal Long-Lead Forecast Bulletin, http://www.iges.org/ellfb, with lead times of at 
least 2 seasons in advance (6-8 months). One of the models was a "consensus" 
model, i.e., a weighted average of several other models, but it did not fare very 
well, contrary to the finding of Kirtman et al. [82]. Also the advanced model 
of the ECMWF was not included in the comparative analysis, because forecasts 
with sufficiently long lead times were not made publicly available (Landsea, pers. 
comm.). 

12 Of course, the analysis of only one, albeit very strong, event limits the conclusions 
that can be drawn from this study. However, this event was for most models the 
only event for which data did definitely not enter the design of the models. Also, 
one could argue that a scheme that fails for this very strong event will likely not 
be very successful for more common (i.e., less intense) El Nino-events. 

13 Note that the two models predicted different indices. COLA predicted the Niiio-3 
index whereas NCEP predicted the so-called Niiio-3.4 index, which is rather simi­
lar but not equal to Niiio-3. Also, the models used different 3-months intervals for 
seasons. COLA used, for instance, FMA = February, March and April, whereas 
NCEP used MAM= March, April and May. 
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Fig. 5.14. The strong El Nino-event in 1997 /98. The observed Nino indices are 
given in red. The black dots are 6 months lead time forecasts of the Nino indices 
prepared by the NCEP and COLA model. These two models were found among the 
most successful in predicting the life cycle of the 1997 / 87 El Nino-event [94] 

We come back to these forecasts, when we deal with the problem of measuring 
the skill of forecasts in the next section. 

As in case of weather forecasting, the value of an ENSO-forecast will 
greatly increase if its skill can be estimated. One approach for quantifying 
the skill is to try to relate the consistency of forecasts initialized one month 
apart to the error of the forecasts. Unfortunately, this approach has failed 
so far, mainly because the persistence of the phenomenon makes consecutive 
forecasts relatively consistent, even if they are grossly wrong. Better ensemble 
techniques need to be developed which describe the sensitivity of the forecast 
to small errors [82]. 

In conclusion, both statistical and dynamical ENSO models produce useful 
tropical SSTA forecasts for the peak phase of ENSO up to two seasons in 
advance [82], while early indicators for the onset and decay of ENSO events 
are not very reliable [94]. It may very well be that forecasting ENSO may 
hit insurmountable barriers, as is the case for weather forecasting, because 
the ENSO dynamics is inherently chaotic. It may also very well be that not 
all available information has been utilized yet. In particular, there is some 
optimism that the implementation of efficient methods to assimilate local 
observations, from the TOGA- TAO buoy array and from satellites recording 
sea level and sea surface temperature, will advance the skill of the forecast 
significantly. 

5.1.5 The Skill of Forecasts 

Here we elaborate on the particular concept of skill that we have already used 
in our discussion of ENSO and of weather forecasting. The task of defining fair 
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measures of the skill of a forecast system is far from trivial. In the following 
we present the general concepts and give examples. Some technical details 
are given in Appendix C.2.4. A detailed discussion can be found in [100] and 
[182]. 

The most straightforward manner to assess the skill of a forecast is to make 
many forecasts and to count the number of successes. This approach requires 
each time a decision whether a forecast is correct or not. This is no problem for 
categorical forecasts. Categorial forecasts predict a finite number of discrete 
events. Examples are "above normal" or "below or equal to normal". Point 
forecasts, on the other hand, predict a specific number out of a continuum, 
say a 20 cm water level, but the probability that the water level eventually 
observed is exactly 20 cm, and not 20,003 cm, is nil. 

As discussed in Sect. 3.1.2, quantitative measures of skill regard the fore­
cast F and the corresponding observations, the predictand P, as the two 
components of a bivariate random variable. For categorical forecasts one can 
explicitly examine the joint probability distribution of the forecast F and the 
predictand P in a contingency table. For continuous forecasts the examination 
of the joint probability distribution becomes very elaborate and one extracts 
indices, called skill scores, that characterize the joint probability distribution 
and the performance of the forecast. The most common skill scores are the 
correlation skill score, the mean square error, and the Brier skill score. 

Example 5.1. As an illustration of a categorical forecast we consider the 
24-hour forecast of the temperature in Minneapolis (Minnesota) during win­
ter. The bivariate random variable (forecast temperature, observed tempera­
ture) are binned into boxes of 1 F x 1 F in order to transform the continuous 
forecast into a categorical forecast. The top panel of Fig. 5.15 shows the rel­
ative number of entries for these boxes. "Correct" or "near-correct" forecasts 
are indicated by open circles for better identification. This figure represents 
the joint probability (relative frequency) distribution of the bivariate random 
variable (F,P). The highest relative frequencies correspond mostly to correct 
forecasts, but for forecasts F :::; 28°F the predictands tend to be systematically 
lower than the forecast by a few degrees. 

The conditional distribution of the predictand given the forecast is shown 
in the bottom panel of Fig. 5.15 where the 103, 253, 503, 753, and 903 
quantiles of the observations are plotted against the forecast temperature. 
The forecast is conditionally unbiased if the solid curve, representing the con­
ditional 503 quantile, lies on the diagonal. This is not the case. In particular, 
the mean observed temperature is about 3°F lower when temperatures below 
20°F are forecast. When temperatures below 12°F are forecast, about 753 of 
the observations are actually lower than the forecast. 

The conditional standard deviations of the forecast errors are of the order 
of 5°F, and forecast errors larger than 20°F never occur. Very little can be 
learned about the skill of forecasts below 8°F and above 48°F because of poor 
sampling. 
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Fig. 5.15. Top: Estimated joint distribution of forecasts and predictands for a 
24-hour temperature forecast in Minneapolis during winter. Temperature is given in 
Fahrenheit. All data are collected into small bins. Cases with correct forecasts are 
indicated by open circles to facilitate identification. Bottom: Quantiles of the distri­
bution of the predictand conditional on the forecast. The number of the forecasts is 
also shown so that the credibility of the conditional quantiles can be assessed. From 
Murphy et al. [121] 
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In the above example we have considered a skill of a forecast scheme with­
out reference to other schemes. Thus we learn something about the scheme, 
but we do not learn if it is worth the effort, or if a similar forecast skill could 
be obtained by a simpler scheme. Such a reference scheme is often called a 
strawman scheme. The next example demonstrates this concept. 

Example 5.2. As an example of a continuous forecast we consider the Brier 
skill score (C.35) for a number of ENSO forecasts. The Brier skill score com­
pares the performance of the forecast F relative to a reference forecast R. A 
Brier skill score larger than zero indicates that the forecast is better than the 
reference. A Brier skill score smaller than zero indicates the opposite. In many 
cases, the reference forecast R is simply persistence. The forecast scheme is 
required to "beat" persistence, in order to qualify as a useful scheme. However, 
in some cases more complex reference forecasts are in use. Landsea and Knaff 
[94] compared a series of dynamical ENSO-forecast models against their own 
much simpler empirical scheme ENSO-CLIPPER. The performance of their 
own model during the strong 1997 /98 El Nino-event is displayed in the inset 
of Fig. 5.16. The Brier skill scores of various other dynamical ENSO forecast 
models are shown in the main figure. Their own "strawman" model performs 
rather well. It is therefore not surprising to see that the Brier skill scores of 
the other models are mostly below zero, indicating that they do not do better 
than the reference model. The COLA model (filled circles) reaches a slightly 
positive skill for a lead time of three seasons. The NCEP model (stars) re­
mains just below zero within the considered lead time of two seasons. In spite 
of public announcements "Models win big in forecasting El Nino" in Science 
1998, dynamical models still have to make headway to outcompete economi­
cally less demanding empirical models [94]. Progress should be expected from 
improved data assimilation schemes, which will help the dynamical models to 
better capture the initial evolution of ENSO. 

Many applications do not give single forecast numbers, such as the tem­
perature in Minneapolis on a certain day or the Nino-3 index for a certain 
month, but spatial distributions, such as weather maps or distributions of sea 
surface temperature anomalies in the Tropical Pacific. For assessing the qual­
ity of these forecasts, one does not need many realizations or samples but can 
instead use area averages. Examples are the root mean square error between 
the forecasted and observed fields or the area averaged correlation between 
the two fields. Usually, anomalies are considered and the correlation becomes 
the anomaly correlation coefficient. When forecasts are prepared for extended 
times, then time series of the root mean square error or the anomaly corre­
lation coefficient may be derived, and episodes with better and worse perfor­
mance of the forecast scheme may be identified. Such root mean square errors 
and anomaly correlation coefficients were given in Fig. 5.6 which demonstrated 
the improvement of the skill of weather forecasting. 

Even if dynamical forecast models have skill, they will in most cases suf­
fer from some systematic errors. The forecasts may be biased so that the 
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Fig. 5.16. Brier skill score of various forecasts of an Nino-index in the Tropical 
Pacific, using the CLIPPER forecast shown in the inset as a strawman. Forecasts 
with scores above zero are considered as more skillful than the strawman. From 
Landsea and Knaff [94] 

predictand is systematically under- or overpredicted. Also the variance of the 
forecast may be systematically larger or smaller than the observation. In these 
cases it is common practice to apply a simple correction, namely to subtract 
the bias and to rescale the forecast . 

5.1.6 Post-processing Forecasts 

Forecast models often have difficult ies in accurately computing local values, 
especially if these values are affected by details of t he local physiography (coast 
lines, valleys, forests). Also, users often ask for variables, such as sunshine 
hours, that are not computed by NWP models. In these cases, a method 
called "Model Output Statistics" (MOS) is applied. MOS is so widely used 
that it is referenced in the Encyclopredia Brittanica: 

Another technique for objective short-range forecasting is called MOS 
(for Model Output Statistics) . Conceived by Harry R. Glahn and D.A. 
Lowry of t he U.S. National Weather Service, this method involves the 
use of data relating to past weather phenomena and developments to 
extrapolate the values of certain weather elements, usual forecasts for 
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a specific location and time period. It overcomes the weaknesses of nu­
merical models by developing statistical relations between model fore­
casts and observed weather. These relations are then used to translate 
the model forecasts directly to specific weather forecasts. For example, 
a numerical model might not predict the occurrence of surface winds 
at all, and whatever winds it did predict might always be too strong. 
MOS relations can automatically correct for errors in wind speed and 
produce quite accurate forecasts of wind occurrence at a specific point, 
such as Heathrow Airport near London. As long as numerical weather 
prediction models are imperfect, there may be many uses for the MOS 
technique. 

In most cases, the MOS model is formulated as a multiple regression problem 
[48], [85]: 

(5.1) 
k 

with a predictand w, predictors 'l/Jk and an unexplained part 8. The predictors 
'l/Jk in (5.1) are variables forecasted by the numerical model, such as geopo­
tential height and humidity. The predictand w is the desired meteorological 
variable, like sunshine hours recorded at a specific location. Thus, (5.1) com­
bines simulated 'l/Jk values with observed w values. It is a special case of an 
observation equation as introduced in Sect. 3.2. The regression coefficients ak 

are fitted to a large ensemble of simultaneous w and 'l/Jk values. Then, given a 
NWP forecast with 'l/Jk, the best forecast for the local value w is 

(5.2) 

A distinct disadvantage of the MOS regression model (5.1) is its dependency 
on the specific model version. When the model is changed, and this happens 
regularly in the routine of weather services, then the regression coefficients ak 

need to be fitted anew. 
An example of the MOS methodology is the prediction of the minimum 

and maximum temperatures and the snow amounts at the Alta Guard Station 
in Utah, an observing post operated by the US Forest Service and the Utah 
Department of Transportation at an altitude of 8730 ft (Gibson, pers. comm.). 
These data are supposed to help avalanche forecasting. Here we will only 
consider the minimum and maximum temperature. 

Data recorded regularly in the winter time from January 1992 until De­
cember 1996 were used to fit multiple regression equations of the type (5.1) to 
predictor variables forecasted routinely by the "Nested Grid Model" (NGM) 
of the National Center for Environmental Prediction (NCEP). The NGM pre­
dicts geopotential height, potential temperature, zonal and meridional wind 
components, relative humidity at all levels and grid points of the NGM, and 
in addition mean sea level pressure, the 1000-850 hPa thickness and the 850-
500 hPa temperature difference. These variables are forecasted by NGM for 
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Fig. 5.17. Scatter plot of the 12 hour observed and MOS predicted minimum tem­
perature at Alta Guard Station, Utah in Fahrenheit. The predictions represent 86% 
of the variance of the local observations. Chris Gibson, National Weather Service 

6, 12, 18 etc. hours in advance. When the predictand w is the "minimum 
temperature 12 hours in advance", then the variables "6 hour forecast of 
1000- 500 hPa thickness", "6 hour forecast of relative humidity at 700 hPa", 
"12 hour forecast of 750 hPa temperature" and "6 hour forecast of zonal wind 
at 500 hPa" are found to be the most powerful set of predictors 'l/Jk · These 
predictors describe 86% of the variance of the minimum temperature at Alta 
Guard Station. The performance of this fit is displayed in Fig. 5.17 as a scatter 
plot. 

Using independent recorded data from the winter 1998, the skill of the 
MOS forecast was compared with the simple persistence forecast. The skill 
is measured by the mean absolute error S = ~ L:j lfj - Jji, where f is the 

local observations and J the MOS forecast at the n winter days indexed by j. 
The result is summarized in Fig. 5.18. It shows the impressive improvement 
of MOS over persistence. For the 12 hour minimum temperature S = 3.02 F 
for MOS, but S = 5.55 F for persistence. 

Other empirical a posteriori processing schemes are in use as well. The 
MOS equation (5.1) may be replaced by a nonlinear scheme, as for instance 
a neural net formulation, as long as enough data are available to train the 
net. Another frequent approach is "downscaling" which purports to derive 
dynamically consistent local details from simulation runs with climate models. 
An empirical model is constructed that relates observed large-scale fields to 
the observed local variables of interest. The empirical model is then applied 
to the output of a climate model. Downscaling presumes that the regional 
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Fig. 5.18. Mean absolute errors of the MOS forecast and of the persistence forecast 
for minimum (MINT) and maximum (MAXT) temperature 12 hours (F12) , 24 hours 
(F24) etc. in advance. Units are Fahrenheit. Chris Gibson, National Weather Service 

climate results from the interaction of large-scale climate features (such as 
the intensity and location of the jet-stream) with the regional physiographic 
details (such as the topography and land- sea distribution). Details can be 
found in [174]. Downscaling is widely used, in particular, when regional and 
local details of climate change scenarios are sought. 

5.2 Data Analysis 

The seemingly simple task of describing the present, and possibly recent past, 
state of the environment is far from trivial. There is a series of problems. One 
challenge is to make reliable, reproducible measurements, for instance of the 
concentration of a substance, the abundance of a species, the transport of 
sediment or the precipitation over the ocean. This problem is not considered 
here. A second problem is that the environment is neither uniform nor homo­
geneous but subject to variations on all time and space scales. The relevant 
scales of atmospheric, oceanic and coastal modes of motion were sketched in 
Fig. 4. 7 and Fig. 4.8. Thus, any point observation is only representative for a 
short time interval and a small volume. To obtain complete fields these point 
observations have to be interpolated. Dynamical models can increase the in­
formation content of such interpolated fields by making them dynamically 
consistent. The method of combining (limited) observations and (dynamical) 
models, for whatever purpose, is called data assimilation. The data are as­
similated into the models. When the purpose is a dynamically consistent field 
estimat e the method is called data analysis by meteorologists. Data analysis 
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is also applied to satellite data, which cover the ocean surface, to infer infor­
mation about the state of the ocean below the surface. In the following, we 
present some examples of such model-supported "analyses" and discuss their 
potentials and limitations. The general approach has already been sketched in 
Sect. 3.2. Technical aspects of data assimilation are described in Appendix D. 

5.2.1 Global Reanalyses 

The state of the atmosphere cannot be observed in its entirety. The various 
land-, ship-, aircraft- and satellite-based observing systems provide point ob­
servations and vertical profiles irregularly spaced in the atmosphere, together 
with distributions on the land and ocean surfaces. These data are used by op­
erational weather centers to construct, or "analyze", continuous distributions 
of atmospheric variables. Such "analyses" are our best guess of the atmo­
spheric state and deviate from the true, unknown state to some extent. The 
large scales are better described, simply because they are better sampled. De­
tails on scales of a few tens of kilometers and less are insufficiently sampled 
and subject to significant uncertainty. 

In the beginning of modern weather forecasting, the analyses were pre­
pared by hand. A major first insight of meteorology was the finding by the 
Bergen school at about 1920 that the appearance of the sky contains informa­
tion about the state of the atmosphere that should be incorporated into the 
analysis and weather forecasting process [41]. The advent of satellites in the 
1970s, with their quasi-complete mapping of horizontal distributions, caused 
another major improvement. The final breakthrough was the systematic in­
terpretation of observational data aided by quasi-realistic dynamical models. 

In the 1990s, the National Center for Environmental Prediction (NCEP) in 
cooperation with the National Center for Atmospheric Research (NCAR) and 
the European Center for Medium Range Forecasts (ECMWF) made signifi­
cant separate efforts to analyze meteorological data of the past with modern 
modeling and data assimilation methods. The results were the so-called re­
analyses. These re-analyses provide complete 4-dimensional data sets. These 
data sets are not completely homogenous. They are free of changes in the 
weather statistics due to changing analysis tools but not to changing observa­
tional practices and changing density of observations (such as the introduction 
of satellites in the 1970s; see Fig. 5.19). These data sets have become widely 
used both by the atmospheric science community as well as in climate moni­
toring studies. 

In the following the NCEP /NCAR project will be discussed, following the 
presentations by Kalnay et al. [75] and Kistler et al. [84]. This project resulted 
in a 51-year (1948-1998) record of global analyses of atmospheric fields. It first 
collected and quality controlled data from weather stations, ships, rawinson­
des, pibals14, aircrafts, satellites and other observational platforms since 1948. 
Specifically it used: 

14 Pibal = pilot balloons= balloons tracked visually or with radar. 
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Fig. 5.19. Number of all observations per 2.5° latitude and per months from 1946 
until 1998. 12-months running mean [84] 

• upper air rawinsonde observations of temperature, horizontal wind and 
specific humidity, 

• operational vertical temperature soundings over the ocean from polar or-
biting satellites, 

• temperature soundings over land above 100 hPa, 
• cloud tracked winds from geostationary satellites, 
• aircraft observations of wind and temperature, 
• land surface reports of surface pressure, and 
• oceanic reports of surface pressure, temperature, horizontal wind and spe-

cific humidity. 

The number of these data has considerably increased since the late 1940s, as 
is displayed in Fig. 5.19. A significant increase took place during the Interna­
tional Geophysical Year in 1957, when the modern rawinsonde network was 
established. Since 1979, satellite data were routinely included. Clearly, the 
quality of the re-analyses in the early years cannot be as good as in the later 
years. Especially the re-analyses of the earliest decade (1948- 1957), when ob-
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servations were few and primarily in the Northern Hemisphere, are less reliable 
than those of the last four decades. 

As the second step all these data were assimilated into a state-of-the-art 
NCEP global spectral weather prediction model. The forecasting model is 
kept unchanged ("frozen"). The system continues to be used with current 
data, so that re-analyses are available from 1948 to the present. The result 
of the NCEP project is a relatively homogenous complete history of global 
weather maps. The maps have a horizontal gridding of about 210 km (T62 
spectral truncation) and 19 pressure-levels in the vertical. The assimilation 
method used the forecast model as a weak constraint15 (see Appendix D). The 
resulting maps are thus not a solution of the model. Especially, they do not 
necessarily conserve quantities like mass, momentum and energy. This has, 
however, turned out not to be a severe problem. 

The re-analyses generate many variables. Some of these depend strongly 
on the observational data, while others depend more strongly on the forecast 
model and its parameters. To discriminate among these different cases, four 
categories ("flags") "A" to "D" were introduced: 

A: Analysis is based strongly on observed data. 
B: Analysis is partially based on observed data but significantly influenced 

by the model characteristics. 
C: Analysis is based on model alone. 
D: Analysis represents climatologies and is fixed and model-independent. 

At 17 pressure levels, (1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 
150, 100, 70, 50, 30, 20, 10 hPa) the following variables are given on a 2.5° 
latitude-longitude grid (144 x 73 grid points) every 6 hours: 

A: Geopotential height (gpm), u-wind (m/s), v-wind (m/s), temperature (K), 
absolute vorticity (1/s) 

B: Pressure vertical velocity (Pa/s), relative humidity (%) 

As two-dimensional grids, the following long list of variables have been 
stored every 6 hours: 

A: Temperature at the tropopause (K), pressure at the tropopause (Pa), 
u-wind at the tropopause (m/s), v-wind at the tropopause (m/s), vertical 
speed shear at the tropopause (1/s), temperature at the maximum wind level 
(K), pressure at the maximum wind level (Pa), u-wind at the maximum wind 
level (m/s), v-wind at the maximum wind level (m/s), pressure reduced to 
MSL (Pa), pressure at the surface (Pa). 

B: Precipitable water (kg/m2 ), relative humidity of the total atmospheric 
column (%), relative humidity in 3 sigma layers: 0.44-0.72, 0.72-0.94, 0.44-
1.0 (%), potential temperature at the lowest sigma level (K), temperature 
at the lowest sigma level (K), pressure vertical velocity at the lowest sigma 

15 The model is considered imperfect, and its predictions are deemed uncertain. 
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level (Pa/s), relative humidity at the lowest sigma level (%), u-wind at the 
lowest sigma level (m/s), v-wind at the lowest sigma level (m/s), maximum 
temperature at 2 m (K), minimum temperature at 2 m (K), specific humidity 
at 2m (kg/kg), temperature at 2m (K), zonal component of momentum flux 
(N/m2 ), u-wind at lOm (m/s), v-wind at lOm (m/s). 

C: Cloud forcing net longwave flux at the top of atmosphere (W /m2 ), cloud 
forcing net longwave flux at the surface (W /m2 ), cloud forcing net longwave 
flux for total atmospheric column (W /m2), cloud forcing net solar flux at the 
top of the atmosphere (W /m2 ), cloud forcing net solar flux at the surface 
(W /m2 ), cloud forcing net solar flux for total atmospheric column (W /m2 ), 

convective precipitation rate (kg/m2 /s), clear sky downward longwave flux at 
the surface (W /m2 ), clear sky downward solar flux at the surface (W /m2 ), 

clear sky upward longwave flux at the top of the atmosphere (W /m2), clear 
sky upward solar flux at the top of atmosphere (W /m2 ), clear sky upward solar 
flux at the surface (W/m2 ), cloud work function (J/Kg), downward longwave 
radiation flux at the surface (W /m2), downward solar radiation flux at the 
top of the atmosphere (W /m2 ), downward solar radiation flux at the surface 
(W /m2 ), ground heat flux (W /m2 ), latent heat flux (W /m2 ), near IR beam 
downward solar flux at the surface (W /m2 ), near IR diffuse downward solar 
flux at the surface (W /m2 ), potential evaporation rate (W /m2 ), precipitation 
rate (kg/m2 /s), pressure at high cloud top (Pa), pressure at high cloud base 
(Pa), pressure at middle cloud top (Pa), pressure at middle cloud base (Pa), 
pressure at low cloud top (Pa), pressure at low cloud base (Pa), pressure at the 
surface (Pa), run off (kg/m2 per 6 hour interval), nearby model level of high 
cloud top (integer), nearby model level of high cloud base (integer), nearby 
model level of middle cloud top (integer), nearby model level of middle cloud 
base (integer), nearby model level of low cloud top (integer), nearby model 
level of low cloud base (integer), sensible heat flux (W /m2 ), volumetric soil 
moisture content (fraction) (2 layers), total cloud cover of high cloud layer 
(%), total cloud cover of middle cloud layer (%), total cloud cover of low 
cloud layer (%), temperature of the soil layer (3 layers) (K), temperature of 
high cloud top (K), temperature of low cloud top (K), temperature of middle 
cloud top (K), zonal gravity wave stress (N/m2 ), upward longwave radiation 
flux at the top of the atmosphere (W /m2), upward longwave radiation flux 
at the surface (W /m2 ), upward solar radiation flux at the top of the atmo­
sphere (W /m2 ), upward solar radiation flux at the surface (W /m2 ), meridional 
gravity wave stress (N/m2), visible beam downward solar flux at the surface 
(W /m2), visible diffuse downward solar flux at the surface (W /m2), merid­
ional component of momentum flux (N/m2 ), water equivalent of accumulated 
snow depth (kg/m2). 

D: Ice concentration (ice = 1; no ice = 0), land-sea mask (1 = land; 
0 = sea), surface roughness (m). 

This complete data set can potentially be used for all kinds of studies, such 
as the determination of 50-year trends, of the skill of a forecast scheme and of 
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operationally "unobservable" quantities. Major questions are, of course, how 
much information has been gained by the re-analyses and how suitable the 
re-analyses are for such studies. These issues are addressed next: 

Trends 

Meaningful trends cannot be determined from the re-analysis data sets, be­
cause the density of the observations is inhomogeneous in time (cf. Fig. 5.19). 
For the same reason, low-frequency variations cannot be determined. 

Forecast performance 

The information content of the re-analysis can be assessed by the observational 
increments. These are the differences between a forecast initialized with the 
re-analysis and the re-analysis at the time of the forecast. To facilitate such an 
assessment the NCEP project has also produced 5-day "re-forecasts" through­
out the re-analysis period. In the following three examples, the "observed" 
state is not really observed but a re-analysis itself. 

Figure 5.20 shows, as a skill score, the anomaly correlation coefficient be­
tween the 5-day NCEP re-forecasts and the re-analyses at the time of the fore­
cast, separately for the Northern and Southern Hemisphere. The first thing 
to notice is that the forecast skill is not constant, but increases steadily. This 
indicates that the quality, or the degree of realism, of the re-analysis has 
steadily improved due to better and more observations. Not surprisingly, the 
re-analysis is much better on the Northern Hemisphere, where many more ob­
servations are available, than on the much less sampled Southern Hemisphere. 
Note that the high skill scores at the beginning of the analysis period, prior 
to the International Geophysical Year 1957, are artificial. They are due to 
the fact that hardly any data were available on the Southern Hemisphere at 
that time with the result that the analyses, to which the forecasts were com­
pared, were essentially the forecasts themselves. Another interesting detail is 
the fact that prior to about 1990 the forecasts initialized with the re-analyses 
performed better than the forecasts initialized with then state-of-the-art anal­
ysis systems. 

A second example is the forecast of the catastrophic storm in Jan­
uary /February 1953 which caused great damage in the Netherlands. Fig­
ure 5.21 shows a four-day forecast of the pressure distribution on 1 February 
1953, initialized with the re-analysis of January 28. The forecast compares 
well with both the re-analysis of that day and the analysis prepared manually 
by contemporary Dutch meteorologists. At the time, the event could not have 
been predicted with a reasonable advance warning time, since neither realistic 
dynamical forecast models nor data assimilation methods were available; the 
re-forecast prepared by NCEP demonstrates though that the data available in 
1953 were sufficient for a good forecast. Obviously, atmospheric sciences have 
made significant progress since the 1950s, not only in terms of understanding 
but also in terms of practical applications, such as forecasting and warning. 
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Fig. 5.20. Annually averaged anomaly correlation coefficients between the 5-day 
NCEP re-forecasts and the re-analysis at the time of the forecast, for the North­
ern (black) and Southern Hemispheres (grey). The dashed curves are the anomaly 
correlation coefficients of the operational forecasts since the 1980s. From Kistler et 
al. [84] 

Our third example uses the re-forecasts to assess the relative role of ob­
servational systems. Figure 5.22 displays the time mean anomaly correlation 
coefficients for the year 1979, separately in the Northern and Southern Hemi­
sphere. The forecasts were initialized once with re-analysis states that included 
satellite data, and once with re-analysis states that excluded satellite data. 
"Reality" for both forecasts was the re-analysis with satellite data. On the 
Northern Hemisphere, the inclusion of satellite data had little effect. On the 
Southern Hemisphere, on the other hand, the incorporation of satellite infor­
mation into the initial fields greatly improved the performance of the forecast. 
Obviously, Southern Hemisphere analyses from the pre-satellite period should 
be considered with care. 

"Unobservable" quantities 

The "C" variables of the NCEP re-analysis are completely determined by 
the model. They contain many near-surface variables such as precipitation 
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96 hour SLP forecast for Feb 01 03Z 1953 

SLP digitized handanalysis for Feb 01 03Z 1953 

\ 

Fig. 5.21. Forecast and analysis of the storm from January 31 to February 2, 
1953, which caused catastrophic flooding in the Netherlands. The top shows a 4-day 
forecast for 03Z, February 1, 1953, initialized with the re-analysis four days earlier. 
The bottom shows a digitized version of a contemporary manually prepared analysis 
for DOZ, February 1, 1953 (van den Dool, pers. comm.) . The contour interval is 5 hPa 
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Fig. 5.22. Mean anomaly correlation coefficients between re-forecasts and re­
analyses in 1979 for the Northern and Southern Hemisphere. The re-forecasts were 
initialized either with analyses that included satellite data (dots) or with analy­
ses that excluded satellite data (crosses). The re-analyses that these forecasts are 
compared with include satellite observations [84] 

and surface fluxes16 . Comparisons of such "C" variables with independent 
near-surface in-situ data will thus provide powerful tests of the realism of 
the re-analyses. One such independent data set is the Comprehensive Ocean 
Atmosphere Data Set (COADS) of in-situ ship observations. 

Figure 5.23 displays the correlation of evaporation time series from COADS 
with those of the re-analyses. Note that the figure fails to indicate that CO ADS 
does not provide a reasonable data coverage south of about 30°8, in the central 
Indian Ocean and in the central and eastern Southern Hemisphere subtropical 
Pacific. In the remaining areas COADS variations of evaporation are recovered 
to a large extent by the operational NCEP /NCAR re-analyses. Low correla­
tions might, of course, also be due to the limitations of the COADS data 
set. It is reassuring that the largest correlations are found in areas with good 
shipping coverage in the past 50 years, like the Northern North Atlantic. 

Table 5.2 also supports the notion that the "C" variables of the re-analyses 
contain useful information about the real world. It lists time mean averages 
of the heat flux over the ocean surface from the NCEP /NCAR re-analyses, 
the ECMWF re-analyses, COADS and satellites (from [84]). 

On the other hand, one must not forget that the numbers in the re-analyses 
are educated guesses. They will in many cases deviate systematically from real 
conditions. As an example consider Fig. 5.24. It shows a time series of daily 

16 The re-analyses are mostly determined by upper air observations and little by 
surface observations. This is partly due to the fact that near-surface physiographic 
details (such as the topography) are insufficiently represented and partly due to 
the fact that the observed surface variables have little dynamical impact on the 
upper-air state. 
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Fig. 5.23. Correlation of evaporation time series over the ocean, derived from the 
COADS in-situ ship records, with estimates from the NCEP /NCAR re-analyses. 
Note (i) that the COADS data did not enter the re-analysis process, and (ii) that 
NCEP considers evaporation a C-variable, i.e., a variable that is not directly affected 
by the assimilation process, but mostly determined by the forecast model [84] 

Table 5.2. Time mean averages of the heat flux over the ocean surface from different 
re-analyses and observations 

heat flux 
(W /m2 ) CO ADS ECMWF NCEP satellite 
sensible -10 -9.8 -10.9 

latent -88 -103 -93 
net shortwave 170 160 166 173 
net longwave -49 -50.6 -56.4 -41.9 

precipitation in East Asia derived from the re-analysis and from an average 
across many rain gauges in that region during the summer monsoon 1991. 
The re-analyses exhibit too much rainfall over the whole monsoon season and 
too few days without rainfall. 

Overall, a comparison of NCEP "C" variables with independent obser­
vations implies that they generally contain considerable useful information, 
especially for seasonal and interannual variability [84]. 
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Fig. 5.24. Time series of NCEP /NCAR analyzed and locally recorded area-averaged 
precipitation in an area of East Asia (25°-30°N, 115°-120°E) from May to July 1991. 
Units are in mm/day. Courtesy: Yuqing Wang 

5.2.2 Reconstruction of Regional Weather 

The global analyses, discussed in the previous Sect. 5.2.1, can only reproduce 
features that are well resolved by the forecast model. The NCEP re-analyses 
have a horizontal grid spacing of 2.5°; the T106 ERA re-analyses, prepared 
by the European Center for Medium Range Forecasts, have a similar spacing. 
These re-analyses are found to be inadequate to represent, say, the surface 
winds over the Adriatic Sea. They represent the entire Adriatic Sea by only 
about 10 grid points and are unable to resolve the characteristic deformations 
of the wind flow due to the complex topography surrounding the Adriatic Sea 
[99]. Such lack of detail in the global re-analyses remains a major problem for 
regional applications. One way out is to use empirical downscaling schemes, as 
discussed in Sect. 5.1.6, to derive local details from global re-analyses. High­
resolution regional models and regional weather observations provide another 
more substantive approach. They can be combined to give high-resolution 
regional analyses, which are useful for many applications. This program has 
not been carried out in a complete and systematic manner yet and there 
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is no standardized set of regional re-analyses. The regional models require 
lateral boundary conditions. Here we first demonstrate that useful results are 
obtained when these are prescribed from large-scale models or analyses. Then 
we consider an effort to reconstruct the European weather at high resolution, 
using a regional model and NCEP re-analyses. 

Various regional atmospheric models are in use to simulate regional atmo­
spheric dynamics. An overview of these models can be found in [46]. These 
regional models are usually forced by time-varying fields, from a low-resolution 
model or from re-analyses, along lateral sponge layers17 . Regional models 
forced in this way are in fact capable of reproducing small-scale details. This 
is demonstrated by the Big Brother Experiment (BBE) by Denis et al. [26]. 
They used a regional model with a grid spacing of about 50 km covering a 
large part of North America and integrated it over some time. This is the 
"Big Brother" (BB). Next, they coarsened the output of that run to a reso­
lution of 300 km. These coarsened data were used to force the same regional 
model with the same grid spacing of 50 km in a smaller region embedded in 
the area covered by BB. This is the "Little Brother" (LB). The question is 
whether LB will reproduce the small scale features simulated by BB, even 
though LB is provided only with information about the coarsened state of BB 
in a narrow sponge zone of the smaller area. The answer is definitely positive, 
as is demonstrated in Fig. 5.25 which shows the relative humidity at 850 hPa 
after 4 days of integration in BB and LB [26]. 

The European weather was reconstructed at high resolution by the fol­
lowing procedure [36]. The regional climate model REMO [68] was integrated 
for 40 years, being forced by 6-hourly global NCEP re-analyses. REMO is 
a grid point model that integrates the discretized primitive equations in a 
terrain-following hybrid coordinate system. The finite differencing scheme is 
energy preserving. The prognostic variables are surface pressure, horizontal 
wind components, temperature, specific humidity and cloud water. A soil 
model is added to account for soil temperature and water content. The inte-

17 The concept of sponge layers was introduced by Davies [23]. The phase speed of 
waves on a grid depends on the grid spacing (and on the discretization scheme; see 
Appendix B.2.3). Thus, the phase speed in the interior of a high-resolution model 
does not match its low-resolution prescription at the boundary. The boundary 
value problem becomes mathematically ill-posed and problems may emerge in 
the simulation. 

Practice has, however, shown that the problem can be held at check by forcing 
the interior solution in a boundary layer, called the sponge layer, to remain close 
to the prescribed boundary values. The "interior" solution of the model, denoted 
lfr, is restored, or "nudged", to the prescribed boundary value, denoted lfr*, by 
adding a restoring or nudging term 7 · (lfr* - lfr) to the equations. The "nudging 
coefficient" 7 is largest at the lateral boundary and decreases towards the interior 
of the integration domain. When lfr > lfr*, the restoring terms cause a decrease in 
lfr. When lfr < lfr* it induces an increase of lfr. The nudging coefficient has units 
of 1/time. 
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Fig. 5.25. The Big Brother Experiment of Denis et al. [26]. Relative humidity at 
850 hPa after 4 days of integration. The full area shown is the integration domain 
of the "Big Brother" (BB) and t he box in the interior the domain of the "Little 
Brother" (LB). Left: High-resolution representation of BB-simulation. Right: Outside 
of the box: coarsened BB-simulation; inside box: LB simulation 

gration area, shown in Fig. 5.26, has a horizontal grid spacing of about 0.5° 
resulting in 91 x 81 grid points. A time step of 5 minutes is adopted. 

In addition to the forcing by the NCEP re-analyses at the lateral bound­
aries and in the sponge layers, a spectral nudging technique [179] is applied to 
the entire model domain. It forces t he model to adopt the large-scale features 
provided by the NCEP re-analyses, while regional features may evolve inde­
pendently from this forcing. The technique adds nudging terms in the spectral 
domain, with maximum strengt hs at small wavenumbers (large wavelengths) 
and high vertical levels. T he details of this procedure are as follows: 

First the relevant REMO variables are expanded in a Fourier series 

lf/(B,cp,t) = (5.3) 
j=-Jm,k=-Km 

with zonal coordinates B, zonal wave-numbers j, zonal extension Le of the 
model area, meridional coordinates cp, meridional wave-numbers k, and merid­
ional extension L'P . The number of zonal and meridional wave-numbers is Jm 
and Km and the expansion coefficients are a.'J:k· The index m stands for model. 
A similar expansion is done for t he NCEP re-analyses, which are given on a 
coarser grid. The number of Fourier coefficients of this expansion is Ja < Jm 
and Ka < Km and the coefficients are a.J,k· T he index a stands for analysis. 
The confidence in the realism of the different scales of the re-analysis depends 
on the wavenumbers j and k and is denoted by T/j,k · 
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Fig. 5.26. The model area and the REMO grid. Solid lines demarcate 100 (10 x 10) 
grid boxes. Because of details of the gridding, the straight lines are only approxi­
mations 

The REMO model is then forced to follow the state given by the re-analysis 
conditional upon this confidence. This is achieved by adding a "nudging term" 
to the equation for !Ji in the spectral domain 

n · (aa (t) _am (t))eijO/ Lo eik<p/ L"' 
·13,k J,k J,k (5.4) 

The higher the confidence is in the global analyses, the larger are the values 
of T/j ,k, and the more efficient is the nudging term. 

This nudging procedure was applied to the zonal and meridional wind 
components only. The nudging coefficients were set to T/j,k = ry0 for j = 0 ... 3 
and k = 0 ... 5 and to T/j,k = 0 otherwise. Wavelengths of about 15° and larger 
(corresponding to 6 and more NCEP grid points) are considered to be reliably 
analyzed by NCEP. The nudging coefficient ry0 depends on height, so that a 
deviation from the NCEP re-analyses decays in about 60 days at 850 hPa, 
in about 1 day at 500 hPa, and in about 3 hours at the model's top level 
of 25 hPa. No nudging is applied below 850 hPa. This prescription allows the 
regional model to develop its own dynamics at the lower levels where regional 
geographical features are expected to be more important. 

The performance of the REMO model nudged to the NCEP re-analyses 
in the above way is illustrated in Fig. 5.27. The top panel shows the modeled 
and observed wind speeds at 10-m height for the winter 1995 at a coastal 
station at the German Bight. Most characteristics of the fluctuations are well 
reproduced. Some of the larger peaks, for instance those of December 18 or 
January 28, are not reproduced by the model run. The lower panel of Fig. 5.27 
additionally shows monthly biases and root mean square errors of the modeled 
wind speeds with respect to the observed wind speeds for the years 1958 to 
1996. The bias shows a distinct annual cycle and a slight tendency toward 
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Fig. 5.27. Performance of the REMO model. Top: Modeled (dashed line) and ob­
served (grey line) wind speed (m/s) at 10-m height at a coastal station at the German 
Bight for the winter 1995. Bottom: Monthly root mean square errors (grey curve; 
top) and biases (black curve; bottom) of the modeled wind speed at 10-m height for 
the period 1958- 1996 [36] (© (2001) American Geophysical Union. Reproduced by 
permission of American Geophysical Union) 
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smaller values at the end of the simulation period. Overall, the true wind 
conditions are reproduced by the model with a typical bias ranging from 
-1.5 to + 1 m/s and an average root-mean-square error of 3.5 m/s. At offshore 
stations, the bias and rms errors are generally much smaller than those at the 
coastal stations18 . 

Regional models produce indeed regional details. This is confirmed by 
Table 5.3. It compares the variances in the zonal and meridional wind com­
ponents at 850 hPa at large scales, which are well resolved by the NCEP 
re-analysis and thus sustained by the spectral nudging, with those at small 
scales, for which the regional model is supposed to add detail (from [181]). 

Table 5.3. Variances of the zonal and meridional wind components at 850 hPa 

units NCEP REMO 
m2s-2 analyses nudging 

zonal wind 
large scale 10-2 1.6 1.6 

small scales 10-6 3.7 8.1 
meridional wind 

large scales 10-2 1.4 1.5 
small scales 10-6 2.1 8.5 

The variances at the large scales are comparable in the NCEP re-analyses 
and the REMO model, while the variances at the small scales, well resolved 
by REMO but less so by NCEP, are markedly larger in the regional model 
than in the global analyses. 

The temporally and spatially high-resolution data obtained from this at­
mospheric simulation have been used as input data for a number of applied 
projects. One such project is the reconstruction of waves and water levels in 
European coastal seas19 . Another project uses a particle transport model to 
examine lead transport and deposition during the last 40 years in Europe, 
and is discussed next. 

5.2.3 Transport and Deposition of Lead in Europe 

The following example treats the reconstruction of long-range transport and 
deposition of substances on the continental scale. It illustrates how empiri­
cal knowledge (here the daily sequence of weather events during the last 4 
decades and estimates of lead emissions from, mainly, traffic) and dynamical 

18 As outlined in Sect. 3.1 the comparison between grid-box values and local observa­
tions is fraught with an inherent inconsistency. This inconsistency is particularly 
marked when the local observations are strongly influenced by local specifics as 
in case of a coast. 

19 HIPOCAS, http://mar.ist.utl.pt/hipocas/ 
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knowledge (here the atmospheric transport and deposition mechanisms) may 
be combined to comprehensively describe environmental change and the effect 
of political measures. This case also serves as an example of how different data 
may help to validate simulations, and how simulations may be used to expand 
our knowledge in the case of insufficient observational data. 

After decades of regulating the emission of anthropogenic substances into 
the environment, a retrospective analysis of the effects of such regulations is 
informative. It allows to determine the actual costs and benefits of the regula­
tions. As an example we describe here the case of gasoline lead in Europe, an­
alyzed by von Storch et al. [175]. A regional climate model, NCEP re-analyses, 
spatially disaggregated lead emissions from road traffic and point sources, and 
various local data were combined to reconstruct the airborne pathways and 
depositions of gasoline lead in Europe since 1958. The approach succeeded 
in describing the time-variable, spatially disaggregated deposition of gasoline 
lead. 

It was discovered in the early 1920s that adding lead to fuel increases en­
gine performance by preventing self-ignition. Lead additives, such as tetraethyl 
lead and tetramethyl lead, were developed. Higher-compression engines were 
produced and the use of leaded gasoline increased enormously all over the 
world. In the 1960s, increased automobile traffic resulted in air pollution prob­
lems in high-income countries. The United States reacted in 1963 to this chal­
lenge and passed the "Clean Air Act Amendment". In Europe, abatement 
began in the 1970s. Figure 5.28 shows gasoline sales and lead emissions from 
1950 to 1992 in Germany. The gasoline sales increased substantially through­
out this period. The lead emissions increased concurrently until regulations 
were enacted in 1972 and 1976 that drastically reduced the amount of added 
lead. Emissions sharply decreased. In 1985 unleaded gasoline was introduced 
with the effect that lead emissions dropped even further in the following years. 
In 1985 the EU mandated its member states to offer unleaded gas after Oc­
tober 1989, and recommended a maximum lead content of 0.15gPb/l. 

Spatially disaggregated estimates of lead emissions, on a 50 by 50 km2 grid, 
were prepared for the years 1955, 1965, 1975, 1985, 1990 and 1995 [128] con­
sidering road traffic, metal manufacturing, stationary fuel combustion, waste 
disposal, cement production and other processes. The result is displayed in 
Fig. 5.29 for the years 1965, 1975, 1985 and 1995. The increase until 1975 
due to increasing traffic and high lead concentrations in gasoline as well as 
the decrease afterwards, reflecting the political measures, are clearly seen in 
Western and Central Europe. In Eastern Europe, however, little change can 
be detected. 

Atmospheric lead is bound to suspended matter and can be transported by 
wind over long distances. Thus, lead transport across Europe can be modeled 
with an atmospheric transport model. Lead is considered a passive atmo­
spheric tracer, which is removed from the air by dry and wet deposition. 

Lead concentrations and depositions over Europe were computed by a two­
dimensional Lagrangian model. It uses 6-hourly, high-resolution weather anal-
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Fig. 5.28. Annual gasoline sales and lead emissions in Germany. Volume of gasoline 
sold (millions of liters per year; solid) and of leaded gas (after 1985; grey-dashed); 
amount of lead added to the gasoline (in tons; dotted) . From Hagner [50] 

yses (Sect. 5.2.2) and the lead emission estimates of Pacyna and Pacyna [128] 
after suitable temporal interpolation. It is assumed that lead remains within 
the well-mixed planetary boundary layer, where it is horizontally advected by 
wind and deposited to the surface through precipitation and turbulent trans­
port. The high-resolution weather analyses were obtained by "regionalising" 
the NCEP re-analyses as described in the previous Sect. 5.2.2. The modeling 
resulted in a complete set of 6-hourly maps of lead concentrations in the plan­
etary boundary layer covering all of Europe. Annual mean concentrations are 
displayed in Fig. 5.30. Not surprisingly, the annual lead concentrations in Eu­
rope increased sharply until about 1975 and diminished substantially by 1985 
and 1995. Only local maxima in Southern England and the industrial areas 
of Belgium, Germany, Northern Italy, Ukraine and the Russian Federation 
remained. The simulated lead depositions (Fig. 5.31) show the same spatial 
and temporal patterns as the simulated lead concentrations. 

To validate the model results, they were compared with local measure­
ments of lead concentration in the air and of lead depositions. This approach 
is of limited value, since the observational records are fairly short and represent 
point observations. Nevertheless, the model output was found to be consistent 
with the limited empirical evidence about concentrations and depositions of 
lead in Europe. 

Therefore the model was used for further investigations. It was assumed 
that the model results describe realistically the lead transports and depo­
sitions in the years 1958 to 1995. The simulated data were then analyzed 
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Fig. 5.29. Estimates of European emissions of lead (in tons per pixel of 50 x 50km2 ) 

from road traffic and industrial processes for the years 1965, 1975, 1985 and 1995. 
From Pacyna and Pacyna [128] 
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Fig. 5.30. Simulated annual mean lead concentrations in the planetary boundary 
layer [175] 

to assess how much lead emitted in one country ends up being deposited 
in another country. The results indicate that most depositions in a country 
originate from its own emissions. Only smaller countries like Switzerland or 
the Netherlands have suffered substantial depositions from neighboring states: 
203 of the Swiss depositions come from France, and 213 of the Dutch depo­
sitions from Belgium. As a further example the model data show that 233 
of the total depositions over the Baltic Sea originate from Poland, 203 from 
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Fig. 5.31. Simulated annual mean lead depositions [175] 

Germany, 163 from Finland, 123 from Sweden, 93 from the Russian Feder­
ation, 53 from Denmark and 13 from Norway. All other countries contribute 
less than 13. Figure 5.32 shows the temporal evolution of the depositions. 
The simulated input into the Baltic Sea peaked in the mid 1970s, with 3500 
tons annually, and has since then declined to less than 500 tons in 1995. 



138 5 Modeling in Applied Environmental Sciences 

Fig. 5.32. Simulated input of lead into the Baltic Sea (line) and estimates based 
on comprehensive analyses of observational data [175] 

The simulated data compare well with a comprehensive analysis based upon 
observational evidence in the second half of the 1980s20 . 

The atmosphere (and the environment in general) will remain a dumping 
ground for various anthropogenic substances in the foreseeable future. Some 
of these substances will have negative impacts so that society will sooner 
or later begin to regulate the release of such substances. To do so, science 
has to provide society with tools to assess the situation in the past and the 
impacts of regulations. One such tool is a suitable model. Together with a 
detailed emission chronology and a regionalized history of weather events it 
can provide a detailed description of what has happened so far and what may 
happen as a consequence of future developments and regulations. 

5.2.4 Altimeter Data and the Tides 

Altimeter data from satellite missions are used for studies of the global ocean 
circulation and marine geophysics. A prominent example is the Topex/Posei­
don mission. Its main purpose is to estimate the geostrophic surface currents 
from the low-frequency, non-tidal sea surface height field. The tides need to 
be removed for this purpose. However, the removal of the ocean tides, which 
are aliased in the raw data, is far from trivial. The tides are most accurately 

20 The effort to run the transport and deposition model was small compared to the 
effort to collect and analyze the measured data from the 1980s. The observational 
data are of course very important and needed to ensure the quality of the modeling 
effort. Models cannot replace monitoring efforts. But monitoring usually does not 
provide spatially and temporally complete descriptions. This requires models. 
Thus, the more successful monitoring systems combine observations and models. 
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determined by methods that combine tide gauge and altimeter data with a hy­
drodynamical tidal model. In this section we discuss such a data assimilation 
approach based on a paper by Egbert et al. [30]. 

1. Hydrodynamical calculation 

The hydrodynamical model is based on Laplace tidal equations. A zeroth order 
version of them is given by the momentum balance (4.12), the volume balance 
(4.8) and the boundary conditions (4.4) (see Sects. 4.1.2-4.1.3). The equations 
require the specification of the tidal potential, either calculated as a sum over 
the contributions from different tidal frequencies or calculated from the actual 
celestial positions of the moon and sun. Often forcing at only a single tidal 
frequency is considered. Laplace tidal equations are solved numerically, usually 
on a spatial grid and by time stepping. The result of such a hydrodynamic 
calculation of the tides is given in Fig. 5.33 for the M2 tide, the semi-diurnal 
tide with a period of 12 h and 25 min. The model integrates the full nonlinear 
Laplace tidal equations on a C-grid, forced at the M2 tidal frequency. The 
resulting time series at each grid point are harmonically analysed to give the 
amplitude and phase shown in the figure. 

When data are assimilated into such a tidal model one has to assign error 
statistics to the dynamical model. This requires considerable physical insight 
into the problem. There are first the errors associated with Laplace tidal 
equations. The volume balance equation (4.8) is a consequence of mass con­
servation for a Boussinesq fluid, which is an excellent approximation for the 
ocean. If discretization schemes are used that conserve volume then there is 
usually no or little error assigned to the volume balance. The same applies 
to the boundary condition (4.4) that there be no transports across coastlines. 
The situation is quite different for the momentum balance (4.12). Its form 
requires validity not only of the Boussinesq approximation but also of the 
shallow water approximation. It neglects the joint effect of baroclinicity and 
bottom relief that converts barotropic into baroclinic motion at sloping bot­
toms in a stratified ocean. The momentum balance also requires knowledge of 
the bottom topography H 0 , which is a problem in some parts of the world's 
oceans. It requires the astronomical forcing ~equ, which is known extremely 
accurately though this accuracy is degraded once fudge factors like a and 
{3 are introduced to account for earth and load tides and self-attraction, as 
in (4.12). Another large error is introduced by the friction term Fh which 
represents unresolved subgridscale processes. Additional errors are of course 
introduced once the equation is discretized in space and time. 

To assign a covariance matrix to all these errors does not only require 
estimates of error bars but also of correlations in space and among variables. 
There is no objective way to construct these covariance matrices. It is done 
subjectively by the user taking into account and trying to balance physical 
aspects, computational requirements and the purpose of the assimilation. 
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TPX05, PRIOR: M2 amplitude (m) and phase 
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Fig. 5.33. Amplitude and phase of Mz-tidal elevation as simulated by a hydrody­
namical tidal model without data assimilation. The elevation field was calculated 
by time-stepping the full nonlinear Laplace tidal equations on a C-grid with peri­
odic forcing for 60 days followed by harmonic analysis of the last 40 days. Spatial 
resolution was 1/4 degree. Courtesy of Gary Egbert 

2. Empirical calculations 

Next we discuss the data that go into the assimilation scheme. Until the 
advent of satellite altimetry, data for tidal modeling came primarily from 
coastal, pelagic (open sea) and island tide gauges. Time series from such tide 
gauges were typically analyzed by assuming them to be of the harmonic form 

J 

~(t) = Re(~=~Jexp(iwJ(t- to)+ Vj(t0 ))] + o~ (5.5) 
j=l 

Here Wj, j = 1, ... , J, are the tidal frequencies, ~J the complex tidal ampli­
tudes, Vj ( t0 ) the "astronomical" argument21 at time to for tidal harmonic j , 
and o~ an error term that accounts for non-tidal contributions to the surface 
elevation and other inaccuracies of the representation (5.5). The tidal coef­
ficients ~j are then determined from long-term tide gauge data by harmonic 
analysis, assuming that the non-tidal contributions do not have any energy 
at tidal frequencies. The advantage of tide gauge records is that they usually 
have a sufficiently short sampling rate and long duration to allow for an accu­
rate determination of the tidal amplitudes by harmonic analysis. Their main 
disadvantage is their spatial sparseness, especially for the determination of 
open ocean tides. 

21 The astronomical argument is the phase of the tidal potential for constituent j 
at Greenwich at time to. The phases of ~j are thus "Greenwich" phases. 
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Fig. 5.34. Amplitude and phase of the M2 tide of the Desai and Wahr empirical 
tidal model. The model is based solely on Topex/Poseidon altimeter data, on repeat 
cycles 10 to 356 which cover approximately 9.4 years. The contour interval for the 
phase is 30 degrees and dashed contours are negative phases [27] (@ (1995) American 
Geophysical Union . Reproduced by permission of American Geophysical Union) 
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Fig. 5 .35. Amplitude and phase of M2 tide as obtained by assimilating satellite 
altimeter data into a hydrodynamical model. Courtesy of Gary Egbert 



142 5 Modeling in Applied Environmental Sciences 

Satellite altimeter data now fill this gap with broad, accurate open-ocean 
coverage. In particular, the Topex/Poseidon satellite has been configured to 
accurately extract the tidal signal. A satellite altimeter measures the distance 
between the satellite and the sea surface. The satellite orbit can accurately be 
inferred from ground-based tracking stations, relative to a reference surface. 
The altimeter measurement thus gives the sea surface height relative to the 
same reference surface. Since distance is measured by the travel time of a 
radar impulse one needs to apply corrections to account for the delay in the 
atmosphere and for the effect of the sea state, but these are fairly well known. 
The major errors and complications come from three other sources: 

l. The altimetric sea surface height gives the geocentric elevation ~9 = ~ + 
~e +6 instead of the water depth~+ H 0 22 . The bottom elevation ~e of the 
earth tide is fairly well known and can be subtracted out. One thus usually 
considers the signal ( = ~9 - ~e in altimeter data processing. Assuming 
again that tidal loading, which is caused by the weight of the overlying 
water column, is just proportional to the tidal elevation one arrives at 

(5.6) 

with an appropriate constant (3 that may be assumed to depend on the 
tidal constituent23 . A simple estimate for the ocean tide signal is thus 
given by ~ = e I~. More refined estimates can be obtained by consider­
ing different spherical harmonics of ~ separately and by performing the 
convolution with the appropriate elastic earth Green's function. 

2. It is the sea surface height relative to the geoid24 that is of dynamical 
significance, not the height relative to a reference surface. Since the geoid 
is not sufficiently well known at this time one eliminates its inaccuracies 
by considering the difference of measurements taken at the same position 
but at different times 

(5.7) 

For Topex/Poseidon data x would be the position of the ground track and 
L1t the period of the exact repeat cycle, or x would be the positions where 
ascending and descending ground tracks cross and L1t the period between 
such crossings, which depends on the position x. 

3. The complex tidal coefficients ~j = ~~1 of the ( signal are estimated from 
the satellite data by fitting the Fourier expansion 

22 See Sect. 4.1.3 for details. 
23 Note that the parameter fl differs from the factor f3 that enters the momentum 

balance (4.12) of Sect. 4.1.3 and also contains the effect of gravitational self­
attraction [137]. 

24 The geoid is the surface of constant gravitational potential; its geocentric distance 
from the earth center is not uniform, but is distorted by the nonhomogeneous mass 
distributions in the solid earth. 
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J 

d(x, ti)= Re[L ,B~j(x)(ei</>j(t;+Llt) - ei</>j(t;))] + od (5.8) 
j=l 

to the difference data. Here, the main problem is caused by the short­
ness and poor sampling of this difference time series that makes it hard 
to extract all relevant tidal amplitudes by harmonic analysis. Additional 
assumptions have to be invoked to do so at least approximately. 

The determination of the tides from measurement alone is called an empirical 
tidal model. The only empirical model for Topex/Poseidon data that we are 
aware of is the one of Desai and Wahr [27]. Its results for the M2-tide are 
reproduced here in Fig. 5.34. It shows the same broad features as the hydro­
dynamical model in Fig. 5.33 and differences are hard to detect, but taking 
differences between the empirical and hydrodynamic model reveals differences 
with amplitudes of up to 10 cm over large parts of the open ocean, and more 
in shallow seas. Of course, the empirical model only gives the surface elevation 
and not the currents or the transports, which can also be calculated from the 
hydrodynamical model. 

From a data assimilation point of view, (5.8) is the measurement model. 
The state vector is composed of the tidal coefficients ~j(x) and Uh,j(x), and 
d(x, ti) are the data. Again considerable insight must be exercised when as­
signing errors od to this measurement equation. These errors include not only 
the inaccuracies of the altimeter data but also the strength of the non-tidal 
signals. 

3. Data assimilation 

The combination of data and model in [30] is done by means of an inverse 
method (see Appendix D). The result of the inversion is given in Fig. 5.35 for 
the M2 tidal amplitude and phase. By carefully comparing this data assimila­
tion estimate with the hydrodynamic estimate (Fig. 5.33) and the empirical 
estimate (Fig. 5.34) one can assess where and how assimilation has improved 
the tidal estimate. Overall one finds the following gains: 

• The assimilation solution provides more realistic estimates of the tidal sig­
nal in shallow seas where altimeter data are unable to resolve the generally 
small spatial scales. 

• While the assimilation does not much reduce the uncertainties in the ele­
vation field it provides a much smoother solution. Thus elevation gradients 
have significantly smaller errors. This has implications for the residual tidal 
errors in geostrophic current estimates. 

• Assimilation provides the tidal currents. These currents are required for 
the dissipation calculation that we discuss in Sect. 6.3.3, and are useful for 
other purposes as well, such as correcting vessel-mounted Acoustic Doppler 
Current Profilers (ADCP), providing barotropic tidal boundary conditions 
for regional models and for calculation of angular momentum budgets. 
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• Assimilation allows one to quantify the errors or residuals in the dynamical 
equations. This may lead to the identification of missing physics, as shown 
in Sect. 6.3.3, where deep ocean tidal dissipation suggests itself as a major 
contributor to the tidal energy balance. 

5.3 Scenarios 

The art of building scenarios is technically similar to the art of forecasting. 
Forecasts assume that the information provided by initial and boundary con­
ditions and by parameters is real. Scenarios anticipate the results of plausible, 
not necessarily likely changes in these conditions and parameters. Examples 
are climate changes in response to increasing atmospheric concentrations of 
greenhouse gases, changes in the tidal regime due to the dredging of a tidal 
channel, the effect of a new regulatory system on the water quality of a river, 
or changes in an ecosystem exposed to changing concentrations of nutrients. 

When released to the public, or a wider scientific community, scenarios of­
ten undergo a metamorphosis from the originally intended storyline of some­
thing plausible, or possible, but not necessarily probable, to an almost certain 
forecast. This is the more frequent, the more practical implications a scenario 
has. An example is the anthropogenic climate change due to greenhouse gases. 
When this process was first studied, it was usually done within the doubling 
C02 format. Two extended equilibrium simulations with an atmospheric gen­
eral circulation model ( GCM) coupled to an oceanic GCM or surface mixed 
layer model were made, one with the present greenhouse gas levels, and an­
other one with levels corresponding to a doubling of the pre-industrial level. 
This format was used because computer resources at that time did not allow 
the continuous integration of climate models that included a gradual increase 
of greenhouse gas concentrations from present or pre-industrial levels to in­
creased levels anticipated for, say, the end of the 21st century. The reliance 
on the "doubling C02" format led to the widespread perception that climate 
change means that the climate changes from one equilibrium state to another, 
from "1 x C02" to "2 x C02". The water level along a coast would rise from 
one value to another value. The essential aspect that climate will not be in 
equilibrium for an extended time because of the ongoing emissions of green­
house gases is completely lost in this view. Of course, such an interpretation 
is entirely inadequate, but perhaps unavoidable given the dynamics of public 
attention and media presentation. 

Scenarios are meant to guide experts as well as the public at large so 
that options for decisions and actions can be weighted with the associated 
risks. Scenarios are brainstorming tools to answer the question what happens 
if They are particularly valuable when the vulnerability of the environment 
and options for adaptation measures are explored25 . Almost always several 

25 Schwartz [14 7] offers an interesting overview about the use of scenarios in prepar-
ing business decisions. 
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alternative scenarios are needed, to contrast different future developments. 
Scenarios are not the most probable future developments. 

In the following we limit ourselves to one example, the widely discussed 
and politically charged climate change scenarios prepared by the Intergovern­
mental Panel on Climate Change (IPCC). 

Climate change scenarios are conditional forecasts, forecasts of the sec­
ond kind. They utilize scenarios of greenhouse gas or aerosol emissions, or of 
changing land use, to estimate how the climate statistics may change. They 
are conditioned on these emissions or changes in land-use. The scenarios of 
changing emissions and land use are prepared by economists and other social 
scientists. Examples are the four "SRES" 26 scenarios prepared for the "Third 
Assessment Report" of the IPCC: 

(Al) a world of rapid economic growth and rapid introduction of new and 
more efficient technology27 , 

(A2) a very heterogeneous world with an emphasis on family values and 
local traditions28 , 

26 "IPCC Special Report on Emissions Scenarios", see http://www.grida.no/cli­
mate/ipcc/emission/. The scenarios do not anticipate any specific mitigation 
policies for avoiding climate change. The authors emphasize that "no explicit 
judgments have been made by the SRES team as to their desirability or proba­
bility". 

27 This scenario is described by SRES as follows: "A case of rapid and success­
ful economic development, in which regional average income per capita converge 
- current distinctions between "poor" and "rich" countries eventually dissolve. 
The primary dynamics are: Strong commitment to market-based solutions. High 
savings and commitment to education at the household level. High rates of invest­
ment and innovation in education, technology, and institutions at the national and 
international level. International mobility of people, ideas, and technology. The 
transition to economic convergence results from advances in transport and com­
munication technology, shifts in national policies on immigration and education, 
and international cooperation in the development of national and international in­
stitutions that enhance productivity growth and technology diffusion. The global 
economy expands at an average annual rate of about 3% to 2100. Energy and 
mineral resources are abundant because of rapid technical progress, which both 
reduces the resources needed to produce a given level of output and increases the 
economically recoverable reserves. Energy use per unit of GDP decreases at an av­
erage annual rate of 1.3%. The concept of environmental quality changes from the 
current emphasis on "conservation" of nature to active "management" of natural 
and environmental services. With the rapid increase in income, dietary patterns 
shift initially toward increased consumption of meat and dairy products, but may 
decrease subsequently with increasing emphasis on the health of an aging soci­
ety. High incomes also translate into high car ownership, sprawling suburbia, and 
dense transport networks, nationally and internationally." (abbreviated version) 

28 " .•• characterized by lower trade flows, relatively slow capital stock turnover, and 
slower technological change. The world "consolidates" into a series of economic 
regions. Self-reliance in terms of resources and less emphasis on economic, so-
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(Bl) a world of "dematerialization" and introduction of clean technolo­
gies29, and 

(B2) a world with an emphasis on local solutions to economic and environ­
mental sustainability30 . 

cial, and cultural interactions between regions are characteristic for this future. 
Economic growth is uneven and the income gap between now-industrialized and 
developing parts of the world does not narrow. People, ideas, and capital are 
less mobile so that technology diffuses more slowly. International disparities in 
productivity, and hence income per capita, are largely maintained or increased 
in absolute terms. With the emphasis on family and community life, fertility 
rates decline relatively slowly, which makes the population the largest among the 
storylines (15 billion by 2100). Technological change is more heterogeneous. Re­
gions with abundant energy and mineral resources evolve more resource-intensive 
economies, while those poor in resources place a very high priority on minimizing 
import dependence through technological innovation to improve resource effi­
ciency and make use of substitute inputs. Energy use per unit of GDP declines 
with a pace of 0.5 to 0.7% per year. Social and political structures diversify; 
some regions move toward stronger welfare systems and reduced income inequal­
ity, while others move toward "leaner" government and more heterogeneous in­
come distributions. With substantial food requirements, agricultural productivity 
is one of the main focus areas for innovation and research, development efforts, 
and environmental concerns. Global environmental concerns are relatively weak." 
(abbreviated version) 

29 "The central elements are a high level of environmental and social consciousness 
combined with a globally coherent approach to a more sustainable development. 
Governments, businesses, the media, and the public pay increased attention to 
the environmental and social aspects of development. Economic development is 
balanced, and efforts to achieve equitable income distribution are effective. This 
is a fast-changing and convergent world which invests a large part of its gains in 
improved efficiency of resource use ( "dematerialization"), equity, social institu­
tions, and environmental protection. Particular effort is devoted to increases in 
resource efficiency to achieve the goals stated above. Organizational measures are 
adopted to reduce material wastage by maximizing reuse and recycling. Global 
population reaches nine billion by 2050 and declines to about seven billion by 
2100. This is a world with high levels of economic activity and significant and 
deliberate progress toward international and national income equality. A higher 
proportion of this income is spent on services rather than on material goods, and 
on quality rather than quantity. A strong welfare net prevents social exclusion on 
the basis of poverty." (abbreviated version) 

30 " •.• increased concern for environmental and social sustainability. Increasingly, 
government policies and business strategies at the national and local levels are in­
fluenced by environmentally aware citizens, with a trend toward local self-reliance 
and stronger communities. Human welfare, equality, and environmental protec­
tion all have high priority, and they are addressed through community-based so­
cial solutions in addition to technical solutions. Education and welfare programs 
are pursued widely, which reduces mortality and fertility. The population reaches 
about 10 billion people by 2100. Income per capita grows at an intermediate 
rate. The high educational levels promote both development and environmental 
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Fig. 5.36. SRES scenarios of carbon dioxide (left) and sulfate emissions (right) 
constructed for the Third Assessment Report of the IPCC. The scenarios Al, A2, 
Bl and B2 are explained in the text, the scenario IS92a was constructed for the 
IPCC Second Assessment Report in 1995 

These SRES scenarios translate into the expected emissions of greenhouse 
gases and sulfate aerosols, as given in Fig. 5.36. These emissions are fed into 
climate models. It is again stressed that the output of climate models will 
depend on these emissions and hence on the assumptions about future social, 
economic and technical developments. 

For two of the scenarios, A2 and B2 , the temperature change simulated 
by the climate model of the Danish Meteorological Institute, averaged over 
the years 2070 to 2100, is displayed in Fig. 5.37 [158]. Almost everywhere a 
temperature increase is simulated, except for isola ted areas in the Southern 
Ocean. The warming is most pronounced over land and over the Arctic, where 
sea ice is expected to partially vanish. Temperatures of sea ice can be very low, 
while the minimum temperature of open water is about - 1°C. Accordingly, 
the air temperature above an area previously covered by sea ice will increase 

protection. Environmental protection is one of the few truly international com­
mon priorities. However , strategies to address global environmental challenges are 
not of a central priority and are thus less successful compared to local and re­
gional environmental response strategies. The governments have difficulty design­
ing and implementing agreements that combine global environmental protection. 
Land-use management becomes better integrated at the local level. Urban and 
transport infrastructure is a particular focus of community innovation, and con­
tributes to a low level of car dependence and Jess urban sprawl. An emphasis on 
food self-reliance contributes to a shift in dietary patterns toward local products , 
with relatively low meat consumption in countries with high population densities. 
Energy systems differ from region to region . The need to use energy and other 
resources more efficiently spurs the development of less carbon-intensive technol­
ogy in some regions. Although globally the energy system remains predominantly 
hydrocarbon-based, a gradual transition occurs away from the current share of 
fossil resources in world energy supply." (abbreviated version) 



148 5 Modeling in Applied Environmental Sciences 

quite substantially. By and large, the difference between the two scenarios is 
not very large. 

Such a temperature increase is a common result of all models used to 
construct climate change scenarios. Also, the models agree that the thermal 
expansion of sea water will lead to an increase of sea level, which may be 
dampened or compounded by the growing or melting of the two big ice sheets, 
Antarctica and Greenland. The fact that the models agree lends some confi­
dence to these results, but is no proof that the real world would actually de­
velop as the models predict, even if the emissions were exactly as prescribed. 
The development of climate models and their sensitivity to human interference 
is so closely scrutinized by the scientific community that dramatic deviations 
from contemporary perceptions about the functioning of the climate system 
and of its sensitivity are not well received and usually quickly rectified. Thus, 
the development of climate models underlies to some extent a social control. 

There is also some convergence among the models on precipitation statis­
tics, while other aspects, like storm activity, are reproduced less consistently 
by the different models, and the Intergovernmental Panel on Climate Change 
takes a cautious stand on making statements about these matters. 

The temperature maps shown in Fig. 5.37 seem to provide an assessment 
on a very detailed spatial scale. This impression is, unfortunately, incorrect. 
The problem with Fig. 5.37 is that it combines two types of graphical pre­
sentations, namely the continuous coast line of the world and the discrete 
matrix of about 2000 grid points, given by the color code. Thus, even if the 
map contains the Hawaiian Islands, the model does not contain them. The 
immediate response of lay people is to look at what is expected to happen 
at "their" location. This is futile as the models are not capable of simulating 
local specifics. Thus, the presentation adopted in Fig. 5.37 might be quite 
misleading for non-experts, even though it is commonly used in presenting 
climate change scenarios. 

In an effort to sort out to what extent regional assessments of climate 
change are robust, an IPCC working group compared expected regional mean 
changes in a variety of simulations [47]. For a series of sub-continental re­
gions (> 107 km2), they determined whether at least 7 out of the 9 models 
used in the Third Assessment Report, and 4 out of the 5 models used in the 
previous Second Assessment Report arrived at consistent changes in terms of 
precipitation and air temperature. The Second Report [65] used somewhat 
different scenarios, in particular one, labelled GG, with a "business-as-usual" 
increase in greenhouse gas emissions and a second, labelled GS, where aerosols 
are released into the atmosphere in addition to greenhouse gases. Note also 
that the models used in the Second and Third Reports differ, as they all are 
continuously improved and updated. 

Figures 5.38 and 5.39 represent the result of the effort. Interestingly, both 
the temperature and precipitation changes seem to be consistent in most areas, 
both in winter and summer, not only among the models used in the Second 
or Third Report, but also across the different scenarios A2, B2, GG and GS. 
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Fig. 5 .37. Simulated change of air temperature at the end of the 21st century in 
two climate change simulations forced with emission scenarios A2 and B2. Courtesy: 
Danmarks Meteorologisk Institut 
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Fig. 5.38. Regionalized change in temperature for the two SRES scenarios A2 and 
B2 (top) , and for two business-as-usual emission scenarios of the Second Assessment 
Report, with and without aerosol emissions ( GG and GS) (bottom). For each region, 
a box with four entries is given, describing the stability of the simulated change in 
the two scenarios (columns) for two seasons (northern winter DJF, and summer, 
JJA; rows). If 7 out of 9 (top) or 4 out of 5 (bottom) models agree on a change, 
then a "+" (warming) or a "~" (cooling) is inserted in the box. If the models do not 
agree, then an "i" is given [47] 
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Fig. 5.39. Same as Fig. 5.38 but for precipitation 

This convergence adds to the credibility of the models, but it is no guar­
antee that the models might fail to describe certain, so far not identified 
significant processes. Convergence among different models is no proof of their 
realism. 
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5.4 Secondary Applications 

The examples given so far in this chapter cover the most important applica­
tions of models in atmospheric and oceanic sciences. In addition there are a 
number of secondary applications, among them are: 

The design of efficient observational networks 

In many cases there are a limited number of "hot spots", the knowledge of 
which is representative for the state of the system as a whole. A model sim­
ulation can help to identify these. An example is Janssen's [70] simulation of 
the state of the Baltic Sea. In this simulation, the tide gauge of Landsoort 
in Sweden (close to Stockholm) emerged as being representative for the wa­
ter content in the Baltic Sea (Fig. 5.40). This model result is supported by 
empirical evidence. 
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Fig. 5.40. Time series of simulated sea level in the Baltic Sea. Solid line: Sea level 
elevation at Landsoort south of Stockholm; dotted: Area average of sea level in the 
Baltic Sea. From Janssen [70] 
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Estimation of rare events 

In many cases, the observational evidence is not sufficient to estimate the 
tails of the distributions of relevant variables. Examples are extreme values 
of ocean wave heights or the natural range of climate variability. With long 
simulations such statistics can easily be obtained. Of course, estimates based 
on such simulations are neutral analogs, and it remains to be demonstrated 
that the models provide realistic estimates. 

Climate change detection and attribution 

An important task of climate science is the examination of the ongoing climate 
variability. The problem is whether it is in the range of natural variations 
(detection) or, if not, whether it can plausibly be explained by forcing factors 
such as elevated greenhouse gas concentrations (attribution) [59]. For both, 
the detection and attribution problem, the output of models is used to guide 
the analysis. 

The global detection problem is a multivariate hypothesis test with a large 
number of degrees of freedom. Without prior knowledge, chances to formulate 
a-priori the "right" null hypothesis are slim, and thus the chances to detect 
anthropogenic climate change are also slim [56]. However, with the help of a 
quasi-realistic climate model, a likely pattern of climate change can be ob­
tained and used as a first guess in the detection exercise and increases the 
chances to detect changes. For a further review of the detection problem refer 
to [197]. 

Similarly, the attribution problem is analyzed by assessing how well the 
response of a quasi-realistic climate model to a variety of potential forcing 
factors explains the observed climate change [55]. 
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Modeling in Fundamental Environmental 
Sciences - Simulation and Hypothesis Testing 

In the previous chapter we have presented examples of the utility of quasi­
realistic models in forecasting the future state of a system, in describing the 
state of a system, and in studying plausible scenarios. These efforts generally 
result in large data sets, which then serve as input for other studies, such as 
assessments of past systematic changes, the estimation of the intensity of rare 
events, or decisions about future activities. In this chapter a different type 
of utility of quasi-realistic models is demonstrated with a series of examples, 
namely their role in answering specific scientific questions. Admittedly, the 
borderline between Chaps. 5 and 6 is not well-defined, but we think that our 
discrimination clarifies an important issue, namely that quasi-realistic models 
play a dual role, as generator of a substitute reality for all kinds of applied 
studies and as a tool to investigate fundamental scientific questions. This 
chapter is about the latter and the following examples will illustrate 

• the option to test the validity of hypotheses, derived from theoretical con­
siderations, empirical evidence or pure speculation (Sect. 6.1), 

• the use of quasi-realistic model output (in the spirit of Sects. 5.2 and 5.3) 
to infer parameters of reduced models and to determine the skill of such 
models in conceptualizing aspects or parts of reality (Sect. 6.2), and 

• the possibility to infer characteristics of the system under consideration, 
which cannot be derived from observations (Sect. 6.3). 

6.1 Hypothesis Testing 

In this section, we present examples where quasi-realistic models are used to 
test specific hypotheses brought forward by theoretical reasoning, plausibility 
arguments or mere speculation. The quasi-realistic models serve as a substi­
tute reality or virtual laboratory. One follows the methodological approach of 
classical natural sciences by performing experiments. The hypothesis may be 
falsified by the experiment but not verified. The experiment is, however, not 
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a real-world analog (i.e., a laboratory model) of a certain idealized situation, 
but a numerical analog (i.e., a numerical model). In both cases inconsistency 
of the experiment's outcome with reality may signal the failure of the hy­
pothesis or the failure of the analog construction. The models may simply be 
inadequate to describe the situation addressed. 

The following cases are presented: 

• The first case, drawn from [163], addresses the question of whether tidal 
currents in a small tidal inlet, with dimensions of a few kilometers, are 
significantly affected by the Coriolis force. Back in the early 1970s this 
question was far from being a mere academic problem. At that time quasi­
realistic modeling of tides in such inlets was done with hydraulic models 
(see Sect. 1.3.2), which were incapable of accounting for the Coriolis effect. 
The numerical experiment would determine their fate. 

• Past climates can be hypothesized as being essentially the response to 
anomalous forcing conditions, such as solar output or the presence of 
stratospheric aerosols. Such a hypothesis can be tested by comparing the 
output of a quasi-realistic climate model with historical reconstructions of 
climate from indirect or proxy data, such as tree ring characteristics or de­
positions in ice cores. Our example deals with the Late Maunder Minimum 
of the sunspot cycle from 1675 to 1710. 

• Originally, most people believed that all climate variability was caused 
by external forces, but in 1976 Hasselmann [58] introduced the stochas­
tic climate model which ascribes climate variability to internal sources, 
namely random weather fluctuations. Our example, drawn from [115], 
demonstrates that a quasi-realistic ocean model exposed to random forcing 
indeed produces variations as predicted by the stochastic climate model. 

• The stability of the thermohaline circulation in the North Atlantic is an­
other open problem of current climate science. In one of his many seminal 
papers, Stommel [161] offered a conceptual model. It describes the effi­
ciency, or shut-down, of this overturning circulation in response to the 
temperature and salt fluxes at the surface of the ocean on time scales of 
hundreds or thousands of years. Obviously, this model cannot be proven ex­
perimentally. Observational evidence from paleoclimatic proxy data can at 
best serve as a rough check. A much more comprehensive test of Stommel's 
model can be achieved with quasi-realistic ocean models. Our example is 
that of Rahmstorf [136]. 

• A variety of mechanisms have been suggested to explain Alpine lee cyclo­
genesis. A strategy to test these theories was devised by Egger [33] and 
Tafferner and Egger [165]. The key idea is to first find a quasi-realistic 
model that is capable of realistically simulating the process of Alpine lee 
cyclogenesis. Then, as a second step, the model is manipulated so that the 
suggested mechanisms control the model's dynamics. The crucial test is 
then whether or not Alpine lee cyclogenesis also takes place in the mani­
pulated model. 
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6.1.1 Tides and the Coriolis Force 

Here we revisit the case of the tidal flow in the tidal inlet Jade Bay in the 
southern German Bight. Two models have been presented for this problem, a 
hydraulic model (Fig. 1.4) and a mathematical model, based on Laplace tidal 
equations (Sect. 4.1.4). 

The first research question is whether the two models, the hydraulic and 
the mathematical one, are consistent1. If they are, then the costly hydraulic 
models may in many cases be replaced by much more economic mathematical 
models. Thus, the interest is not so much in the details of the tidal currents in 
Jade Bay but in the more fundamental problem of whether numerical models 
are adequate tools for simulating tidal phenomena. 

The question "are the models consistent?" is not really well posed. An 
all encompassing comparison cannot be carried out. Instead, the models are 
considered consistent as long as no major differences in their performance are 
found. Consistency between models as well as between model and reality can 
be checked by very different means. Here, we limit ourselves to the simplest 
strategy, namely to the comparison of states simulated by the two models. 

Figure 1.6 displayed the circulation of the hydraulic model and of the 
numerical model without Coriolis force shortly after high tide. The main fea­
tures of both circulation patterns are similar. The mathematical and hydraulic 
model return consistent velocities. We may be tempted to answer the first re­
search question "are the models consistent" positively. 

As a second research question we ask a typical fundamental research ques­
tion, namely what is the relative importance of a certain process. The math­
ematical and the hydraulic model have been run without the Coriolis force. 
The question is whether the Coriolis force is truly of secondary importance 
for the tidal currents. In the framework of a mathematical model, this prob­
lem is easily addressed in a numerical experiment. One simulation is done 
without the Coriolis force, and another one with the Coriolis force. If the two 
model versions return similar results, then the Coriolis force may be consid­
ered unimportant. 

These two experiments have been carried out by Siindermann and Vollmers 
[163]. It turns out that the difference is not small but large. As can be seen 
in Fig. 6.1, the circulation with Coriolis force is no longer symmetric, as in 
Fig. 1.6, but strongly asymmetric. This finding implies that the Coriolis force 
is of major importance. The mathematical model does not only match the 
skill of the hydraulic model but actually surpasses it since it can include the 
Coriolis force and provide more realistic simulations. 

In fact, the earlier wide-spread and well developed use of hydraulic and 
other mechanical models has disappeared, except for the simulation of very 
small scale processes, such as the dispersion of chemical pollutants in accidents 
(cf., [145]). 

1 One may argue, whether this question is a case of applied or fundamental research. 
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displayed state 

Fig. 6.1. Tidal currents in the numerical model. The timing is given by the inset: 
the tide has just passed the peak level and the water begins to flow out of the basin. 
This figure should be compared with Fig. 1.6. From Siindermann and Vollmers [163] 

6.1.2 The Sun and the Late Maunder Minimum 

The Late Maunder Minimum (LMM; AD 1675 to 1710) refers to a period with 
a particularly low number of sunspots and reduced solar activity. This period 
coincides with several large volcanic eruptions. Historical reports and proxy 
data document a substantial cooling during the winter half year at the end of 
the 17th century in Europe. It has been proposed that the anomalous solar 
output and, possibly, the simultaneous volcanic activity, may be the cause 
for this observed cooling. It has further been suggested that the cooling was 
not limited to Europe, but a more widespread if not global event involving 
anomalous conditions in the North Atlantic [92]. 

In order to test these hypotheses, a multi-century integration was car­
ried out by Zorita et al. [196] with the climate model ECHO-G, which is a 
combination of the ocean model HOPE-G in T42 resolution and the atmo­
spheric model ECHAM4 in T30 resolution. The simulation extended over 250 
years from 1550 to 1800. The model was driven by the time-varying solar 
constant shown in Fig. 6.2, which represents the solar and volcanic activity 
and the changing atmospheric concentrations of greenhouse gases during that 
period2 . The spikes represent the effect of the volcanic eruptions, while the 

2 The atmospheric C02 and methane concentrations were derived from air trapped 
in Antarctic ice cores. The variations of solar output and the influence of volcanic 
aerosols on the radiative forcing were derived from the number of sun spots after 
1600 AD and concentrations of cosmogonic isotopes in the atmosphere before 1600 
AD. The forcing due to volcanic aerosols was estimated from concentrations of 
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Fig. 6.2. Solar forcing and Northern Hemisphere mean temperature during 1550-
1800 as simulated in the Late Maunder Minimum experiment 

slow variation reflects the changing output of the sun. The greenhouse gas 
concentrations vary only insignificantly during this time. 

The following strategy was applied: As the hypotheses refer to Northern 
winter conditions, the analysis was limited to the DJF season. First, it was 
shown that during the time of the LMM (1675-1710), the model generated a 
marked cooling in Europe. Next, it was shown that the simulated temperatures 
in Europe during this period are consistent with the limited observational ev­
idence constructed from early instrumental time series and proxy data. The 
timing, pattern and intensity of the historical event are successfully repro­
duced by the model, as far as it has been reconstructed. The model is thus 
"validated". The first hypothesis, the causal link between solar and volcanic 
activity and the cooling in Europe, is considered to be consistent with the ex­
periment (i.e., it is not falsified). Finally, the model was used in a constructive 
manner. It was assumed that the simulation is not only realistic in Europe 
but also globally. A persistent temperature reduction, for almost the entire 
globe north of 30°8 is found. A particularly strong anomaly of temperature 
and sea ice concentration is formed in the Labrador Sea. A significant change 
in the North Atlantic overturning was not found. These properties are neutral 
analogs. The more detailed story follows. 

At the end of the 17th century, beginning at about 1675 and ending in the 
early 18th century, the model develops a marked temperature anomaly, with 
an amplitude of more than 0.5 K, as can be seen in Fig. 6.2. This anomaly 
does not emerge in simulations where the radiative forcing is constant. It does 

sulphuric compounds in various ice cores, located mainly over Greenland. These 
forcing factors were translated into effective variations of the solar constant. 
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develop in simulations with the time-varying forcing, even when the model is 
started from different initial conditions. Therefore, the event is probably re­
lated to the anomalous radiative conditions - supporting the first hypothesis. 

The spatial distribution of the simulated winter temperature difference 
between 1675-1710 and 1550-1800 is displayed for Europe3 in Fig 6.3, to­
gether with a significance measure. The model generates a cooling almost 
everywhere, with maximum values of 1.2 K and more in Eastern Europe and 
northwest Russia/northern Norway, and of 0.5 K and more over most of Eu­
rope. No regions of warming are simulated. To exclude the possibility that 
the differences shown in Fig. 6.3 are the mere results of random variations, 
a series of local t-tests was conducted. The "control" period, 1550-1675 and 
1710-1800, is compared with the "treatment period" 1675-1710. Areas are 
hatched in Fig. 6.3 whenever the null hypothesis of equal means is rejected. 
The different hatchings indicate different significance levels: dense hatching 
indicates a 993, medium hatching a 953, and minimum hatching a 903 sig­
nificance level. The figure shows that the simulated cooling in Europe is almost 
everywhere robust, except for part of Northern Scandinavia. 

Figure 6.4 shows the "observed" winter (DJF) temperature over Europe 
during the LMM, as reconstructed by Luterbacher et al. [106] from a com­
bination of early instrumental time series and documentary evidence4 . The 
reconstruction shows that cooling was widespread in Europe, with maximum 
values of more than 1.2 K in Eastern Europe and 0.5 K in many parts of Ger­
many, France, Italy and Greece. A warming shows up only in a few locations, 
in northern Norway, Iceland and southeastern Greenland. There is also evi­
dence of cooling in the Russian North, starting at the beginning of the LMM, 
but this cooling has not been quantified and is not included in the figure. 

The hatching in the figure describes the proportion of explained variance 
when the reconstruction method is applied to data from the period 1961-1990. 
In areas with dense hatching, more than 903 of the variance is recovered, in 
areas with medium hatching it is more than 703 and in areas with light hatch­
ing it is more than 403 [105]. Accordingly, the confidence in the temperature 

3 The boxes clearly depict the coarse approximation of the European land mass by 
the T30 representation. 

4 Luterbacher et al. [106] used a large number of independent variables for their 
reconstruction. As predictors, they used instrumentally based variables such as 
the Central England temperature and the Paris Station pressure and tempera­
ture. Most of the predictors were, however, temperature and precipitation indices 
from sites all over Europe. These indices were estimated from high-resolution 
documentary evidence that included observations of ice and snow features, and 
other phenomenological and biological observations. A particular example is the 
ice cover of the western Baltic Sea (Fig. 4.10). 

The predictand was the binned DJF mean temperature in Europe. Predic­
tand and predictor were related through a linear regression. The performance of 
the regression model was tested by comparing the estimated temperatures with 
observed temperatures during the 20th century. 
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estimates is low in many areas, particularly in Finland and Russia and in the 
allegedly warmer-than-normal areas. 

Little is known about the temperature conditions during the LMM outside 
Europe. Historical documentary records from China indicate a warming trend 
from a cold mid-17th century to a mild 18th century and a weakening of 
winter westerlies during the LMM. Coral records from the Galapagos, New 
Caledonia, the Great Barrier Reef and off Madagascar [194] indicate a general 
cooling in the tropics of about 0.5 K during the LMM. In the United States 
and southwestern Canada reconstructions from tree rings show distinct lower 
annual temperatures during the LMM. Especially in the eastern United States 
the last 30 years of the 17th century were the coldest for at least the last 400 
years. 

The model reproduces some of these global features. The model also con­
tains climatic noise on all space and time scales. One can thus not expect that 
the model reproduces all details of the spatial patterns and temporal evolu­
tion. One can, however, expect that the model reproduces the broad spatial 
patterns as well as the mean evolution, which it does. Thus, the model result is 
considered a model realization of a "Late Maunder Minimum" cooling event, 
triggered by external solar and volcanic forcing. 

Formally, the cooling over Europe in the model and the historical cooling 
over Europe represent positive analogs in the sense of Hesse (Sect. 3.1). In the 
next step the model is used constructively. It is assumed that other large scale 
aspects of the simulations are realistic as well; neutral analogs are assumed to 
be actually positive ones. 

The global simulated temperature anomaly distribution during the LMM 
is displayed in Fig. 6.5. It shows an almost global cooling. The cooling is 
particularly pronounced, with 1 K and more, in northeast Canada, Greenland, 
the northern North Atlantic. The ice coverage of the Labrador Sea increased by 
up to 253 (not shown). The Northern Hemisphere continents show a weaker 
cooling, between 0.5 K and 1 K. Over most of the rest of the globe north of 
30°S a cooling of up to 0.5 K is simulated, with isolated regions of warming in 
the Southern Hemisphere. Thus, the simulated event is a global phenomenon. 
These model results seem to be consistent with a variety of proxy-data [194]. 

6.1.3 The Stochastic Climate Model at Work 

The cause of climate variability is obviously a relevant question. Originally, 
climate variability was believed to be caused by time-varying external forces, 
especially by orbital variations and by the solar cycle, but other non-cyclical 
"forces" such as deforestation were also thought to be a major cause of "sys­
tematic" climate change5 . Then in 1976, Hasselmann [58] introduced the 
stochastic climate model. He asserted that most climate variations are forced 

5 An account of these ideas for the late 19th century is given in (155] and for the 
early 20th century in (67]. 
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Fig. 6.5. Global distribution of the temperature difference between the LMM and 
the period before and after, as simulated by the climate model with anomalous 
radiative forcing 

internally by the ever-changing unpredictable weather fluctuations, in much 
the same way that fluid molecules force Brownian ink particles. Weather fluc­
tuations are generated by atmospheric chaotic dynamics. They manifest them­
selves, however, not as aesthetically pleasing patterns like the Lorenz attrac­
tor but as irregular fluctuations hardly distinguishable from stochastic noise. 
The slower components of the climate system, like the ocean or ice sheets 
"integrate" this mostly "white" noise, and eventually show marked long-term 
irregular variations. The simplest conceptual model for this stochastic climate 
model is an autoregressive model Xt of first or second order. The first order 
process is called red noise6 and given by 

(6.1) 

with a constant a 1 and a white noise term N/. Without the noise term 
and la11 < 1 equation (6.1) describes a damped system. Any initial pertur-

6 See Appendix C.1.3. Red noise processes are also called AR(l) processes and 
second order processes AR(2) . 

7 Here, white noise is a discrete stochastic process, indexed by integers t = 

-oo, . .. - 1, 0, +1 , +2, ... oo. At each time t numbers are drawn from the same 
random distribution. Realizations at any two different times t1 and t2 are inde­
pendent . For a more elaborate discussion, see Sect. C.1.3 and [182]. 
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bation decays away within a characteristic time. The noise term randomly 
excites this damped system and causes irregular behavior including persistent 
anomalies. These low frequency variations are the climate variations excited 
by the random white noise weather fluctuations. 

Second order autoregressive processes 

(6.2) 

with constants a 1 and a2 and noise term Nt represent a slightly more com­
plex stochastic climate model. Time series generated by this process also vary 
mostly irregularly, but for limited times, segments will exhibit certain char­
acteristic features such as intermittent oscillatory behavior. 

The continuous version of the autoregressive process (6.1) is the Langevin 
equation 

d 
dt X(t) = -aX(t) + N(t) (6.3) 

with a continuous white noise term N(t) that satisfies E[N(t)] = 0 and 
COV[N(t), N(t')] = a28(t- t'). The spectrum of the process X(t) is given by 

0'2 
Sx(w)=----

2?T(a2 + w2 ) 
(6.4) 

It clearly shows that the process has most of its variance at low frequencies, 
thereby justifying the name red noise process. The "stochastic climate model" 
[58] predicts the emergence of spectra like (6.4) due to internal dynamics. 

Observed time series of sea-surface temperature, atmospheric heat flux 
and sea-ice were found to be consistent with such a red noise process (see the 
review by Frankignoul [39]; see also Sect. 6.2.1) and demonstrate the power 
and generality of this stochastic climate model. 

Here we present an example, drawn from [115], that shows the stochas­
tic climate model at work in a quasi-realistic ocean model. A quasi-realistic 
ocean model exposed to white noise fluctuations indeed varies as predicted 
by the stochastic climate model. Specifically, a time-variable freshwater flux 
was superimposed on the mean fresh water flux. This time-variable flux was 
randomly drawn from a white noise process with zero mean, zero correlation 
in time but finite correlation in space. The global ocean model responded to 
this random forcing with pronounced well-organized low-frequency variations 
in many parameters. A time series of the mass transport through the Drake 
passage is shown in Fig. 6.6. The second order autoregressive model (6.2) was 
found to describe many aspects of the variability. 

A detailed analysis revealed that an eigenmode of the oceanic circulation 
had been excited in the model. This mode has a quasi-oscillatory behavior 
with a period of about 350 years, involves the entire meridional circulation 
of the North Atlantic Ocean, and extends into the Antarctic Circumpolar 
Current. Its spectrum is also shown in Fig. 6.6. As expected, it is almost red, 
apart from the spectral peak at the eigen-frequency of about 350 years. 
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Later analyses showed that the model results are not realistic. They are 
due to the specific setup of the experiment and of the model. It has been 
speculated that this behavior is due to the fact that the model was not coupled 
to a quasi-realistic atmospheric model but run with prescribed energy fluxes at 
the ocean's surface. The behavior of the model is thus probably not a positive 
analog of the real ocean. 

6.1.4 Validating Stommel's Theory of the Thermohaline 
Circulation 

Henry Stommel [161] theoretized that the North Atlantic thermohaline or 
meridional overturning circulation8 would be sensitive not only to changes in 
the meridional temperature contrast but also to changes in the freshwater flux 
pattern. His conceptual model consists of two ocean boxes, one represents the 
low latitudes and the other one the high latitudes9 . The overturning circula­
tion is represented as a heat and salt exchange term between the boxes. The 
basic equations are heat and salt conservation, and are given by 

! i1T = >.(i1T* - i1T) - 2jmji1T 

(6.5) 
d 
dt i1S = 2i1F - 2jmji1S 

where i1T > 0 is the positive South-North temperature difference and i1S 
the normally negative South-North salinity difference. The first term on the 
right-hand side of both equations describes the forcing. It is given by "mixed 
boundary conditions". The heat flux is parameterized as a restoring term, 
restoring to the temperature i1T*. The restoring parameter >. is large, so that 
the surface flux produces a nearly fixed temperature difference between the 
two boxes with i1T > 0. The fresh water forcing is a prescribed flux i1F, 
which should be inferred from the atmospheric water vapor flux from low to 
high latitudes. The second term in both equations describes the transport 
between the boxes. The transport velocity m is assumed to be proportional 
to the density difference10 between the two boxes: 

m = k( ai1T - (3i1S) (6.6) 

8 The North Atlantic overturning circulation is part of the conveyor belt (see 
Fig. 1.12) with a northward inflow of warm surface water across the equator 
to the northern North Atlantic, a densification and sinking of this water in the 
northern North Atlantic and southward return flow in the deep Atlantic. 

9 The following version of Stommel's box model was first given and solved by 
Marotzke [111]. Our discussion is based on [183]. 

10 For simplicity, the equation of state is linearized. 
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For m > 0 the surface transport is northward, in the direction of the nor­
mal overturning circulation whereas for negative m the surface transport is 
southward, opposite to the normal overturning circulation. 

The equilibrium solutions of the system (6.5) and (6.6) can be derived 
analytically. Combining the steady state of the second equation of (6.5) with 
(6.6) results in the equation 

mlml - o:b1Tlml + k(Ji1F = 0 (6.7) 

Its solutions for a northward surface transport, m > 0, are 

for LJ.F < LJ.pcrit 

for 0 < LJ.F < LJ.pcrit 
(6.8) 

and its solution for a southward surface transport m < 0 is 

_ aki1T V (o:ki1T) 2 (Jk" m- --- + LJF 
2 4 

for 0 < i1F (6.9) 

Equations (6.8) and (6.9) represent different branches of equilibrium solutions 
and are shown in the left of Fig. 6.7. Two of them, indicated by solid lines, 
are stable, and one of them, indicated by the dashed line, is unstable. 

For i1F < 0, (6.8) describes a thermohaline driven flow, since both the 
temperature difference i1T (cooling of northern water) and fresh water forcing 
i1F (saltening of the northern box) work together to increase the density of 
the water in the northern box and to intensify the overturning flow. 

For i1F > 0, the northward flow given by (6.8) is purely thermally driven. 
Freshening the northern box slows down the overturning flow m. With increas­
ing i1F, m decreases. This solution branch ends in a bifurcation (point S) at 
a critical fresh water input of LJ.pcrit = ( ko:2 i1T2 ) / ( 4(3). The second equilib­
rium solution with m > 0 is also thermally driven (dashed line in Fig. 6. 7a). 
It is not only much weaker than the other solution, but it is also unstable. 
The southward flow solution m < 0 (6.9) is purely haline driven (i1F > 0). 

When the model (6.5,6.6) is integrated forward in time with a fixed i1T* 
and slowly varying i1F, the solution follows the light curves in Fig. 6. 7. Start 
the integration on the thermohaline branch with a negative i1F. When one 
slowly increases i1F this northward flow solution is maintained until the fresh­
water flux approaches the critical value LJ.pcrit. When the freshwater flux 
is further increased, the surface transport drops quickly until it reaches the 
southward, haline-driven solution. When the freshwater flux is then reduced, 
the transport does not return to its old values, but remains on the haline 
branch, until it jumps back to a strong northward surface flow, when the flux 
becomes negative. The response of the system to changing freshwater fluxes 
exhibits a hysteresis. 
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gration of a quasi-realistic ocean model with gradually changing freshwater flux F. 
Again, the arrows indicate the direction of the change of F. For more details see [136] 

The question is, of course, whether this conceptual model bears any sim­
ilarity with the real world dynamics. To investigate this question Rahm­
storf [136] designed a numerical experiment for the Atlantic with a quasi­
realistic ocean model11 . Similarly to the integration of the conceptual model 
(6.5,6.6), Rahmstorf integrated the GFDL general circulation ocean model 
with mixed boundary conditions, a fixed restoring temperature T* and a 
slowly changing freshwater input F at high latitudes. First the freshwater 
flux was slowly increased, from a negative initial value, until reaching the 
breakdown of the overturning circulation for some positive LlF-value. Then 
the freshwater flux was slowly decreased again, until recovering the north­
ward surface fl.ow for some negative flux value. The result is shown in the 
right panel of Fig. 6. 7. The response is again a hysteresis and very similar to 
that obtained from the box model shown in the left panel of Fig. 6. 7. 

Rahmstorf's [136] experiment suggests that the three-dimensional over­
turning circulation possesses multiple equilibria and hysteresis similar to the 
simple box model. It should, however, be realized that Fig. 6. 7 compares an in­
trahemispheric box model with an interhemispheric general circulation model 
and that the circulations in the two models are not identical. The similarity 
of the two panels might thus be fortuitous. Interhemispheric box models will 
eventually provide a more accurate conceptualization of the sensitivity of the 

11 Rahmstorf [136] is not the first GCM study of multiple equilibria and hysteresis 
of the thermohaline circulation. The first study of multiple equilibria with an 
OGCM was by Bryan [15] and with a coupled AOGCM by Manabe and Stouffer 
[108]. The first study of the hysteresis was by Stocker and Wright [159]. More on 
the early history of the modeling of the thermohaline circulation can be found 
in [112]. 
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Atlantic thermohaline ciculation. Nevertheless, Stommel's visionary hypothe­
sis will remain at the heart of all these conceptualizations12 . 

6.1.5 Validating Theories of Alpine Lee Cyclogenesis 

Egger [33] and Tafferner and Egger [165] devised a method to test the validity 
of theories that claim to have identified the first order processes responsible 
for a certain phenomenon. They apply their method to Alpine lee cyclogenesis, 
i.e., to the formation of small intense cyclones in the lee of the Alps. The basic 
idea is to first simulate the cyclone formation in a quasi-realistic model, and 
then to constrain the model so that it satisfies the assumptions of the theory 
to be tested. If cyclone formation also takes place in the constrained model, 
similarly to the unconstrained model, then the theory is accepted, at least for 
the case considered 13 . 

Three theories have been suggested for Alpine lee cyclogenesis. They are 
all linear and assume a basic mean flow. Two of the theories assume the 
mean flow to be zonal. Cyclogenesis is then ascribed to the interaction of an 
initial baroclinic wave perturbation with the mountain range. The mean flow 
is not affected by the orography. Thus, both theories essentially claim that 
lee cyclogenesis can be understood as a growing baroclinic wave, modified by 
mountains. The two theories differ in their treatment of the orography. In 
one theory, the orography is described as an infinitely narrow barrier blocking 
all meridional flow in the lower levels of the model. In the other theory the 
mountains are given as a shallow, smooth obstacle. The third theory does 
not need any initial disturbance but requires a non-zonal mean state with 
significant vertical shear. Under these assumptions a standing baroclinic wave 
grows in the lee of the mountain range. For further details and references 
see [165]. 

In a first attempt, Egger [33] used an idealized "quasi-realistic model" with 
a barotropic low pressure system located northwest off the Alps embedded in a 
westerly mean flow with vertical shear. In the model, the low pressure system 
moves eastward, and a small but intense cyclone forms in the lee of the Alps 
within 24 hours. Then, the assumptions of the above three different linear 
theories were imposed on the model. For example, the Alpine topography was 
replaced by a razor blade for theory one. In none of these constrained models 
cyclogenesis occurred similar to that in the "quasi-realistic" model. Thus the 
theories and their core processes do not seem to have any relevance. 

12 Historically, Stommel's 1961 paper which is now referred to as seminal was not 
seminal at all but ignored for more than twenty years. It was the box model of 
Rooth [143] and the personal contact between Claes Rooth and Frank Bryan that 
led to the first GCM experiment on multiple equilibria [15]. Stommel's paper was 
then rediscovered (Jochem Marotzke, pers. comm. and [112]). 

13 There is no reason to believe that there is only one type of process leading to the 
formation of lee cyclones. 
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Fig. 6.8. Observed sea level air pressure (spacing 2.5 hPa) and near surface wind 
distribution at 12UTC March 4, 1982 (left) and 12UTC, March 5, 1982 (right). 
From Tafferner and Egger [165] 

It was, however, speculated that this failure was due to the idealized 
"quasi-realistic" model and to the idealized initial conditions. The quasi­
realistic model and initial conditions were not realistic enough. Therefore the 
analysis was repeated, this time with a quasi-realistic regional atmospheric 
model and with two initial synoptic situations that were observed to generate 
Alpine lee cyclones [165]. Similar results were obtained for both cases. Here 
we discuss only one case, the 24 h development beginning on 12UTC, March 4, 
1982. It was the strongest cyclonic development during the ALPEX observa­
tional campaign14 . The observed surface pressure maps together with surface 
wind fields for 12UTC on March 4 and March 5 are shown in Fig. 6.8. The 
episode began with a southwesterly flow at upper levels, and weak pressure 
differences in the Alpine region. The upper air trough moved eastward, and a 
marked low pressure center formed over Corsica. 

The regional model is initiated with the conditions at 12UTC, March 4 
and integrated for 24 hours. The eastward movement of the upper air trough 
is correctly simulated, and the small scale low is developing almost as ob­
served (see Fig. 6.9a). It is therefore concluded that the model reproduces the 
observed phenomena in a satisfactory manner. 

When the quasi-realistic regional model is constrained to the assumptions 
of the three theories and integrated for 24h, then the pressure and wind fields 
shown in Fig. 6.9b-d are obtained. Obviously, in none of the constrained sim­
ulations a small scale cyclone like the one in Fig. 6.9a is formed. From this 
much more stringent test it is concluded that the three theories have indeed 
not identified the dominant processes for the formation of the lee cyclone. 
They may be mathematically and conceptually intriguing and appealing, but 
they do not stand the test of being practically relevant. 

14 An international campaign, from September 1, 1981 until September 30, 1982. 
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Fig. 6.9. Sea level air pressure (hPa) and near surface wind distribution on 12UTC, 
March 5, 1982 as simulated with the full model (upper left), and with three con­
strained model versions consistent with three theories to be tested. The razor-blade 
topography assumed in one of the theories is depicted in the lower left as a dashed 
box. From Tafferner and Egger (165] 

6.2 Specification of Reduced Models 

Here we present two cases where the output of quasi-realistic simulation mod­
els is used to specify free parameters in conceptual models. The functional form 
of conceptual models is often given, mostly by theoretical considerations, often 
supported by empirical evidence, but contains free parameters whose values 
are not determined within the theory. The role of the quasi-realistic model 
is then first to examine whether the conceptual model describes relevant as­
pects of reality and, second, to specify the free parameters. This procedure 
assumes, of course, that the quasi-realistic model represents reality. However, 
it transforms the output of the model, a huge set of numbers, into knowledge. 

The first example is drawn from [184] and considers a conceptual model of 
the interaction of atmospheric heat fluxes and sea surface temperatures. The 
model is broadly formulated and contains different types of interactions. The 
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output of a very long climate model simulation is used to decide which type 
dominates in which region of the world ocean and to specify free parameters. In 
principle, the same procedure could be applied to observational data. However, 
they are generally too short and any estimation attempt runs into severe 
uncertainty problems. The very long data sets from a quasi-realistic climate 
model do not suffer from this problem and yield more definite results. 

The second example, drawn from [166], considers a zero-dimensional en­
ergy balance model that is capable of describing climate change related to 
greenhouse gases. The model is calibrated by comparison with detailed sce­
nario simulations, done with a quasi-realistic climate model. The calibrated 
model is both valuable as a conceptual model, encapsulating our knowledge 
about the sensitivity of global temperature to greenhouse gas concentrations, 
and suitable for use in simplified climate-economic modeling. 

6.2.1 Heat Flux and Sea Surface Temperature 

The atmosphere and ocean are coupled through fluxes of momentum, heat, 
freshwater and gases. The ocean influences the atmosphere above; the atmo­
sphere influences the ocean below. Examples of such air-sea interactions are 
manifold. Evaporation over warm sea surface temperatures increases the wa­
ter vapor content of the air above. When such moist air is brought in from 
the warm Atlantic Ocean to the eastern coast of the United States it is often 
dumped as a thick layer of snow during blizzards. Conversely, the atmosphere 
drives the ocean circulation. Both the Gulf Stream in the Atlantic and the Ku­
rushio in the Pacific are wind driven. The seasonal freezing of the Baltic Sea is 
caused by cold air temperatures and the low salinity of the Baltic Sea. These 
mutual influences, together with other atmospheric and oceanic processes, es­
tablish the mean state of the atmosphere-ocean system. The question is what 
happens when this mean state is perturbed by anomalies in either system. 
The answers depend on the time scale considered. 

In the following we consider times scale of months and seasons. On these 
time scales the major coupling between the ocean and atmosphere is through 
the heat flux H which is affected by the sea surface temperature T which in 
turn is affected by the heat flux. Again, the question is how anomalies feed 
back on each other. To entangle the various possible feedback processes J. von 
Storch [184] followed the approach of Frankignoul [40], [39] and decomposed 
the heat flux into the ocean H into 

H=H0 +H' +H* (6.10) 

where H0 represents the long term (seasonal) mean, H' the anomalies due to 
internal processes in the atmosphere and H* the anomalies caused by air-sea 
interaction. It is assumed that H', H* and T vary according to the conceptual 
model 
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H; = >.H H;_1 + nf 

H; = aHTt-tH 
Tt = >.rTt-1 + arH;_1 + n[ 

(6.11) 

The terms nf and n'f are noise terms, unrelated to the state of both H 
and T. Thus, the internal heat flux variations H' are assumed to depend 
on the previous heat flux, a memory effect, and to be driven by random 
atmospheric noise. Formally, this is an AR(l) autoregressive process of 1st 
order. The interactive heat flux variations H* are assumed to be entirely given 
by the state of the sea surface temperature tH time steps earlier. Similarly, 
the SST variations are assumed to be due to a memory effect in the ocean, the 
variations in the heat flux H', and random oceanic noise. The values of the 
parameters VAR(nf), VAR(n[), >.H, aH, >.rand ar determine the strength 
of the various processes. 

As a diagnostic tool J. von Storch considers the cross-covariance function 

(6.12) 

The heat flux leads the sea surface temperature for positive T values. This 
cross-covariance function can be written as the sum of two terms 

'YH,T = 'YH' ,T + 'YH* ,T (6.13) 

and be calculated from the conceptual model (6.11). The first term becomes 

{ 
o-2ar>..;.,- 1 L:~,:-~(>.H/>.r)i for T > 0 

'YH 1 ,r(r) = 
0 for T S:: 0 

(6.14) 

where o-2 is the variance of H'. It vanishes for negative T when SST leads the 
heat flux. This cross-covariance function is plotted for two sets of parameters 
in Fig. 6.10 (dashed curves). 

The second term becomes 

(6.15) 

where 'YT is the (symmetric) auto-covariance function of T. The cross­
covariance function 'YH*,r(r) is thus a symmetric function relative to -tH. 
The solid curve in Fig. 6.10 is an example of this type of cross-covariance 
function, with t H = 2 months. 

The total cross-covariance function is thus a sum of a function that is 
symmetric to some time lag, and a function that is zero for negative lags. 
Functions like the dashed-dotted ones in Fig. 6.10 result from this combina­
tion. A cross covariance function like the thin dashed-dotted line suggests that 
a, say, positive anomaly will persist for an extended period of time. The fact 
that the signal is transferred from the atmosphere to the ocean and back, 
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Fig. 6.10. Theoretical cross-covariance functions for different interactions of heat 
flux and sea surface temperature. The dashed curves describe situations where heat 
fluxes cause SST variations, as in (6.14). The solid curve is characteristic for the 
reverse situation, where SSTs cause heat flux variations, as in (6.15) . The two dash­
dotted curves are sums of curves of the solid and dashed type. The thin dash-dotted 
curve represents a weak positive feedback and the thick dash-dotted curve a strong 
negative feedback. Adapted from J. von Storch [184] 

does not change the signal significantly. This interaction is called a weak pos­
itive feedback. The thick dash-dotted curve in Fig. 6.10 describes a different 
situation. It changes its sign at zero lag. An initially positive anomaly is t rans­
formed into a negative anomaly after some time, through the exchange with 
the other system. This interaction is called a strong negative feedback. 

To test the validity of the above conceptual model and to determine its 
parameters, cross-covariance functions were derived from a 300-year simula­
tion with a regular climate model. The climate model consisted of a cou­
pled atmosphere-ocean general circulation model. The main advantage of 
using such a model is that the estimation of the cross-covariance function 
becomes rather robust. This is demonstrated in Fig. 6.11. When only 20 years 
of monthly data are used, the cross-covariance function varies irregularly. Only 
when much more data, in this case 300 years, are used, robust features clearly 
emerge. This is the major advantage of the climate model. Observational data 
cover at best a few decades. This is not long enough to reliably estimate and 
conceptualize t he air- sea interaction. 
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Fig. 6.11. Estimated cross-covariance functions of simulated heat flux and sea 
surface temperature. The relatively smooth solid curve is determined from a sample 
of 3600 months (300 years). The more irregular dotted curve is based on only 240 
months (20 years) from the same model simulation. From J. von Storch [184] 

The cross-covariance function shown in Fig. 6.11 is typical for extratrop­
ical conditions in the Pacific. It describes air- sea interaction with a strong 
negative feedback. When, due to the presence of, say, anomalously warm air, 
a downward (positive) heat flux exists at some time, then the sea surface tem­
perature is increased, with the effect that the air- sea temperature difference 
is reduced and even an upward anomalous heat flux may emerge, when the 
air temperature returns to normal conditions. 

The cross-covariance function I' H , T ( T) has been estimated for the lags 
T = -1, zero and + 1, for all ocean grid points. The values are plotted in 
Fig. 6.12. Over most of the global ocean, with the exception of the tropical 
ocean and polar regions, the cross-covariance function is very small for T = -1, 
i.e., when the SST leads. Larger values emerge for zero lags and for lags 
T = +1 , when the heat flux leads. 

Two characteristic numbers are determined at each ocean grid point. The 
first number indicates the relative importance of H and T. It is the lag 
at which the cross-covariance function has its maximum. When this lag is 
positive, then likely the heat flux H leads the sea surface temperature T. A 
negative lag points to the sea surface temperature leading H. The result is 
shown in Fig. 6.13. According to the climate model and the interpretation by 
the conceptual model, SST variations are almost everywhere a result of heat 
flux variations. The opposite link is only found in the tropical ocean and in 
parts of the polar oceans, where sea ice formation and dynamics complicate 
the situation. 

The second characteristic number is the ratio r = f'H,r(l)hs,r(-1). 
When a heat flux generates SST variations and the heat flux itself is not 
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Fig. 6.12. Cross correlation functions between heat flux and sea surface temperature 
at lags -1, 0and+1, derived from a 300 year simulation with a quasi-realistic climate 
model. From J. von Storch [184] 
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Fig. 6.13. Time lag at which the cross covariance function of heat flux and sea 
surface temperature is maximum. Positive (dark) lags indicate a lead of the heat 
flux, and negative (light) lags a lead of SST. From J. von Storch [184] 

changed, then the cross-covariance function is solely given by (6.14). The de­
nominator of r becomes zero so that r = oo. When a SST anomaly causes a 
heat flux anomaly that does not change the SST then the numerator of r will 
be zero so that r = 0. A weak positive feedback is associated with a positive 
r = 0(1) because both the numerator and denominator are comparable and 
have the same sign. A strong negative feedback is associated with negative r 
values. The example shown in Fig. 6.11 displays a case of negative r. 

The number r is displayed for all ocean grid points in Fig. 6.14. Almost 
everywhere, the ocean is covered with moderate negative r -values. Such values 
indicate a regime where an original SST or heat flux anomaly is eventually 
damped by strong negative feedback. In the Central Tropical Pacific near­
zero values of r prevail, indicating a regime where SST strongly influences 
the heat fluxes without any feedback. In the polar regions different situations 
are found. 

The conceptual model (6.11) and its calibration by comparison with a 
coupled atmosphere- ocean general circulation model does not identify the 
physical processes responsible for air- sea interaction but it does identify and 
classify different air- sea interaction regimes. This is a useful result for appli­
cations. Instead of running an expensive coupled atmosphere- ocean general 
circulation model when investigating other questions, one can run a less ex­
pensive ocean general circulation model forced with heat fluxes determined by 
the model (6.11). The atmospheric dynamics is encapsulated in the parame­
ters of the model. 
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Fig. 6.14. Parameter r = /'H,r(l)hH,r(-l) that characterizes the feedback be­
tween SST and heat flux. For color scale see inset . From J . von Storch [184] 

6.2.2 A Conceptual Zero-dimensional Climate Model 

The following example, taken from [166], demonstrates how a complex data 
set, generated by a quasi-realistic climate model, may be used to derive a 
conceptual model - in this case an energy balance model that describes varia­
tions of the global mean temperature. This "zero-dimensional" model is again 
useful since it encapsulates our complex knowledge about the sensitivity of 
climate to greenhouse gas forcing. It has also been used as a convenient tool in 
the design of climate change scenarios and adaptation and mitigation policies 
[166], [125]. 

The concept of the energy balance and a simple energy balance model were 
already introduced in Chaps. 1 and 415 . The state variable of such energy 
balance models is the global mean air temperature near the surface of the 
earth. A particular model is 

d 
dtT(t) = ->.T+µC+n (6.16) 

where C represents the deviation of the global mean concentration of green­
house gases from the pre-industrial level, and T the deviation of the global 
mean air temperature from an equilibrium temperature consistent with the 
pre-industrial concentrations. The >.-term is a restoring term. It describes 
the tendency of the system to return to its equilibrium temperature, when 
the concentrations return to "normal" (i.e., to the pre-industrial value). The 

15 See in particular Figs. 1.11 and 4.9. 
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"source" -term µC describes the heating effect of increased greenhouse gas con­
centrations16. Variations generated within the climate system are accounted 
for by the noise term n. 

An open question is whether (6.16) is a reasonable description of the real 
world, and, if so, what the values of the unknown parameters >., µ and VAR( n) 
are. Ideally, one would test (6.16) and specify the parameters with observed 
data. This is possible only to a limited extent. Temperature data have been 
recorded only since about 1860, and during this time the variations of green­
house gas concentrations have been moderate. A viable alternative is to con­
sider the output of a quasi-realistic climate model run with increasing green­
house gas concentrations as described in Sect. 5.3. 

Tahvonen et al. [166] used (6.16) and fitted the constants >. and µ to the 
output of a "scenario" -simulation by Cubasch et al. [21]. The model simulated 
the response to a prescribed increase of greenhouse gas concentrations. The 
greenhouse gas concentrations were specified in terms of "equivalent C02 

concentrations" according to the Scenario IS92a 17 of the IPCC, with 335 ppm 
in 1985 and 627ppm in 2085. The fit of (6.16) to the simulated data, using 
annual means and some smoothing, gave >. = 2.6 x 10-2 /year, andµ= 3.9 · 
10-4 ppm/(yearK). 

A comparison of the model predictions with observations is shown in 
Fig. 6.15. The thin curve shows the model temperature when it is calculated 
from (6.16) using the two numbers above, no noise term and the time variable 
concentrations C between 1860 and 1987. It reproduces the observed trend 
reasonably well. Part of the observed year-to-year variability is "random" 
and could be modeled by the noise term. Another part is due to systematic 
variations in solar output and in tropospheric aerosols. In principle, these sys­
tematic effects can also be included by adding suitable terms to the conceptual 
model (6.16). 

For comparison, the constants >. and µwere also fitted to the observed data 
from 1860 to 1987. Interestingly, very similar numbers are obtained, and when 
inserted into (6.16), a very similar trend for the temperature results (thick 
line in Fig. 6.15). This result gives credibility both to the original scenario 
simulation and to the conceptual model (6.16). 

The conceptual model (6.16) allows, in a straightforward manner, the esti­
mation of the climatic response to various scenarios of the emissions of green­
house gases into the atmosphere. In conjunction with economic models the 
model can thus be used, and has been used, to evaluate different policies that 
aim at a combination of abatement of and adaptation to climate change. One 
can perform cost-benefit analyses that identify "optimal" policies, which min-

16 A better approximation is to use log(C) instead of the linear term C, but for 
small concentrations this difference is immaterial. In the study by Tahvonen et 
al. [166] the linear term was used to facilitate a subsequent optimization problem 
involving economic costs and benefits. 

17 See Fig. 5.36. 
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Fig. 6.15. Observed air temperature variations from 1860 through 1987 and esti­
mated temperature increase, calculated from (6.16) as a response to the observed 
increase of greenhouse gas concentrations from 1860 to 1987. From Tahvonen et 
al. [166] 

imize the abatement costs given some climatic thresholds, or minimize the 
total abatement and adaptation costs [166] . 

6.3 Simulating the Unobservable 

Any analysis of the environment is hampered by the fact that the observa­
tional record is both incomplete and limited. Only a few variables are recorded 
at a limited number of positions. Subtle but important aspects, like the de­
viation from uni-modal distributions, can often not be inferred from such 
observational data. Such incomplete observations may be interpolated in a 
dynamically consistent way by assimilating them into a quasi-realistic model 
(as is, for instance, done in the NCEP / NCAR global re-analysis of atmo­
spheric data - see Sect. 5.2.1) but this interpolation usually does not recover 
relatively subtle aspects either. The only alternative in these cases is to trust 
the output of quasi-realistic models. We present three examples: 

• statistics of circulation regimes in the North Sea, 
• multiple equilibria of the atmospheric circulation, and 
• tidal dissipation. 



6.3 Simulating the Unobservable 181 

Other examples are the analysis of the global energy cycle [103], [168], and 
the analysis of empirical links between proxy-data and climate variable [195]. 
The latter analysis aims at determining those links that remain stationary 
over hundreds of years and can be used for the inversion of proxy data. 

6.3.1 Circulation Regimes in the North Sea 

A straightforward example of constructing knowledge about something unob­
servable is the case of the statistics of the flushing circulation of the North 
Sea in Northwest Europe. From a variety of limited observations, a number of 
different circulation regimes were identified in the North Sea [4], varying on 
time scales of days and weeks. The most frequent regime is one with a counter­
clockwise rotating circulation cell, but sometimes the circulation is clockwise, 
less organized and even ceases altogether. 

Unfortunately, statistics about the frequency of the different regimes and 
the transition probabilities between the different regimes, including the per­
sistence of remaining in a regime, cannot be derived from observations since 
no long-term daily analyses of the North Sea circulation exist. 

Therefore, Kauker [78] integrated a quasi-realistic North Sea model for 
15 years, forced with the atmospheric fluxes of the ECMWF re-analyses18 . 

The model output was compared with observations of water level at coastal 
stations and temperature and salinity maps, which are available for some 
months. The comparison was satisfying, and the model considered validated. 
The observations were found to be positive analogs . The neutral analog "daily 
circulation" was analyzed in some detail [79]. Only winter conditions were 
considered, one field per day in the months December, January and February. 

Five different circulation regimes were found19 . Typical streamfunction 
patterns for these regimes are shown in Fig. 6.16. Regimes I and III exhibit 
typically two opposite one-cell circulations, regimes II and IV are somewhat 
reminiscent of opposite double cell patterns, and regime V exhibits almost no 
circulation. The most frequent regime is the counterclockwise rotating one cell 
regime III with a frequency of 303; the second most frequent regime is regime 
II with a frequency of 293. Regimes I and IV appear with a probability of 
about 153, and 103 of all cases are classified as belonging to the "ceased" cir­
culation regime V. The frequencies of transitions between the different regimes 
"X" and "Y", abbreviated by X ---> Y, are shown in Table 6.1. 

Thus, the system has a clear tendency of remaining in the present regime 
(persistence), but also a weak tendency towards a "circular" evolution " · · · 
--->I --->II --->III ---+IV". This feature is related to the climatological characteristic 
of (cyclonic) storms passing across the North Sea in easterly direction. 

18 A similar simulation was done by Janssen [70] for the Baltic Sea. 
19 Formally, these regimes represent five different subsets of a two-dimensional phase 

space. The phase space is spanned by the first two EOFs of daily streamfunction 
variations. For details, refer to [79]. 
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Table 6.1. Frequencies of transitions between regimes "X" and "Y" 

y 

x X->I X->11 X->111 X->IV X->V sum 
1--->Y 10.6 2.6 0.1 0.4 0.6 14.4 
11--->Y 1.2 20.1 4.8 0.6 2.2 28.9 
III->Y 0.1 2.6 23.1 3.8 0.6 30.2 
IV->Y 1.5 0.8 1.7 8.4 2.5 14.8 
y_,y 1.0 2.7 0.6 1.6 3.6 9.5 

This type of analysis could only be done with the help of a model. In 
this case, the output of a model was used that was validated by the available 
observations. Certainly, the output of a model that assimilates the available 
observations would be superior and ensure a better similarity of the modeled 
and real ocean state, but such multi-year oceanic re-analyses have not been 
done yet. 

6.3.2 Multimodality in Atmospheric Dynamics 

The atmospheric dynamics on time scales of days, weeks and longer are non­
linear, a fact clearly documented by the limited success of predicting weather 
for more than a week or so. In order to understand this nonlinear behav­
ior, Edward Lorenz [102] reduced the atmospheric dynamics to a system of 
three ordinary differential equations. This system exhibits chaotic behavior, 
the famous butterfly effect. It has two distinct attractors and flips irregularly 
between the two. Many efforts were launched to identify such attractors or sta­
ble states in the large-scale atmospheric circulation. One prominent example 
is the theory of Charney and De Vore [18]. They derived a conceptual model of 
the extratropical circulation that exhibits two distinctly different circulations. 
One circulation is almost zonal. The stream function is east-west banded. The 
other circulation is "blocked". The stream function is strongly wavy. These 
two states are reminiscent of the two major winter weather situations in the 
extratropics, namely a continuous westerly flow with its associated sequence of 
extratropical storms, and a blocking situation, where a high pressure system 
prevails over, say, Europe and "blocks" storms from entering Europe. Thus, it 
was thought that Charney and DeVore's mechanism would help to understand 
and eventually predict this phenomenon. And meteorologists started to search 
for the fingerprint of this mechanism in observational data. They searched for 
the presence of multimodal distributions of large-scale atmospheric variables. 

An early success was claimed by Hansen and Sutera [52], but a subse­
quent analysis by Nitsche et al. [124] demonstrated that the present amount 
of observational data is not sufficient to detect multi-modality in two or more 
dimensions and that much more data are required than are presently available. 

This detection problem has been addressed systematically by Berner and 
Branstator (pers. comm.) using a quasi-realistic general circulation model of 
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Fig. 6.16. Typical surface velocity streamfunction in the five regimes of the North 
Sea Circulation. Negative values are shaded. Units: 103 m 2 / s. From Kauker and von 
Storch [79] 

the atmosphere. They ran the model repeatedly, from slightly different initial 
conditions, for a very long time under "perpetual" January conditions20 . They 
analyzed 20 simulations of 50,000 days each. With data stored twice daily, each 

20 "Perpetual" January simulations were popular in the 1980s. They allow the gen­
eration of very long stationary data sets. An atmospheric GCM is run under 
perpetual January conditions by fixing the sea surface temperature distribution, 
the soil temperature and moisture and the solar insolation to observed conditions 
in January. 
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of the 20 simulations generated 100,000 atmospheric states. Thus, a total of 
2 million daily atmospheric states were generated to test various hypotheses, 
among them, the hypothesis of multiple equilibria. 

Here we consider the joint 2-dimensional distribution of two EOF coeffi­
cients21: EOFl and EOF4 of the 500 hPa global geopotential height. EOFl 
is sometimes related to the Arctic Oscillation. EOF4 was chosen because 
it was found to have the most non-Gaussian distributed coefficients among 
the leading EOFs. The distributions are estimated by either simple binning 
(30 x 30 bins) or by using a more sophisticated kernel method, which fits a 
sum of smooth function to the distribution. 

Figure 6.17 displays the estimated distributions derived for different sam­
ples of monthly data. When 100,000 monthly maps are used (top), then the 
binning and kernel distributions are rather similar. They are both slightly 
skewed, with only one maximum. When a smaller number of samples is used, 
then some of the estimated distributions become bi-modal whereas others 
remain uni-modal (i.e., have one maximum). 

Examples for two different samples of 125 monthly maps are shown 
in Fig. 6.17. The estimates using the binning method (middle row) differ 
markedly from that using the kernel method (lower row). The binning esti­
mate shows in both cases a bi-modal distribution, which has little similar­
ity with the best estimate based on 100,000 months. However the irregular 
appearance of the distributions warns the expert that there may be an es­
timation problem. The situation is different for the distributions estimated 
with the kernel method. Both estimates are smooth, but one of them is also 
a distinctly bi-modal. 

The sample size of 125 monthly maps was, of course, not chosen arbitrarily. 
It corresponds to the sample size presently available from observations, 3 
months per winter for 40 years gives 120. The lesson to be learned from this 
study is thus that the limited sample size of our observational record may 
lead to severe misjudgements. Berner and Branstator's very large sample of 
100,000 monthly maps, constructed with a model, enabled them to determine 
the "true" distribution with reasonable accuracy, and to demonstrate what 
type of erroneous assessments become possible when the limited observational 
evidence available to us today is used. 

6.3.3 Tidal Dissipation 

How and where the tides dissipate their energy is an open question with 
consequences for many oceanographic problems. Traditionally, it has been 
assumed that most of the tidal dissipation occurs through bottom friction in 
shallow seas but recently it has been suggested that a substantial fraction 

21 EOFs are statistically determined characteristic patterns, which are most efficient 
in describing space-time variability. The coefficients are normalized to a standard 
deviation of one. For further details refer to Appendix C.2.2. 
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Fig. 6.17. Estimated two-dimensional distributions of leading EOF coefficients of 
geopotential height derived from simulated data sets. Top: Estimation based on 
100,000 monthly maps (estimated through binning and with a kernel method). Mid­
dle: Estimation based on two subsets of only 125 monthly maps each, using binning. 
Bottom: Estimation based on the same two subsets of 125 monthly maps shown 
above, but using the kernel method. Courtesy of Berner and Branstator 
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may also dissipate in the deep ocean through conversion of barotropic into 
baroclinic tidal energy at bottom topography. 

The kinetic and potential tidal energies per unit surface area are defined by 

where ~e and 6 are the bottom level variations due to the earth tides and the 
tidal load. The energy equation can be obtained by multiplying the momentum 
equation (4.12) by paVh/Ho and the volume balance equation (4.8) by pag~ 
and adding the two. The result is 

where Ph is the horizontal energy flux vector, W the work done by the grav­
itational forces, F the energy flux into the bottom, and D the dissipation. 

When averaged over a tidal cycle the tendency term vanishes and one 
obtains 

(6.17) 

where cornered brackets < · > denote the average over the tidal cycle. 
When considering global averages, the dissipation can be estimated as the 

difference of the work done by the gravitational forces W and the energy 
flux into the bottom F. The horizontal energy flux Ph only redistributes 
energy within the ocean. It vanishes when averaged over the ocean. The ocean­
integrated tidal energy budget thus reduces to 

1 <D>= 1 <W> -1 <F> 
ocean ocean ocean 

(6.18) 

That part of the total energy input by the gravitational forces which is not 
balanced by transfer to or from the solid earth, must be taken care of by 
dissipation in the ocean. The total basin-integrated energy fluxes J < W > 
and J < F > can be estimated from the tidal potential and tidal elevation, 
resulting in total dissipation rates of about 3. 75 x 1012W or 3. 75 TW for all 
tidal constituents and in about 2.5 TW for the M2 tide22 . 

The question is, of course, where this dissipation is taking place. The con­
ventional wisdom is that most of the oceanic tidal dissipation occurs in regions 
shallower than 200 m. The reason offered for this conclusion is as follows: 

22 These oceanic estimates are consistent with estimates for the loss of energy from 
the earth-moon system which reflects itself in changes of the length of day The 
energy loss from the earth-moon system is dissipated mostly in the ocean. Only 
about 5% is dissipated in the solid earth and less than 1 % in the atmosphere. 
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the ratio of the areas shallower than 200 m to those deeper than 200 m is 
about 0.07; tidal currents in shallow water are nearly one order of magnitude 
larger than those in deep water; since dissipation by bottom friction is cubic 
in the tidal current speed (for quadratic bottom friction) only a fraction of 
approximately 0.013 = 0.93 x 1/0.07 x 103 is dissipated in the deep ocean. 
The remainder is dissipated in shallow seas. 

This conventional wisdom is supported by contemporary hydrodynamical 
models. It also seems to hold when altimeter data are assimilated into such 
models. An example is Kantha et al. [77], who assimilated Topex/Poseidon 
altimeter data into a high-resolution hydrodynamical tidal model. They eval­
uated the expression 

(6.19) 

with a bottom friction Fh ,..__, UhlUhl (cf., (4.5)) and found that about 0.953 
of the M2 tidal dissipation occurred in shallow seas, consistent with the con­
ventional wisdom23 . 

This result should not surprise since the analysis relies on (6.19) which 
puts dissipation at locations where currents are strongest, i.e., in the shallow 
seas. The problem is the dependence of the dissipation D on the parameterized 
friction term Fh. If one computes dissipation from a parameterization then 
one obtains results consistent with this parameterization. The conventional 
wisdom is encoded into the model. The data assimilation only improves the 
estimation of the currents, but not necessarily the estimation of the dissipa­
tion. 

An alternative approach is to estimate dissipation from the balance ( 6.17): 

( 6.20) 

By doing so, one avoids ascribing dissipation to bottom friction. Instead, it is 
given as the residual. 

This alternative approach requires the expressions for the horizontal en­
ergy flux 

(6.21) 

which is defined by pressure times velocity plus energy density times velocity, 
the work done by the gravitational forces 

(6.22) 

with the gravitational potential (4.11), and the vertical energy flux into the 
bottom F 

(6.23) 

which is defined as bottom pressure times the vertical velocity of the ocean 
bottom. The spatial distribution of the energy flux < F > can be inferred 

23 The total dissipation rate was only 2.1 TW, falling short of the required 2.5 TW. 
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from the tidal potential and elevation whereas the spatial distributions of 
< W> and <Ph> depend on the volume transport Uh and hence require a 
hydrodynamical model. 

Egbert and Ray [32], [31] used this alternative approach and estimated 
the distribution of tidal dissipation in the ocean for the M2 tide from equa­
tion (6.20). They assimilated Topex/Poseidon data into a hydrodynamical 
model, allowing for errors in the momentum equation while conserving mass 
exactly24 . In this way, they assigned the dissipation to locations where it is 
"needed" to optimally blend data and model. They used the hydrodynami­
cal model discussed in Sect. 5.2.4 with state variables ~(x) and Uh(x). The 
observation vectors are the differences d(x, t) of the tidal elevations at the 
cross-over points of ascending and descending Topex/Poseidon ground tracks 
with an observation equation similar to (5.8). 

Figure 6.18 shows the deduced dissipation rates for two such assimilations, 
differing in assimilation technique and bottom friction coefficient. The color 
scale is chosen to emphasize the structures in the open ocean and saturates in 
some shallow seas where the dissipation generally is highest. There are some 
blue areas which indicate negative dissipation. This is clearly unphysical but 
gives a sense of the noise in the maps. Though the maps obtained with the 
different methods differ in detail they have many features in common. There 
are basically two areas of high dissipation: 

1. The shallow seas (such as the continental shelves, the Hudson Bay, the 
Yellow Sea, etc.). Here the dissipation is due to the frictional bottom drag. 

2. The open ocean ridges (such as the Hawaiian ridge, the Mid-Atlantic 
ridge, the Tuamotu archipelago, etc.). These are areas where elongated 
topographic features are perpendicular to the tidal currents. 

These topographically relevant areas are encircled in Fig. 6.18 by solid lines. 
To quantify the dissipation patterns Egbert and Ray integrated the dissipa­
tion rates over these encircled areas. The integration of (6.20) involves area 
integrals of the work term < W> and flux term < F> and line integrals of 
Ph along the boundaries. By putting the boundaries in deep water they mini­
mized the effect of uncertainties in the volume transports Uh· The dissipation 
estimates for the shallow seas are thus fairly accurate although tidal currents 
in shallow seas are generally not. The result of these integrations is shown in 
Fig. 6.19, including additional cases. 

All calculations give a value of 2.44 ± 0.01 TW for the total dissipation 
rate. Out of this 0. 70 ± 0.13 TW occur in the deep ocean. The values for the 

24 Estimating dissipation from the energy balance (6.20) requires that one enforces 
mass balance quite strongly. The reason is that transports are estimated from the 
momentum balance which contains the gradient of the elevation field. Dissipation 
estimates then requires another gradient to calculate flux divergences. If mass 
is strictly conserved then the term involving two derivatives is replaced by iwe 
and dissipation really only requires one derivative, making it much less prone to 
errors. 
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Fig. 6.18. M2 tidal dissipation rates, estimated by combining Topex/Poseidon al­
timeter data with two different hydrodynamical models in different ways. The solid 
lines encircle high dissipation areas in the deep ocean (top) and demarcate the 
boundary between deep and shallow seas (bottom) . From Egbert and Ray [32] 

hydrodynamical model without data assimilation are 2.02 TW and 0.06 TW, 
respectively. Assimilation of altimeter data thus causes a considerable change 
in the location of tidal dissipation: About 25- 30% occurs in the deep ocean, 
as opposed to only 3% in the conventional hydrodynamical model. 

The spatial distribution of the deep-ocean dissipation suggests conversion 
of tidal energy into baroclinic tidal energy at topography. When extrapolated 
to all tidal harmonics about 1 TW might be dissipated in the deep ocean. This 
would resolve a long standing oceanographic problem. The abyssal density 
field of the meridional overturning circulation is maintained by a balance of 
upwelling and vertical mixing. It is estimated [120] that this mixing requires a 
mechanical energy input of about 2 TW. About 1 TW is provided by the wind 
[192]. The tides may provide the other 1 TW. As pleasing as this scenario 
might be, it must also be realized that the physical processes involved in such 
a scenario are not fully identified yet , but are under intense study. 

Of course, now that the data assimilation exercise has suggested that tides 
dissipate part of their energy in the deep ocean, presumably by conversion to 
baroclinic tides at topography, one can introduce this process into the hydro­
dynamical model - and get a reasonable representation of this process without 
resorting to data and t heir assimilation into models. Indeed, a hydrodynam­
ical model that accounts for deep-ocean dissipation by an appropriate drag 
law produces a dissipation distribution not much different from the data as-
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Fig. 6.19. Area-integrated dissipation rates for selected shallow sea (a) and deep 
ocean (b) areas. Results are given for five different formulations of the hydrody­
namical model and assimilation scheme, together with the error bars obtained by a 
Monte Carlo approach. From Egbert and Ray [32] 

similation estimate. Dynamical models are continuously updated to include 
the "latest physics" . 

It should also be kept in mind that the successful blending of data and 
models and a reasonable outcome, does not preclude the possibility that other 
approaches, which combine other data with models in different ways, may lead 
to equally reasonable but different outcomes. Thus, the above exercise suggests 
that deep-ocean tidal dissipation is a major contributor to the tidal energy 
balance, but it has not proven that it is in reality. It is still a neutral analog. 
It needs to be confirmed by actual physical measurements. 
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Issues and Conclusions 

In the preceding chapters, we have exposed the general philosophy behind the 
use of quasi-realistic models in atmospheric and oceanic sciences and illus­
trated it by many examples. Quasi-realistic models are not only an important 
but an indispensable part in the tool box of the environmental scientist. They 
are indispensable as they often constitute the only way to extrapolate beyond 
the immediate range of experience and to determine characteristics of the 
state of the system. 

As outlined by Navarra [122], there are three main parts in the tool box: 
reduced concepts or theories, empirical evidence and statistical methodology, 
and quasi-realistic models and numerical experimentation. Generally, none of 
these alone is sufficient to generate new knowledge. Theory without informa­
tion reflecting reality, either generated by observations or quasi-realistic mod­
els, is as useless as a statistical analysis of environmental data without quasi­
realistic modeling or theoretical considerations guiding the analysis through 
the maze of infinitely many degrees of freedom. The same is true for the sub­
ject of this book, the use of quasi-realistic models: alone, they just generate 
numbers which are usually as incomprehensible as raw and unprocessed ob­
servations. The scientist employing quasi-realistic models needs observations 
or theoretical concepts to validate the model and to extract useful knowledge 
from it. 

There are other important issues as well. In the introduction to this book, 
in Sect. 1.7, we listed as key issues: 

• reduction of information, 
• new and old models, 
• trustworthiness, 
• model builders and users, and 
• social and psychological conditioning. 

It is worth now revisiting these issues. 
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7.1 Reduction of Information 

Similar to observational programs, models generate large or even huge amounts 
of numbers. These numbers contain detailed information about the state of 
the system. Different from observations, these numbers are obtained under 
controlled conditions. But the numbers by themselves are of little utility. 

This is not to say that huge simulation exercises, like the NCEP's re­
analyses of the global weather over the past 50 years (Sect. 5.2.1), are not 
useful. They are tremendously useful. They are, in fact, used in a large variety 
of studies as key ingredient (see e.g., Sect. 5.2.2). But the re-analysis itself 
does not provide new knowledge about atmospheric dynamics. Its value lies 
in providing an excellent data set, from which the scientific community can 
extract relevant characteristics and infer answers to relevant questions. 

This is generally true: model output is transformed into useful knowledge 
only by a suitable analysis strategy. This strategy is guided by a priori con­
ceptualization, either based on theoretical insight - as in the cases of testing 
Stommel's theory of the stability of the thermohaline circulation (Sect. 6.1.4) 
and the determination of the air-sea interaction signature (Sect. 6.2.1) - or 
on empiricism - as in the case of the circulation statistics of the North Sea 
(Sect. 6.3.1). The model data need to be projected onto a reduced system1 . 

One needs simplified concepts to formulate hypotheses and statistical analy­
ses. An example for such reduction and analysis is the zero-dimensional cli­
mate model presented in Sect. 6.2.2, where model data were projected onto 
an energy balance model, with parameters determined by a statistically opti­
mized fit to the model (and observed) data. 

The concepts and statistics do not need to be sophisticated, but attempts 
to proceed without them will lead to arbitrary conclusions and amount to no 
more than a fishing expedition2 . 

Theoretical and/or empirical analyses and reduction of information are 
also required to provide meaningful input into models. The reconstruction of 
past developments or scenarios of future developments require first of all that 
a few potentially important forcing factors have been identified3 . Numerical 
experimentation requires well-formulated distinct hypotheses. 

Hypothesis testing also identifies the third component where information 
may need to be reduced, not only in the input and output but in the model 
itself. For most applications the maxim is that the model should be as realistic 
as possible, but this is not necessarily true for hypothesis testing. To detect 

1 This is also true for observed data. They will reveal "meaning" only after framed 
within a useful concept. A formal approach is the PIP concept suggested by 
Hasselmann [57]. 

2 ••• with the danger that once a fish is caught that its value might not be appre­
ciated. 

3 This is different in those cases of data assimilation where models play the sec­
ondary role of augmenting the observational evidence. In these cases all kind of 
available data are utilized. 
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signals, to keep track of the causal relations, and to interpret the results 
often requires that one resorts to less realistic models. The same is true of 
sensitivity studies, which are often performed with models of intermediate 
complexity in order to arrive at transparent conclusions. Marotzke [110] and 
Scott and Marotzke [149] use an idealized ocean general circulation model 
(rectangular geometry, flat bottom, no wind forcing) to study the sensitivity 
of the meridional overturning circulation with respect to the magnitude and 
location of diapycnal mixing. 

The issue of reduction of information is also related to the issue of "new" 
versus "old" models, discussed next. 

7.2 New and Old Models 

Quasi-realistic models have a finite life time, in contrast to conceptual models. 
Nobody hesitates to refer to Arrhenius' [3] energy balance model (Sect. 4.2.4), 
but the idea to use today a climate model that was designed 30 years ago in 
the mid 1970s would certainly not be applauded. In climate sciences, the life 
span of a quasi-realistic model version, from its first publication to its eventual 
demise, is about 5 years. Within these 5 years the model is extended to include 
more processes, the resolution increased to describe more details, and the code 
adapted to newer computer technology. The model becomes a new model. 

The old models, which just years ago were considered state-of-the-art and 
adequate to study a wide range of problems, are declared unfit - because 
more complex new models are now available. When the new version of a 
model is presented to the scientific community, this often takes the form of 
first illustrating the deficits of the "old" model and praising the achievements 
of the "new" model version. However, this "new" model will be "old" in no 
more than 5 years. 

This situation is irritating. If models have a limited lifetime, do their results 
have a limited life time as well? Are results obtained with models no longer 
"state-of-the-art" also not "state-of-the art"? Is knowledge generated with 
quasi-realistic models ephemeral, only valid until the next generation of model 
version is installed? Certainly not. 

First of all, the results of new models do not invalidate all the results of 
old model. Usually, new models change some of the results but mostly they 
add results. Results from "old" models usually remain valid. Many significant 
results were achieved with the GFDL model system, which for many years 
was not or only slightly updated4 . Only rarely are there quantum leaps in the 
succession of models. For climate models, one example was the replacement 
of the mixed-layer ocean model by a dynamical 3-dimensional ocean model 
at around 1990. Another example may be the replacement of the current 

4 Another example for a healthy persistent reliance on an "old" modeling system 
is given by Branstator as discussed in Sect. 6.3.2. 
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coarse-resolution ocean models (which treat the ocean as made up of mustard 
rather than of water) by eddy-resolving ocean models. This may change the 
assessment of the role of the ocean in the climate machinery significantly. 
Nevertheless, most results obtained with "old" models will remain valid. 

Second, more complex models are not necessarily "better" models. They 
may feature more neutral, potentially positive analogs, but they may also 
feature fewer of them. More complexity does not imply more positive analogs. 
Being more complex is not a virtue in itself. Being more complex means 
that the border of closure has been pushed towards more detailed processes 
and higher resolution (Sect. 2.1.2). The level at which parameterizations are 
invoked is changed. More processes are parameterized, more parameters have 
to be guessed, more assumptions have to be made. Uncertainty increases; it 
does not decrease. 

Third, it must be kept in mind that models are used for a purpose. Again, 
being more complex is not a virtue for all purposes. Keeping track of causal 
relations might be more important. 

Old models are an important reference to validate new models. Only when 
the significant results derived from old models (and validated by independent 
observational evidence) are reproduced by new models, should the new, more 
detailed results of the new model be considered potentially positive analogs. 

We need to value continuity in quasi-realistic modeling, and to be vigilant 
of the ever-increasing complexity of models, which relies on more and more 
assumptions encoded somewhere in parameterizations. 

7 .3 Trustworthiness 

Trustworthiness is perhaps the most important issue. It is concerned with 
the applicability of models and with the potential of models to generate new 
knowledge. The main points here are that models only describe limited aspects 
of reality, need to be validated by various means and generate new knowledge 
about the system only when extrapolated beyond the validated range. 

In this book we mostly considered quasi-realistic models, which purport to 
reproduce a significant part of reality. These models do not describe all aspects 
of reality. Thus, they are not really "ocean models", but only models which 
describe certain aspects of the ocean, for instance the large-scale circulation, 
the water quality or the propagation of sound waves. Principally, models are 
not models "of" something but models "for" something. They are constructed 
for a specific purpose, and should in general be applied only for this purpose5 . 

The tide models in this book are designed to describe the dynamics of tides 
on spatial scales larger than a few kilometers in the open ocean and marginal 
seas. They do not predict the tidal elevations in a seaport or around the 

5 It might well happen that a model constructed for one purpose works very well 
for another, initially not intended purpose as well. 
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island of Oahu. Climate models are supposed to simulate conditional weather 
statistics on time scales of days to hundreds and even thousands of years and 
on spatial scales of several tens or more kilometers, and not to predict the 
formation of thunderstorms in the next hours and the number of lightning 
strikes. 

There is no way of proving that models give the right answers for the right 
reasons. Instead the situation is like a judicial process in court, when more 
and more supporting evidence is gathered for supporting a claim. Complete 
certainty that the claim is true cannot be achieved, and vigilance is always 
required. On the other hand, new observations may become available which 
contradict a model result. Then the model has to be declared inappropriate for 
certain applications. An example is the stochastically excited 350-year eigen­
oscillation in the meridional overturning circulation of the Atlantic Ocean 
(Sect. 6.1.3), which was a neutral analog. Such a time scale could not be 
found in proxy data, It was concluded that the real oscillatory modes on 
these times scales cannot be modeled with prescribed atmospheric boundary 
values. The neutral analog turned into a negative analog. The ocean model 
itself is still considered useful, but not for this specific application. 

The various ways to validate a model, or to bring supporting evidence 
before the court, were discussed in Sect. 3.1 and included 

• repeated successes in independent forecasts, 
• the skill in describing distinctively different configurations, and 
• consistency with new (or not yet considered) data sets or with well-

established theoretical concepts. 

Examples included the success of forecasting in Sect. 5.1, the skill of climate 
models to simulate both present and paleoclimatic conditions, the consistency 
of the modeled and reconstructed historical climate during the Late Maunder 
Minimum in Sect. 6.1.2, and the success of a regional atmospheric model to 
describe the long-range transport of pollutants in Sect. 5.2.3. 

We can usually demonstrate that such models perform more or less skill­
fully for certain situations which have been well observed. But knowing this, 
validating models, determining their positive and negative analogs, is not con­
structive. We only learn something about the model but nothing about reality. 
This may be interesting for certain people, in particular for mathematicians 
studying the properties of abstract and often artificial systems. But environ­
mental scientists are supposed to explain the functioning of the real system, 
to determine its sensitivity to external disturbances, and to predict possible 
future developments. They must strive for knowledge about the real system. 

The constructive use of models is to assume that characteristics of the 
system, which are represented in the model but which cannot be observed, 
are valid for the real system as well, that neutral analogs are actually positive 
analogs , that one can extrapolate beyond the range of past experience. We 
have provided some examples in Chaps. 5 and 6, in which this bold step is 
taken: the scenarios in Sect. 5.3, the almost global cooling during the Late 
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Maunder Minimum (Sect. 6.1.2), the proposition that Stommel's conceptual­
ization governs the stability of the Atlantic overturning in Sect. 6.1.4, or the 
identification of deep-ocean dissipation as a major part of the tidal energy 
balance in Sect. 6.3.3. 

There are two further aspects about trustworthiness: 

• "Good" models do not guarantee good results. The answers given by a 
quasi-realistic model cannot be better than the questions asked. The prin­
ciple "rubbish in, rubbish out" applies to quasi-realistic models as well. 
Useful knowledge is not automatically generated by quasi-realistic models. 
Instead, modeling strategies need to be carefully designed in a framework 
based on dynamical hypotheses and empirical evidence, and the output 
needs to be evaluated in a similar theoretical and statistical framework 
(cf. Sect. 6.1). 

• Models are not impartial umpires. It can happen that the same phe­
nomenon is reproduced in different quasi-realistic models in different ways. 
This has happened for instance for the cold Late Maunder Minimum 
episode discussed in Sect. 6.1.2 (See Shindell et al. [152] versus Zorita 
et al. [196]). Thus, numerical experimentation in itself is not always con­
clusive in "explaining" phenomena or discriminating between different hy­
potheses and frameworks. 

1.4 Model Builder and Model User 

Quasi-realistic computer models are not a common scientific product like a 
formula or a theory. Quasi-realistic models are usually not constructed by an 
individual scientist but by a research group, consisting of many individuals 
with expertise in environmental sciences, applied mathematics and computer 
technology. The models are executed on computers which require support by 
hard- and software specialists. Often the models are a product of an institute. 
The names of models reflect this fact: POM, the Princeton Ocean Model; 
ECHAM, the European Center HAMburg model; HOPE, the Hamburg Ocean 
Primitive Equation model. The model builders provide the model to users as 
executable codes. Often these models are provided to large user communities 
as community models. 

There are also other reasons why quasi-realistic models are not a common 
scientific product: 
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1. Models are often regarded as a proprietary good, not shared with other 
scientists. 

2. Models are expensive. Only "rich" scientists can afford to build and run 
models6 . 

The users do not necessarily know and understand the inner workings of the 
code and model. They have to rely on the assertions of the model builders 
that the model does what it is supposed to do. A quasi-realistic computer 
model is hence not a scientific product like the theorem of residues or the 
frequency of the pendulum that has been proven or calculated by generations 
of mathematicians or physicists. 

7.5 Social and Psychological Conditioning 

Science is not happening in an isolated space, protected against the traits of 
human nature. Modelers are humans, who interact with other humans. Some 
are keen on recognition, others try to avoid conflicts. Science is a social process. 
The old ideals of "truth speaks to power" have been found to be often unre­
alistic, in particular in case of environmental sciences. Instead, environmental 
sciences find themselves in a postnormal stage, where scientific framing, ex­
planation, and perceptions are not only governed by scientific findings but 
often also by pre-scientific value preferences and even by ideologies. Science 
takes part in the market of relevant knowledge claims. Scientific success is 
rewarding not only in terms of recognition but also in terms of job security 
and promotion. These facts have implications for quasi-realistic modeling. 

On the one hand, modelers feel constrained to keep their results within a 
certain range of what other models produce. Results way off the commonly 
accepted range are not well received, at least not when presented by file-and­
rank scientists. Reinforcing existing concepts with newer, more detailed and 
complex models is rewarded. Reviewers are pleased to see that their former 
results and considerations stand the test of time. 

On the other hand, modelers also feel tempted to introduce modifications 
that lead to "spectacular" results. Spectacular results, as long as they are 
not too speculative, are also well received by such flagships of international 
publishing as Science and Nature. Their criterion for publication is "general 
interest beyond the immediate discipline", though the news must also be able 
to pass the reviewers, the doorkeepers of conventional wisdom and their own 
vested interests. 

Model output is fairly sensitive to details of the model formulation. Mod­
elers can steer their results in a certain direction by simply changing their 
codes. Models can be manipulated. In fact, it is a characteristic property of 

6 There are only few research centers in first-world countries that are capable of 
running extensive climate scenarios as those described in the Intergovernmental 
Panel on Climate Change reports. 
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models that they can be manipulated. This property is used in numerical 
experimentation. Manipulation of models is a desired property, but of the 
experimental set-ups, not of the results. So far, no case of conscious manip­
ulation in the oceanic and atmospheric sciences has been made public, but 
chances are that they have taken place, and will continue to take place. In 
other sciences such cases have been discovered and it is unlikely that this 
specific modeling community is free of similar manipulations. 

Many quasi-realistic models are dauntingly complex. Their codes stretch 
over thousands of lines. Almost certainly these models must contain a number 
of "errors". Here, "errors" refers to instances when (minor) parts of the code 
do not function as intended. This sounds worse than it is. Generally these 
errors will have little consequence on the overall performance of the model. 
It is believed that these unavoidable errors and inconsistencies will not really 
affect the model's spectrum of neutral analogs. Thus, this type of error is 
regarded as a kind of nuisance that one has to live with. 

It is, however, a common experience among modelers that model codes 
and set-ups often also contain more serious errors. Modelers try to eliminate 
these by carefully repeating simulations and numerical experiments several 
times under different conditions to see whether the model works as intended. 
It is only after these tests that the modeler believes that the set-up is free 
of such significant errors. It is an irritating detail that almost never are cases 
reported about the detection of such errors after publication of the results. 
No numbers are available but it seems reasonable to assume that at least a 
few percent of all published results with complex models suffer from serious 
modeling errors detected too late. 

7 .6 Final Conclusions 

Our main conclusions about the utility of quasi-realistic models are: 

• Models in general and quasi-realistic models in particular are major tools 
to expand our knowledge about environmental systems. 

• Models of environmental systems are neither true or untrue, nor valid or 
invalid per se; rather they are adequate or inadequate, useful or not useful 
to answer specific questions about the system. They describe larger or 
smaller parts of reality, but never all of reality. 

• The validation of models by comparison with data is an important pre­
requisite for their application. However, the validation does only provide 
new insight about the model. New knowledge about the studied system is 
gained by applying models to new situations outside the validated range 
with all the risks that such an extrapolation entails. 

• Models are a tool only. They do not divulge new knowledge by themselves. 
The act of generating new knowledge still depends on the modeler, on his 
or her skill in setting up the simulation or experiment, in asking the right 
questions, and in applying the right methods to analyze the model output. 



Appendices 

In the following appendices we describe in some detail the technical back­
ground for four important aspects of modeling: 

A: Foundations of the dynamical equations used in atmospheric and oceanic 
modeling, 

B: Aspects of the numerical formulation of dynamical equations, 
C: Aspects of statistical terminology and concepts, and 
D: Concepts of data assimilation. 

The presentation is rather compact and makes use of vector and tensor 
notation. 



A 

Fluid Dynamics 

In this appendix we describe in some detail the dynamical laws that govern 
fluid systems such as the ocean or the atmosphere. These laws are the subject 
of fluid dynamics. Fluid dynamics combines three types of laws: the conserva­
tion laws, or more generally, the balance equations for mass, momentum and 
energy; the thermodynamic laws that govern the properties of individual fluid 
parcels; and the phenomenological flux laws. These laws are well established 
and proven experimentally. They are discussed first, in Sect. A.1 through 
Sect. A.4. Next we describe in Sect. A.5 the additions and modifications to 
the balance equations when radiation, phase transitions and photochemical 
reactions are included. These sections provide the basic physics underlying 
the dynamics of the atmosphere and ocean. 

The next sections cover some of the approximations when one applies these 
basic laws to geophysical flows, i.e., to large-scale flows in the atmosphere and 
ocean. The Reynolds decomposition is explicitly treated in Sect. A.6. The 
standard parameterizations of interior eddy fluxes in terms of eddy diffusion 
coefficients and of boundary eddy fluxes in terms of drag coefficients and 
"Ekman suction" are given in Sects. A. 7 and A.8. The anelastic and shallow 
water approximations to the basic fluid dynamical equations are discussed in 
Sect. A.9 and examples of different representations are given in Sect. A.10. 

A.1 The Balance Equations 

A.1.1 Mass Balances 

Fluids like seawater and air consist of many components. Here we assume, as is 
often done, that they consist of just two components: water and sea salt in the 
case of sea water, and dry air and water vapor in the case of air. This assump­
tion is not essential and can easily be relaxed, as is demonstrated in Sect. A.5. 
Each of the two components is characterized by its density Pi (i = 1, 2) which 
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is the mass of component i per unit volume. The densities depend on posi­
tion x and time t. The mass of component i in a fixed volume V changes 
according to 

:t J Ji d3x Pi(x, t) = - Ji d2xn · Ji(x, t) +!Ji d3x Si(x, t) (A.1) 

for i = 1, 2. Here Ji is the mass flux into or out of the volume V through the 
bounding surface A with outward normal vector n. If the volume is fixed this 
flux is given by 

Ji= pui (A.2) 

where ui(x, t) is the velocity of component i. Si(x, t) is a source or sink term 
that describes the generation or destruction of component i within the volume 
V, e.g., by chemical reactions. The balance equation (A.l) is self-evident. To 
change the mass of a component within a volume one has either to transfer 
mass across the bounding surface or to generate or annihilate it inside the 
volume. More formally, the balance equations define fluxes and sources. Since 
the volume V is arbitrary in (A.1) Gauss's theorem implies the differential 
form 

(A.3) 

If Si = 0 then the mass of component i is said to be (globally) conserved. The 
mass of component i does not change in a volume moving with the velocity ui. 

Next introduce the total mass density1 p := p1 + p2 and the fluid velocity 
u := (p1u 1 +p2u 2 )/(p1 +p2 ), which is the velocity of the center of mass of the 
two components, often called the barycentric velocity. The fluxes now become 

(A.4) 

where Ii = Pi(ui - u). The first term in (A.4), Piu, is called the advective 
flux and Ji the diffusive flux. The diffusive flux comes about because the 
component i does not move with the fluid velocity u but with its own velocity 
ui. If there are no sources or sinks the balance equation for the total mass 
becomes 

8tp + V · (pu) = 0 (A.5) 

It is called the continuity equation. There is no diffusive flux for the total mass 
since I 1 + I 2 = 0. The continuity equation for either one of the components, 
say component 2, is 

(A.6) 

Instead of the density p2 one often uses the concentration c2 = p2f p, which is 
the mass of component 2 per unit total mass. Its equation is 

D 
p Dtc2 = -V · h (A.7) 

where D/Dt = 8t + u ·Vis the advective or material derivative. Usually, c2 

is the salinity for sea water and the specific humidity for air. 

1 The notation a := b is to be read such that a is defined by the expression b. 



A. l The Balance Equations 203 

A.1.2 Momentum Balance 

Newton's second law states m x = F. The acceleration x of a particle of 
mass m is given by the force F acting on the particle. This is a useful law 
only if the force can be prescribed independently. For the gravitational force 
this independent prescription is F = -m V ¢9 , where ¢9 is the gravitational 
potential. The generalization of Newton's law to continuous fluid systems 
takes the form 

(A.8) 

Two new forces appear: the pressure force given by the gradient of the pres­
sure p and the frictional forces given by the divergence of the viscous stress 
tensor u. The two new forces describe the effect that other fluid parcels ex­
ert on the fluid parcel under consideration. The gravitational potential is due 
to the gravity field of the earth, generally characterized by the gravitational 
acceleration g. In tidal problems one has to include the tidal potential due to 
the gravity fields of the moon and sun. 

Since the pressure and viscous forces are surface forces the momentum 
equation (A.8) can be cast into the standard form of a balance equation2 

Bt(pu) + V · (puu +pl - u) = -p V¢9 (A.9) 

where I is the unit tensor. The interpretation then is that pu is the momentum 
density and that the momentum flux consists of the advective contribution 
puu, a contribution due to the pressure, and a contribution given by the 
viscous stress tensor. The viscous stress tensor describes momentum diffusion. 

In a rotating system such as the earth one must add the Coriolis and cen­
trifugal forces to the right hand side of the momentum balance. The Coriolis 
force is Fe = -p2 n x u where {'} is the rate of rotation. The centrifugal 
force can be derived from a potential ¢c which is generally combined with the 
gravitational potential ¢9 to form the geopotential ¢. 

A.1.3 Energy Balance 

Energy comes in various forms. The kinetic energy per unit mass is given by 

1 
ek = -u · u 

2 
(A.10) 

and the potential energy per unit mass by the geopotential 

(A.11) 

2 In this appendix we use the tensor notation commonly adopted by theoretical 
physics. For those not familiar with this notation, we explain it in footnotes: uu 
is the product of two vectors (tensor of 1st order), the result of which is a matrix 
(tensor of 2nd order). 
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Together they form the mechanical energy. The first law of thermodynamics 
states that there exists another form of energy, the internal energy e;, and 
that mechanical and internal energy can be converted into each other such 
that the total energy is conserved. For a continuous fluid system this first law 
again takes the form of a balance equation 

(A.12) 

Here q is the heat flux due to conduction or diffusion of heat. The source 
term Q is given by3 Q = ( -p I+ hu) : D where D is the rate of deformation 
or rate of strain tensor with components Dij = ~(8iUj + aju;). The source 
term Q describes the reversible exchange of mechanical and internal energy 
by pressure forces and the irreversible conversion of mechanical energy into 
internal energy by viscous forces. Equations for the kinetic, potential and total 
energy can be derived from (A.12) with the help of the momentum balance. 

The balance equations for mass, momentum and energy all have the same 
structure. The amount of mass, momentum or energy within a volume changes 
by fluxes across the bounding surface and by sources or sinks within the 
volume. The balance equations are prognostic equations for the mass densities 
p1 and p2 (or p and p2 ), the momentum density pu, and the internal energy 
density p ei. To calculate the evolution of these quantities one needs to specify 
the geopotential </>and the earth's rotation rate n, the diffusive fluxes 12, (j 
and q, and the pressure p. In addition one needs to provide boundary and 
initial conditions. Let us first turn to the specification of the pressure which 
requires us to look at the thermodynamics of fluids. 

A.2 Thermodynamic Specification 

Fluid dynamics assumes local thermodynamic equilibrium. Each fluid parcel 
is in thermodynamic equilibrium, although the whole system is not. Each fluid 
parcel can thus be described by thermodynamic variables such as the density 
p, the pressure p, and the temperature T. Gibbs' phase rule states that the 
number of variables required to completely specify the thermodynamic state 
of a fluid particle is given by 

(A.13) 

where x is the number of components and cp the number of phases. For a 
one-component, one-phase system f = 2. In this case one usually uses p and 
T as the independent variables. Other variables, such as the density p, are 
then determined by p and T. The relation p = p(p, T) is called the equation 
of state. If two phases coexist in a one-component system then f = 1. If one 
chooses pas the independent variable then relations Tb= Tb(P) or T1 = T1(P) 
determine the boiling or freezing temperatures. 

3 a : b is the product of two second order tensors that results in a scalar. 
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Fig. A.1. Equation of state for sea water. Contours of the density difference 
p(p, T, S) - p(p, 2°C, 34, 5 psu) are shown in the T-S plane for different values of 
pressure corresponding to depths of 0 m (thick solid) to 5 km (long dashed) in 1 km 
intervals. The contour interval is 0.25 kg/m3 • The equation of state is nonlinear. The 
contours (isopycnals) are curved and their slope turns with pressure. Courtesy of 
Ernst Maier-Reimer 

We assumed sea water or air to be a two-component, one-phase system. 
Then f = 3. One could choose p, c2 and ei as the three independent variables, 
where c2 is the salinity S for sea water or the specific humidity q for air. These 
variables then determine the pressure, p = p(p, c2 , ei)· Other variables such as 
the temperature Tare also determined by (p, c2, ei)· However, fluid dynami­
cists prefer to use (p, T, c2 ) as the independent variables. They thus have to 
transform the prognostic equations for p and ei into prognostic equations for 
p and T. This is straightforward. One just has to differentiate the relations 
p = p(p, c2 , ei) and T = T(p, c2 , ei) and substitute the prognostic equations 
for p, c2 and ei. The result is 
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D 2 1 _ 
-T =-pc rv. u- -(V. q- u: D) 
Dt pcv 

(A.14) 

D 2 pc2 I' _ 
-p =-pc V · u - --(V · q- u: D) 
Dt T 

(A.15) 

New thermodynamic coefficients enter these equations: the speed of sound 
c, the adiabatic temperature gradient I', and the specific heat at constant 
volume cv. All these coefficients depend on (p, T, c2 ). Also, the density p now 
becomes a dependent variable. Thus the prognostic equation for p, T, c2 and 
u have to be augmented by the relations 

p = p(p, T, c2) 

c = c(p, T, c2) 

I'= I'(p, T, c2) 

cv = cv(p, T, c2) 

(A.16) 

These relations are diagnostic relations. They describe properties of the fluid. 
They have been measured and are tabulated for sea water and air (see 
Fig. A.l). 

A.3 The Phenomenological Flux Laws 

The diffusive fluxes I 2 , q and u represent the effect that salt (or water vapor), 
heat and momentum are not only transported with the fluid velocity but 
also by the mechanisms of molecular diffusion, molecular heat conduction 
and molecular friction or viscosity. There exists a well-developed theory, the 
theory of non-equilibrium or irreversible thermodynamic processes, that deals 
with the determination of such molecular fluxes. The theory involves three 
steps. 

1. It is shown in thermodynamics that a system in an external potential is 
in thermodynamic equilibrium if 

T =constant 

µi + ¢ = constant i = 1, 2 

D=O 

(A.17) 

where µi is the chemical potential of component i. First, the tempera­
ture must be constant. The second condition implies that the chemical 
potential difference L::..µ = µ 2 - µ 1 must be constant. The third condition, 
the vanishing of the rate of strain tensor, implies that the system can 
only move with a uniform translation and rotation. If an external field 
is present, thermodynamic equilibrium does not imply that the concen­
trations and the pressure are constant. Instead we have the hydrostatic 
balance 
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Vp = -p V¢ (A.18) 

and 
(A.19) 

where 

(A.20) 

describes the equilibrium concentration gradient. 
2. It can also be shown that the rate of entropy production i/ in a fluid is 

given by 

(A.21) 

It is the sum of three terms. All terms are the product of a flux and a 
"force". In thermodynamic equilibrium all the "forces" are zero and all 
the fluxes are zero. 

3. The basic assumption of the theory of irreversible processes is that there 
exists a linear relationship between the fluxes and the forces. If the fluid 
is isotropic and if one expresses the gradient of the chemical potential dif­
ference at constant T, V LlµIT, in terms of the concentration and pressure 
gradients these linear relationships take the form 

12 = -p[r.:s(V S -1V p) + r.:sTVT] 

q = -p[r.:TVT + r.:Ts(VS -1V p)] 

a = 2 p v S + 3 p v' N 

(A.22) 

given here for the case that c2 = S. These relations are called the phe­
nomenological flux laws. Here D = S + N where S is the rate of shear 
deformation tensor, which has trace zero, and N is the rate of normal 
deformation tensor4 . 

The phenomenological flux laws state that the salt flux I 2 is proportional to 
the deviation of the salinity gradient from its equilibrium value (A.19). The 
factor of proportionality is the salt diffusion coefficient ""S. Salt diffusion is 
also caused by temperature gradients. The coefficient is the thermo-diffusion 
coefficient h:ST· Similarly, heat diffusion or conduction is driven by tempera­
ture gradients with the factor of proportionality being the thermal conduction 
coefficient ""T and by deviations of the salinity gradient from its equilibrium 
value. The coefficient "'TS for the latter process is not independent but related 
to "'ST by 

(A.23) 

4 Note that the heat flux q in (A.22) and (A.21) differs from the heat flux ii in 
(A.12), (A.14) and (A.15). The two are related by ii= q+h6.h where 6.h is the 
partial enthalpy difference. 
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Fig. A.2. The molecular phenomenological coefficients Ks, KT/cp, and v for sea 
water as a function of temperature T for S = 35 psu (32.9 psu for Ks) and p = 0 

This relation is a consequence of the "Onsager relations" which state that the 
linear relation between fluxes and forces is symmetric. The viscous or frictional 
stresses are driven by the rate of shear deformation with shear viscosity v and 
by the rate of normal deformation with expansion viscosity v'. The flux laws 
(A.22) thus contain five independent phenomenological or molecular diffusion 
coefficients, namely Ks, Kr, Ksr, v and v'. The second law of thermodynamics 
requires iJ 2: 0 in (A.21). This implies Ks 2: 0, KT 2: 0, v 2: 0 and v' 2: 0. The 
coefficient Ksr can have arbitrary sign. The coefficients are properties of the 
fluid. They depend on (p, T, S). Except for v' they have been measured and 
are tabulated. For sea water (see Fig. A.2) one finds Ks < Kr/cp < v where cp 
is the specific heat at constant pressure. Thus momentum diffuses at a faster 
rate than heat, and heat faster than salt. 

The phenomenological flux laws are often written in different but equiv­
alent forms and in terms of different but equivalent phenomenological coeffi­
cients. The flux laws for air have the same structure. 
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A.4 Boundary Conditions 

The balance equations are partial differential equations in space and time. 
Their solution requires the specification of boundary and initial conditions. 
Here we consider the boundary conditions. 

A boundary is a surface G(x, t) = 0. It has normal vector n = VG/IVGI 
and moves with velocity v = -8tGn/IVGI. The fluxes of mass, salt, momen­
tum and total energy through such a moving boundary are given by 

Fp=p(u-v)·n 

Fs = [pS(u - v) + 12] · n 

Fu= [pu(u - v) - JI]· n 

Fe, = [pet ( u - v) + q - u.lI] · n 

where II= -pl+ u is the stress tensor. 

(A.24) 

Consider first a completely isolated system that does not exchange any 
mass, salt, momentum and energy with its surroundings. In this case all the 
fluxes are zero, which implies 

u·n=v·n 

12 · n = 0 

II·n=O (A.25) 

q·n = 0 

The first of the equations states that the surface moves with the fluid velocity. 
It is hence made up of the same fluid particles at all times. The surface is a 
material surface. 

However, no system is truly isolated. It exchanges mass, momentum and 
energy with its surroundings. It is open, and mechanically and thermally cou­
pled to its surroundings. In this case one can develop phenomenological flux 
laws similar to the ones derived in the previous section. This leads to expres­
sions of the form (A.22) but with the gradients VS, Vp, VT, Vu on the right 
hand side replaced by the jumps LlS, Llp, LlT, Llu across the boundary. These 
laws are similar to Ohm's law for a resistor that states that the electrical 
current is proportional to the difference of the electrical potential. In fluid dy­
namics one considers, however, the limit that the surfaces have no resistance. 
They are short-circuited. In this limit one obtains the following conditions at 
the boundaries: 

1. the fluxes of mass, salt, momentum and total energy must be continuous 
across the boundary 

pl= pll 
p p 

F I_ pll s - s 
F I _ FII u- u 
pl = pll 

€t Et 

(A.26) 
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2. the tangential velocity components, temperature and chemical potentials 
must be continuous across the boundary 

u 1 x n = UII x n 
TI= TII 

I II . 1 2 µi = µi i = ' 

(A.27) 

Here the superscripts I and I I denote the two media adjacent to the 
boundary. The first set of conditions is required since mass, salt, momen­
tum and total energy cannot accumulate in an interface of zero volume. 
The second set is a consequence of the no-resistance assumption. Note 
that only the tangential velocity is required to be continuous. The normal 
component can have a discontinuity if there is a mass flux across the in­
terface. In this case the surface is not a material surface. The continuity of 
the chemical potentials implies that the specific humidity equals the sat­
uration specific humidity qs = qs(p, T, S). These conditions also tacitly 
assume that the fluid does not detach from its boundary. 

The main point to note about the boundary conditions is that they are condi­
tions of continuity. It is only in limiting cases that they become prescriptions. 
Such limiting cases are: 

• Rigid boundaries. The surrounding medium is often assumed to be rigid, 
i.e., to have zero elasticity. Such a rigid surrounding will absorb any mo­
mentum flux without moving. The continuity conditions for momentum 
flux and velocity thus become the prescription u = 0 at the rigid bound­
ary. 

• Infinite heat capacity. If the surrounding medium has an infinite heat ca­
pacity it stays at the same temperature T* which is not affected by the 
exchange of heat with the system under consideration. The continuity con­
ditions for temperature and heat flux thus become the prescription T = T* 
at the boundary. 

A.5 A Closer Look at the Balance Equations 

As one looks more closely at fluids like the ocean or atmosphere, more and 
more components and processes come into play. Water in the atmosphere ex­
ists in all its three phases, as water vapor and as liquid drops and ice crystals 
in clouds; and one has to consider exchanges between these different phases. 
In addition to mechanical and internal energy there is radiative energy; and 
one has to consider exchanges between these different energy forms when radi­
ation is absorbed or emitted by matter. Absorption and emission of radiation 
often involves chemical reaction; and one has to consider photochemical reac­
tions. All these additional components and processes can be accounted for by 
introducing additional balance equations. How this is done in principle will be 
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demonstrated in this section for the cases of cloud formation, radiation and 
photochemical reactions. 

A.5.1 Cloud Formation 

The primitive equation given in Sect. 4.2.3 treats the atmosphere as a two­
component system, consisting of dry air and water vapor. The equations con­
tain two mass balances, one for the total mass and one for the water vapor. 
A specified cloud distribution can be included in the temperature equation to 
account for the amount of radiation that is absorbed or emitted by clouds. 
The cloud distribution is, however, not calculated prognostically. To do so 
one has to consider the physical mechanisms by which clouds are formed and 
broken up. Clouds are formed when water vapor condenses into cloud drops 
or deposits into ice crystals. They are broken up when the cloud drops or 
ice crystals evaporate or sublimate or precipitate as rain or snow. To account 
for these phase changes and processes one has first to distinguish between the 
three phases of water and formulate separate mass balance equations for them. 
These mass balances must include the rates by which mass is transferred from 
one phase to another. The three mass balances thus have the form 

D 
p Dt Cv = ... - Sc + Se - sd + Ss 

D 
p n{z = ... + Sc - Se + Sm - Sf (A.28) 

D 
p Dt Cs= ... + sd - Ss - Sm+ St 

with the concentrations Cv, Cz and Cs of water in its vapor ( v), liquid ( l) and 
solid ( s) phase, and the rates of condensation Sc, evaporation Se, deposition 
Sd, sublimation Ss, melting Sm and freezing St· The dots account for other 
processes that affect the mass balances, such as diffusion or precipitation. 

The phase changes also require or release latent heat which must be ac­
counted for in the internal energy or temperature equation 

(A.29) 

where Le, Lm and Ls are the latent specific heats of evaporation, melting and 
sublimation. Also the equation of state and other thermodynamic relations 
need to be modified. 

The major task is, of course, to specify the various rates in (A.28, A.29) 
at which these phase changes occur. The physical processes that determine 
these rates are discussed in detail in text books on the microphysics of clouds 
(e.g., [135]). For condensation two of the processes are "nucleation" and "dif­
fusional growth" . 

Nucleation. Inelastic collisions between water vapor molecules in a super­
saturated atmosphere lead to aggregates. These aggregates will survive and 
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form the nucleus of a cloud drop if the surface tension work required to in­
crease the surface is less then the latent heat released by condensation. Since 
the surface tension work is proportional to r 2 and the latent heat release 
proportional to r 3 there is a critical radius beyond which the aggregate will 
survive. This critical radius can be estimated from equilibrium thermodynam­
ics. This critical radius becomes smaller when nucleation occurs at hygroscopic 
aerosol particles, since the resulting solution has a lower saturation pressure 
than pure water. Once the critical radius is determined the formation rate of 
nuclei can be determined from probabilistic calculations. 

Diffusional growth. Cloud drops grow by diffusion of water vapor towards 
the drop as long as the surrounding water vapor pressure exceeds the satura­
tion pressure of the drop. The latent heat released by condensation diffuses 
away from the drop. Cloud drops evaporate when the saturation pressure of 
the drop is larger than the surrounding water vapor pressure. Then water va­
por diffuses away from the drop and heat towards the drop. For a single drop 
the growth/decay rate of the drop radius can be estimated from the diffusion 
equations for water vapor and heat. The most important result of this calcula­
tion is that the change of drop radius and hence the condensation rate depend 
on the drop radius. Thus, the condensation rate Sc in the balance equations 
(A.29) depends not only on the concentration c1(:z:, t) of liquid water in clouds 
but also on the distribution of this liquid water over drops of different radii. 
A balance equation for the "size spectrum" ci(x,r,t) needs to be developed. 

A.5.2 Radiation 

In Sect. A.1.3 we considered the energy equation. We only considered the 
mechanical and internal energies. Electromagnetic radiation is also a form of 
energy. Radiative energy is converted to internal energy when radiation is 
absorbed by matter. Internal energy is converted to radiative energy when 
matter emits radiation. These absorption and emission processes are central 
to climate modeling since it is the incoming radiation from the sun that drives 
the ocean-atmosphere system. 

Electromagnetic radiation also obeys a balance equation called the radia­
tion balance equation. For natural unpolarized radiation it has the form 

Otl(x, t) + V · F(x, t) = S(x, t) (A.30) 

where I is the energy density of the radiation, F the radiative flux, and S a 
source term describing the absorption and emission of radiation by matter. 
The term S must be added with the opposite sign to the internal energy 
equation (A.12). Since all the processes considered in climate modeling evolve 
at a speed much smaller than the speed of light the term Otl in (A.30) can 
safely be neglected and S be equated to the divergence of the radiative flux F. 
We kept the time derivative or storage term to demonstrate that radiation 
obeys a balance equation of the same form as any other extensive quantity. 
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Closer inspection of radiation processes reveals that they depend strongly 
on the wavelength). of the radiation. One must distinguish between short-wave 
or solar radiation and long-wave or terrestrial radiation. Radiative processes 
also depend on the direction of the radiation as e.g. seen in Fresnel's laws of 
reflection and refraction. One therefore introduces the wavenumber vector k, 
whose magnitude is given by the wavelength >. of the radiation, lkl = 2 7f / >., 
and whose direction is given by the direction of the radiation, and spectral 
densities which describe the distribution of the radiative energy, flux and 
source function with respect to wavenumber. The balance equation for these 
spectral densities takes the form 

BtI(k, a::, t) + V · F(k, a::, t) + V k • R(k, a::, t) = S(k, a::, t) (A.31) 

where V k is the gradient in wavenumber space and R a flux in wavenumber 
space which arises when waves are refracted in a medium with varying index of 
refraction. Equation (A.31) is a balance equation in physical and wavenumber 
space. It forms the general framework to describe radiative processes in the 
atmosphere and ocean. 

Again, one can safely neglect the storage term, and in most circumstances 
also the refractive term and the horizontal flux divergence. In this case one 
writes F = F n where n = k / k is the direction of the radiation and introduces 
the wavelength >., the zenith angle 0(0 :S 0 :S 7r), and the azimuthal angle 
cp(O :S cp < 27r) of the radiation, instead of k. The radiation balance equation 
for F(>., e, cp, z, Xh, t) then reduces to 

BF oz= ka F sec 0 (A.32) 

+k8 sec0 [F- jde' Jdcp17(81 ,cp1,0,cp)sinO'F(01,cp')]-E 

which is called the Schwarzschild equation. The first term describes the ab­
sorption of radiation. The absorption coefficient ka describes the absorption 
per unit volume and has dimensions L - 1 . The geometric factor sec 0 takes 
into account that the optical path through a layer of thickness dz increases 
by a factor sec 0 for radiation incident at angle 0. The second term describes 
the scattering of radiation with scattering coefficient k 8 • It consist of two 
parts. The first part describes the loss due to scattering out of the direction 
(0, cp). The second part describes the gain due to the scattering out of di­
rections (O', cp') into direction (0, cp), with'""( being the normalized scattering 
cross section. The third term, E, describes the emission. For matter in thermal 
equilibrium Kirchoff's law states that the emissivity equals the absorptivity 
or 

E = kaF*(>.)secO (A.33) 

where F* is the isotropic black body radiation given by 

27fc2h 
F* = ~[exp(ch/>.kT)- lt1 (A.34) 
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Fig. A.3. Calculated transmission coefficient of a standard atmosphere without 
clouds as a function of wavenumber using tabulated values for the absorption coef­
ficients. Only the absorber H20 , C0 2, 03, CH4 and N20 are included. Courtesy of 
Heinz-Dieter Hollweg and Stephan Bak.an 

Here c is the speed of light, h Planck's constant, and k Boltzmann's const ant. 
As discussed in Chaps. 1 and 4 there are many radiatively active con­

stituents in the atmosphere. Among the most important ones are water va­
por, carbon dioxide and ozone for long wave radiation and clouds, water vapor 
and ozone for short wave radiation. They absorb, scatter and emit radiation at 
different wavelengths and rates. If there are N radiatively active components 
then 

N 

ka,s = L Cikf's 
i=l 

(A.35) 

where Ci is the concentration of the ith constituent and kf' 8 the absorption 
or scattering coefficient of the ith constituent. The individual absorption and 
scattering coefficients are properties of the constituent and depend on the 
wavelength>., temperature T and pressure p, kf' 8 = kf' 8 (>., T ,p). They have 
been determined by measurements and quantum-mechanical calculations for 
most radiatively active components of the atmosphere. The results are col­
lected and updated in large data bases. The total absorption and scattering 
coefficients depend additionally on the concent rations. Figure A.3 shows a 
calculat ion of the transmission coefficient of the atmosphere using individ-
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ual absorption coefficients and concentrations. The absorption and resulting 
transmission coefficients consist of lines and bands in wavenumber space. This 
finestructure causes problems when wavenumber averages of nonlinear rela­
tionships are employed in measurements or applications. 

In summary, the inclusion of radiative processes requires first the addition 
of a radiation balance equation, such as (A.32). Secondly, the internal energy 
or temperature equation needs to be modified to account for the exchange of 
radiative and internal energy. Thirdly, the radiation balance equation contains 
the concentrations or densities of the radiatively active constituents, through 
(A.35); one thus has to add balance equations for these constituents. In the 
case of water vapor and clouds this requires the inclusion of phase transitions; 
in the case of ozone one has to include photochemical reactions, which are 
discussed next. 

A.5.3 Photochemical Reactions 

The absorption and emission of radiation often involves chemical reactions. 
Here we introduce the reaction rate of such photochemical reactions and con­
sider as a particular example the creation and destruction of ozone in the 
oxygen cycle. 

Ozone is radiatively active substance, i.e., it interacts with photons. We 
denote a photon by its energy hv where h is Planck's constant and v its 
frequency. 

We follow chemical notation and denote by [M] the number of molecules 
M per unit volume. The number of photons of energy hv is denoted by [hv]. 

Ozone is created by photodissociation of oxygen. This process occurs in 
two steps. In the first reaction 0 2 + hv1 -+ 0 + 0, an ultraviolet photon hv1 

dissociates an oxygen molecule 0 2 into two oxygen atoms. The photon has 
to have an energy larger than the binding energy hvf of 0 2 • In the second 
reaction 0 + 02 + M -+ 0 3 + M, one oxygen atom 0 reacts with one oxy­
gen molecule 02 to form one ozone molecule 0 3 . This reaction requires the 
presence of a third molecule M (any air molecule) that removes the energy 
released by this reaction. 

The destruction of ozone occurs by two different processes. One process 
0 3 + hv2 -+ 0 2 + 0 is the photodissociation under the influence of ultraviolet 
and visible light with energy larger than the binding energy hvfj, of 0 3 . The 
other process 0 + 03 -+ 02 + 0 2 is the destruction of ozone by collision with 
oxygen atoms. 

The rates at which oxygen and ozone molecules are formed are thus given 
by 

(A.36) 
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d[02] = - d[03] = k [O ][hv > hve] 
dt dt 3 3 2- 2 

d[02] = -2d[03] = 2k [O][O] 
dt dt 4 3 

or, when combined, by 

d~~ e dt = -ki[02][hv1 ~ hv1] - k2[0][02][M] 

+k3[03][h v2 ~ h v2] + 2 k4[0][03] (A.37) 
d[03] e dt = k2[0][02][M] - k3[03][hv2 ~ hv2 ] - k4[0][03] 

These rates contribute to the source terms in the balance equations for oxygen 
and ozone. They depend not only on the densities [02] and [03] but also on 
the densities [OJ and [M] and on the densities of photons with energies above 
certain thresholds. 

The rates at which photons are absorbed are given by 

(A.38) 

These rates contribute to the source term in the radiation balance equation. 
They do not only depend on the densities [h v1 ~ h vf] and [h v2 ~ h vi] but 
also on the densities [02] and [03]. 

This example shows again that the radiation balance equation depends on 
the concentrations of the radiatively active constituents of the atmosphere. 
In addition it shows that the balance equations for these active constituents 
depend on the "concentrations" of radiation in various frequency bands. The 
radiation and constituent balance equations are coupled. 

This example also concludes our discussion of the basic fluid dynami­
cal laws. Everything up to this point is well established and experimentally 
proven. It is basic physics. In the next three sections we consider the third 
closure problem and some of the customarily employed parameterizations of 
subgridscale fluxes. These parameterizations are based on a mixture of heuris­
tic reasoning, dimensional analysis and formal analogues. These parameteri­
zations are "educated guesses". We will not be on safe grounds any more. 

A.6 Reynolds Decomposition 

The balance equations, thermodynamic relations, and phenomenological flux 
laws describe fluid motions on all scales, from micro turbulence to wind sys­
tems, ocean circulations and ice sheet flows. These scales cannot be resolved 
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simultaneously, neither observationally nor computationally. In tidal and cli­
mate modeling we only deal with large-scale or space-time averaged fields. 
Such averaged fields may be defined 

°if(x, t) = J J J d3x' J dt' 'lj;(x', t') H(x - x', t - t') (A.39) 

Formally this is a convolution between the field 'lj;(x, t) and a filter function 
H(x, t) 5 . The averaging operation is linear and commutes with differentiation. 

To obtain the equations for the averaged fields one decomposes all field 
variables 'lj;(x, t) into a mean part °if(x, t) and a fluctuating part 'lj;'(x, t) 

'lj;(x, t) = °if(x, t) + 1/J'(x, t) (A.40) 

This decomposition is called Reynolds decomposition6 . It is assumed that the 

relations "if = "if and 'lj;1 'lj;2 = 'lj;1 'lj;2 + 1/J~ 1/J~ hold for this Reynolds decomposi­
tion although this is not strictly true but an (generally good) approximation 
only7 . 

How does the Reynolds decomposition (A.40) affect the dynamical equa­
tions? To answer this question consider first a simple quadratic equation 

8t'l/J + a'lj; + b'ljJ'ljJ = O (A.41) 

Substituting the Reynolds decomposition, averaging and applying the rules of 
Reynolds averaging results in 

8t°if +a"¢+ b"¢"¢ + b'lj;''l/J' = 0 (A.42) 

Due to the quadratic nonlinearity the equation for "if is not closed. It depends 
on the fluctuating part 'lj;' through the term 1/J''l/J'. Subtraction of equation 
(A.42) from (A.43) gives the equation for the fluctuating part 

8t'l/J' + a'lj;' + 2b°if'l/J' + b'lj;''l/J' - b'lj;''l/J' = 0 (A.43) 

The equation for 1/J' is also not closed. It depends on "¢. The equations for 
"if and 'lj;' are coupled through the nonlinear term. Nonlinearities couple dif­
ferent scales of motion. The Reynolds decomposition of equation (A.41) into 

5 Note that the averaging interval, i.e. the effective width of H(x, t) determines 
which scales contribute to the mean part and which scales contribute to the 
fluctuating part. Scales that were part of the fluctuating field become part of the 
mean field when the averaging width is reduced. 

6 Such a decomposition is also performed in other fields, notably in statistical me­
chanics. There the decomposition refers to an ensemble of states -.P, i.e., to a 
random process. Thus, averaging is not done across space and time, but across an 
ensemble of realizations, weighted by the frequency of the events. Then ~ = E( 'I/;) 
and 'I/;'= 'l/;-E('I/;), with E(·) being the expectation operator (cf. Appendix C.2.1). 

7 This assumption is based on the analogous decomposition of an ensemble, where 
E(E('I/;)) = E('I/;) and Cov('l/;1,'l/;2) = E('l/;1)E('l/;2) + Cov('l/;~,'I/;~) hold strictly. 
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(A.42) and (A.43) does not cause any loss of information. The equation for 
the complete field 'I/; can be reestablished by adding (A.42) and (A.43). 

If one is interested only in ?/) then one does not need 'I/;' but 'I/;' 'I/;'. Its 
equation is 

8t'l/J''l/;' + 2a'l/;''l/;' + 4b?/) 'l/;''l/;' + 2b'l/;''l/;''l/;' = o (A.44) 

and contains a triple product 'I/;' 'I/;' 'I/;'. The time evolution of this triple product 
is governed by an equation that contains a fourth-order product, etc. One 
obtains an infinite hierarchy of coupled equations. To obtain a closed system 
one has to truncate this hierarchy by a closure hypothesis. Closure at order n 
assumes that all products of order n + 1 and higher are expressed in terms of 
products of order m smaller or equal to n. A first order closure thus expresses 
'l/J''l/;' in (A.42) in terms of?/). 

The fluid dynamical equations contain nonlinearities in various places. 
Most important is the advective nonlinearity in the balance equations. Other 
nonlinearities arise because the thermodynamic coefficients and the molecular 
diffusion coefficients depend on (p, T, c2 ). Here we only consider the effect of 
Reynolds decomposition and averaging on the advective nonlinearity. This ef­
fect depends on the choice of dependent variables. If we formulate the balance 
equations in terms of the total mass density p, the mass density p2 of the 
second component, the momentum density m = pu, and the density pet of 
the total energy then the advective flux has the form 'I/Ju where 'I/; is either of 
the densities. The advective flux then decomposes into 

where 
m-p'u' 

U=----

(A.45) 

(A.46) 

In this representation the fluctuating components give rise to two effects. 
They cause an additional flux 'l/J'u' in the balance equations, called the eddy 
or turbulent flux, and an additional contribution to the mean velocity 

- p'u' 
Ue = ---=-

p 
(A.47) 

called the eddy or turbulence induced mean velocity. The qualifier "eddy" 
or "turbulent" is used because the fluctuating fields are viewed as turbulent 
eddies. The eddy fluxes appear in the averaged balance equations for the 
same reason that molecular fluxes appeared in the original equations. There, 
a property was transported by a velocity that differed from the fluid velocity. 
The difference had to be accounted for by a molecular flux. Here, a property 
is transported by the velocity u which differs from the mean velocity u. The 
difference has to be accounted for by the eddy flux. Note that an eddy flux p'u' 
appears in the continuity equation although it does not contain any molecular 
fluxes. The eddy-induced mean velocity Ue appears because the velocity is a 
nonlinear function of the state variables (p, pc2 , m, pet) given by u = m/ p. 
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If one chooses to formulate the balance equations in terms of the state 
variables (p, c2, u, et) then Reynolds decomposition of the material derivative 
leads to 

Dx ,:) - + - v- + , v , - = UtX u. x u . x 
Dt 

(A.48) 

where x is any of the variables (p, c2, u, et)· Only the eddy terms u' · Vx' 
appear. There is no eddy-induced mean velocity since u is one of the state 
variables. There arise, however, new nonlinearities on the right hand side of 
the equations. The pressure term, which is the linear expression -Vp in the 
equation for m becomes the nonlinear expression -p-1Vp in the equation 
for u. 

In addition to the choice of state variables, the detailed effects of Reynolds 
averaging also depend on the choice of independent variables (height versus 
isopycnal, isobaric or isentropic coordinates), and on the form of the balance 
equations (flux form Ot(PX) + V · (pxu) = ... versus advective form OtX + 
u · Vx = ... ). In all cases there appear eddy-induced terms in the equations 
for the mean quantities. These eddy-induced terms represent the dynamic 
effect of the fluctuating fields on the mean fields. The specification of these 
eddy-induced terms represents the third closure problem. 

The dynamical equations that form the basis of simulation models, such 
as Laplace tidal equations 4.2 or the equations 4.16 and 4.18 for the general 
circulation of the atmosphere and ocean, are such Reynolds-averaged equa­
tions. They are only valid for certain space and time scales. The "space-time" 
averaging (A.39) defines the scales that are explicitly modeled and the scales 
whose effect on the resolved scales must be parameterized. Next we discuss 
the most common parameterizations of eddy-induced fluxes: eddy diffusivities 
and eddy viscosities in the interior of the fluid and drag laws and Ekman 
suction at the boundary. 

A. 7 Parameterization of Interior Fluxes 

Here we make the distinction between the eddy fluxes of scalar quantities 
such as temperature and salinity (specific humidity) and eddy fluxes of vector 
quantities such as momentum. 

A. 7.1 Eddy Diffusivities 

In the interior of the ocean and atmosphere the eddy fluxes are often modeled 
after the molecular fluxes. One thus assumes 

(A.49) 
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for the eddy fluxes of scalars 'lj;8 . Here K is the eddy (or turbulent) diffusion 
tensor. Equation (A.49) constitutes a parameterization of the eddy fluxes 'lj;'u~. 

Despite the general use of the parameterization (A.49) it is paramount to 
observe that there exists no general theory or framework that justifies its form 
and allows the calculation of K. A heuristic estimate is often based on the 
mixing length theory which assumes 

K,...., Lv' (A.50) 

where the mrxmg length L is a fluid analogue of the mean free path of 
molecules in a gas and v' a characteristic value of the turbulent velocity fluc­
tuations. Furthermore, the diffusion tensor Kij does not need to be constant. 
It can vary in space and time. It also does not need to be positive definite. 
There can be up-gradient fluxes. No general values can be assigned to the 
components of K. The values will depend, among other things, on the scale 
that separates resolved from unresolved motions. 

The values should, however, be the same for different tracers 'lj;. A tracer 
is a substance that moves with the fluid velocity, and the unresolved eddy 
currents should not distinguish between different tracers. Thus the eddy dif­
fusion coefficients for potential temperature and salinity (or specific humidity) 
are assumed to be the same, in contrast to the molecular diffusion coefficient, 
which are different. 

Usually one neglects molecular diffusion when eddy diffusion is introduced 
since molecular diffusion represents the transport by microscopic molecular 
motions, whereas eddy diffusion represents the larger transport by macro­
scopic turbulent motions. 

The eddy diffusion tensor K can be decomposed into its symmetric com­
ponent K 8 (Kij = KJi) and antisymmetric component Ka(Kij = -K'ji). 
When this decomposition is substituted into the divergence of the eddy flux 
one obtains 

(A.51) 

where 
(A.52) 

The antisymmetric component thus acts like a mean velocity. 
The orientation of the symmetric part K 8 is an important issue. The 

principal axes may lie in or orthogonal to the geopotential, isopycnal, neutral, 

8 We use index notation in this section. The subscripts i, j, . .. run from 1 to 3 
and denote the Cartesian components of a vector or tensor. Thus ai (i = 1, 2, 3) 
denotes the three Cartesian components of a three-dimensional vector u and 
Tij ( i, j = 1, 2, 3) denotes the nine Cartesian components of a three-dimensional 
second-order tensor T. An index that occurs once in an expression is called a 
free index and can take any value in its range. An index that occurs twice is 
called a dummy index and is summed over its values (summation convention, 
thus aibi = E:=l aibi). An index cannot occur three times in an expression. 
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or any other surface. Most numerical models assume a diffusivity tensor that 
is diagonal in the horizontal/vertical coordinate system 

(A.53) 

with vertical diffusivity Kv (representing vertical mixing by small-scale ed­
dies) much smaller than the horizontal coefficient K h (representing horizontal 
stirring by meso-scale eddies). However stirring contributes to mixing across 
isopycnal surfaces 

(A.54) 

where Kd is the diapycnal (or cross-isopycnal) diffusion coefficient ands (as­
sumed to be much smaller than 1) is the slope of the isopycnal. Since eddies 
stir primarily along isopycnal surfaces, some researchers argue that the diffu­
sion tensor should be diagonal in an isopycnal/ diapycnal coordinate system. 
Additional support for this representation seems to come from the argument 
that the exchange of particles on isopycnal surfaces does not require any work 
against gravity. However, neither of these arguments is fully convincing. Ed­
dies can mix properties across mean isopycnal surfaces; and exchange of parti­
cles on horizontal, i.e., geopotential surfaces, also does not require any work. 
Furthermore, potential energy is released when parcels are exchanged within 
the wedge between the horizontal and isopycnal surfaces. This led Olbers and 
Wenzel [126] to suggest a diffusion tensor with three principal components: a 
large value along the axis halfway between the isopycnal and geopotential sur­
face where exchange would release the maximum amount of energy; a medium 
value along the intersection of the isopycnal and geopotential surfaces, where 
exchange results in no release of energy; and a small value along the axis per­
pendicular to these two axes, where mixing requires the maximum amount of 
work. 

A. 7.2 Eddy Viscosities 

The eddy fluxes of momentum are parameterized by decomposing 

(A.55) 

The first term on the right hand side can be absorbed into the pressure. The 
second term has zero trace and is parameterized by 

(A.56) 

where Dk1 are the components of the mean rate of strain or deformation tensor 
(see Sect. A.1.3), and Aijkl are the components of an eddy (or turbulent) 
viscosity tensor. A is a fourth order tensor and has 81 components. This 
number can be reduced by assuming that 
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(i) Aijkl is symmetric in the first two and last two indices because of its 
definition ( A.56). 

(ii) Aiikl = 0 since Tii = 0 because of (A.55) 
(iii) Aijkl = Aklij because of "energy considerations", and 
(iv) Aijkl is axial-symmetric about the vertical axis, as we assumed in (A.53) 

for the diffusion tensor K. 

Under these assumptions the components of the stress tensor in (A.56) take 
the form 

Tu/ p = Ah(Du - D22) +A* (V ~ u - D 33 ) 

T12/ p = T2i/ p = 2AhD12 

T13/ P = T3if P = 2AvD13 

T22/ p = Ah(D22 - Du)+ A* (V ~ u - D 33 ) 

T23/ P = T32/ P = 2AvD23 

T33/p=-2A* (V~u -D33) 

(A.57) 

with only three independent coefficients: the horizontal eddy viscosity co­
efficient Ah, the vertical eddy viscosity coefficient Av, and the eddy vis­
cosity coefficient A*. If we had assumed isotropy we would have obtained 

Tij = 2A( Dij - Viu) with only one eddy viscosity coefficient. This differs 
from the result (A.21) for the molecular viscosity since there we did not re­
quire CJii = 0. 

The actual values of the eddy viscosity coefficients depend on the scale that 
is chosen to separate resolved from unresolved motions. When this scale falls 
within the inertial range of three-dimensional homogeneous isotropic turbu­
lence it can be shown that the effect of the unresolved on the resolved scales is 
given by an eddy viscosity coefficient proportional to the rate of strain tensor 
of the resolved scales [87]. Smagorinsky [153] applied analogous arguments to 
horizontally isotropic hydrostatic geophysical flows and derived 

(A.58) 

where L1xh and L1xv are the horizontal and vertical grid size and c is a con­
stant. The fact that these eddy viscosity coefficients are not constant but 
depend on the rate of strain tensor of the resolved scales is referred to as 
nonlinear viscosity. The parameterization (A.58) is the most widely used pa­
rameterization in atmospheric general circulation models. 
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A.8 Parameterization of Boundary Layer Fluxes 

As discussed in Sect. A.4, the boundary conditions for the actual fields at 
the actual interface are continuity conditions for the fluxes, velocities, tem­
peratures and chemical potentials. When applying a Reynolds decomposition, 
these boundary conditions become highly nonlinear since the surface itself 
must also be decomposed into a mean and fluctuating part. Reynolds av­
eraging then leads to many, generally intractable "eddy" terms. Instead of 
Reynolds averaging, coarse-resolution models employ boundary layer theory 
for the formulation of appropriate boundary conditions. Momentum, heat and 
water can be transported across a boundary only by molecular processes. They 
are first transported by molecular diffusion, within a thin molecular boundary 
layer, and then farther away by turbulent eddies. Within a constant flux layer 
the molecular and turbulent fluxes are constant and equal to the fluxes across 
the boundary. Farther away these quantities are deposited within a plane­
tary boundary layer. This layer sets boundary conditions of fluid injection 
or removal for the interior of the fluid. In the atmosphere, the constant flux 
layer has a height of 0 (10 m) and the planetary boundary layer of 0 (1 km). 
The respective oceanic depths are 0 (.05 m) and 0 (50 m). In general, pro­
cesses at and near boundaries are not yet sufficiently understood to provide 
unambiguous boundary conditions for the interior Reynolds-averaged flow in 
all circumstances. Some of the momentum and energy might escape into the 
interior in the form of internal waves. Topographic features that cannot be 
incorporated as bottom roughness complicate any "flat" bottom approach. 
Thus different schemes are used for different models, depending on resolution 
and other circumstances. 

A.8.1 The Constant Flux Layer 

Consider the atmosphere or ocean above a rigid horizontal surface and the 
eddy momentum flux components rh = ( 713, 723) that describe the vertical, 
i.e., normal flux of horizontal momentum. Within the turbulent part of the 
constant flux layer, the velocity shear can only depend on the fluid density, the 
stress and, of course, the distance from the boundary. Dimensional arguments 
then demand the "law of the wall" with a logarithmic velocity profile and a 
drag law 

(A.59) 

where uh = (ux, uy) is the mean horizontal velocity at some prescribed height 
and Cd a dimensionless drag coefficient, which depends on the bottom rough­
ness. Above the air-sea interface the velocity in equation (A.59) has to be 
replaced by the velocity relative to the surface velocity uh(O), the surface drift 
current. The surface roughness and hence the drag coefficient then depend on 
the sea state, which in turn depends on the wind speed and, as the scatter in 
Fig. 2.2 (Sect. 2.5) indicates, on other not fully identified parameters. 
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Similarly, the flux of sensible heat across the air-sea interface and the 
evaporation rate are usually parameterized by 

Q = pcvcHluh: - uh(O)I (rs - Ta) 

E = pcEluh: - uh(O)I (rt - rt) (A.60) 

where Ta and rt are the temperature and specific humidity at the same pre­
scribed height within the atmospheric constant flux layer, Ts and rj8 the tem­
perature and specific humidity at the surface, and CH and CE dimensionless 
coefficients similar to the drag coefficient, often called the Stanton and the 
Dalton number. 

If one assumes the logarithmic layer to be of infinitesimal thickness then 
the drag law (A.59) provides a boundary condition for the interior flow; the 
stress Th is being specified by the velocity uh at the boundary. This as­
sumption is usually made for atmospheric models that resolve the planetary 
boundary layer. The velocity used in the drag law is the one calculated at 
the lowest model level, nominally at zero height but assumed to represent the 
velocity at 0(2 m) height. The drag law then provides the needed boundary 
condition for the atmosphere above land and the needed boundary conditions 
for the atmosphere and ocean at the air-sea interface. 

A minor problem with the above scheme at the air-sea interface is that 
the drag law contains the surface drift current. This problem could be 
dealt with by assuming that the drag law (A.59) holds for both media and 
that the stress is the same. Then C,jpaluh:(z~) - uh(O)l(uh:(z~) - uh(O)) = 

-C,fp0 luh,(z~) - uh(O)l(u~(z~) - uh(O)) where the superscripts "a" and "o" 
denote the atmosphere and ocean, uh(O) is again the mean surface drift veloc­
ity, and z* is the height or depth of the constant flux layer. Continuity of the 
momentum flux Th and of the drift velocity uh(O) is assumed. This expression 
can be solved to give the mean drift velocity 

(A.61) 

where t: = (C,ipa /C'Jp0 ) 112 . Since the "kinematic" drag coefficients c'D and cD 
are about equal one finds ER::: (pa/ p0 ) 112 R::: 3 x 10-2 « 1. The drift velocity 
hence does not differ very much from the ocean velocity just outside the 
constant flux layer. The drift velocity (A.61) can be substituted into the drag 
law. The stress is then fully determined by velocities outside the boundary 
layers. Well-posed problems for both interior flows are obtained. The only 
problem with this approach is that the layer just below the ocean surface is 
not a simple log layer, but it is complicated by the effects of wave breaking. 
The usual way out is to simply assume the ocean or drift velocity to be zero, 
i.e., much smaller than the wind velocity. 
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A.8.2 The Planetary Boundary Layer 

In both the atmosphere and ocean, the stress is distributed over a turbulent 
region of finite thickness, the planetary boundary layer. The typical height 
of the atmospheric planetary boundary layer is about lkm and usually well 
resolved in atmospheric models. The oceanic planetary boundary layer depth 
(below the surface) or height (above the bottom) is about 50m and often 
not sufficiently resolved. Planetary boundary layer theory may then be used 
to convert the actual boundary conditions into boundary conditions for the 
inviscid interior. One prominent example is Ekman's [34] theory. Bulk mixed 
layer models are another example. We discuss both cases. 

We present Ekman's theory first for the oceanic and atmospheric planetary 
boundary layer below and above the air-sea interface, although usually one 
only needs the results for the oceanic part. Then we consider the Ekman 
theory for the layer above the ocean bottom. 

For the atmosphere/ocean boundary it is postulated that the divergence 
of the eddy stress is balanced in both boundary layers by the Coriolis force 

ao 1 a oa 
fo X Uh' = oa~Th' 

Po' uz 
(A.62) 

where again the superscripts "o" and "a" denote the ocean and the atmo­
sphere. The horizontal or Ekman transports in each fluid are then given by 

1 
---a1(-ry(O), Tx(O)) 
Po JO 

1 
----o;(ry(O), -Tx(O)) 
PoJO 

(A.63) 

where use has been made that Th is continuous at the interface z = 0 and 
vanishes for z __, ±oo. The Ekman transports are perpendicular to the surface 
stress and cancel each other, p0Ma + p0M 0 = 0. Divergence or convergence 
of these Ekman transports causes vertical transport at the interface. Their 
magnitude is obtained from an integration of the "incompressibility condition" 
V h · uh + OzW = 0 which yields 

(A.64) 

if again wa,o is assumed to vanish for z __, ±oo. These vertical transports 
must be balanced by the inviscid interior flow. The inviscid interior flow is 
thus subjected to an Ekman pumping or suction velocity 

1 
w';J~(O) = -wa'0 (0) = a,o 1 (oxTy - OyTx) 

Po JO 
(A.65) 

that forces fluid into or out of the interior. The stress boundary condition for 
the complete flow is thus converted to a boundary condition for the normal 
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velocity of the inviscid interior flow which injects or removes fluid from the 
interior. Oceanic models that do not resolve the Ekman layer often use this 
Ekman suction or pumping velocity as a boundary condition for the interior 
flow, with Th given by the atmospheric drag law. 

In the boundary layer at the sea floor the stress is not known. Ekman 
theory assumes that it can be parameterized as 

(A.66) 

where Av is a constant vertical eddy viscosity and u~ the velocity in the 
boundary layer. The condition that the total flow be zero at the boundary 
then yields the surface stress 

(A.67) 

where h Ek = J Av/ f o is the Ekman depth and u = ( u,,, Uy) the interior 
velocity just outside the Ekman layer9 . Substituting (A.67) into (A.65) yields 
the suction velocity 

hEk 
WEk = y'2 (8,,u,, + 8yuy + 8,,uy - 8yux) (A.68) 

Note that the Ekman suction velocity depends in this case on the value of the 
vertical eddy viscosity coefficient. 

The Ekman velocities exchange fluid and its properties (heat, salinity, po­
tential vorticity, ... ) with the ocean interior. To specify the associated prop­
erty fluxes one needs to know the profiles of the properties and suction velocity 
within the boundary layer. Often these are calculated from bulk mixed layer 
models, which assume that temperature, salinity and velocity are constant 
down or up to a depth or height h and then change (sometimes discontinu­
ously) to their interior values. For the oceanic surface boundary layer, this 
mixed layer depth h is often inferred from the turbulent kinetic energy bud­
get, assuming that energy input by the wind, convection, shear instability, 
and perhaps other processes is balanced by mixing, dissipation, entrainment 
and perhaps other processes. For the oceanic bottom boundary layer, the tur­
bulent kinetic energy budget is more elusive and the mixed layer height is 
usually inferred from less founded turbulent scaling laws. The situation at 
the bottom is further complicated by the fact that the bottom is not flat but 
contains slopes and roughness elements on all scales. 

Overall, atmospheric models usually use the quadratic drag law (A.59) 
to determine the stress at their lower boundary, with an appropriate drag 

9 The "linear" drag law (A.67) expresses the surface stress in terms of the ve­
locity just outside the planetary boundary layer whereas the "quadratic" drag 
law (A.59) expresses the surface stress in terms of the velocity just outside the 
constant flux layer. Linear and quadratic bottom friction differ by more than a 
different coefficient in the drag law. 
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coefficient and wind velocity. At the surface, oceanic models apply the same 
stress, either directly or to determine the Ekman suction velocity or to drive a 
surface mixed layer model. At the bottom, oceanic models use a wide variety 
of boundary conditions, including the no-slip condition uh = 0, the quadratic 
drag law, the free-slip condition azuh = 0, the linear drag law with its associ­
ated Ekman suction velocity, or an explicit boundary layer based on rationales 
from turbulent theories. 

It is again stressed that these prescriptions of the boundary conditions are 
parameterizations and should be treated with the same scepticism as the eddy 
diffusion and eddy viscosity coefficients. 

A.9 Approximations 

The dynamics resolved by the Reynolds averaged equations may contain pro­
cesses that do not exert a strong influence on the problem to be studied. Such 
minor or irrelevant processes ought to be eliminated for transparency and, 
more importantly, for numerical efficiency. This elimination leads to approx­
imations of the governing dynamical equations. Approximations differ from 
parameterizations in that one knows, in principle, how to reinstate the elim­
inated process. There are various types of approximations. We illustrate two 
of them that are relevant for large-scale atmospheric and oceanic flows. 

A.9.1 Anelastic Approximation 

If one disturbs a fluid flow at some point it responds or adjusts to the distur­
bance by emitting waves. The waves communicate the disturbance to other 
parts of the fluid. The most common types of waves are sound waves, grav­
ity waves and Rossby waves. These waves have different restoring mecha­
nisms: compressibility for sound waves, gravitation and stratification for grav­
ity waves, and the rotation and sphericity of the earth for Rossby waves. The 
dispersion relations for these waves are shown in Fig. A.4. Since waves have 
a finite wave speed it takes time for the fluid to adjust to a disturbance. 
However, if this time is short compared to the time scales of interest one can 
assume that the adjustment is instantaneous. An example of this type of ap­
proximation is the anelastic approximation. Consider equation (A.15) for the 
pressure 

D 2 -p = -pc V · u - D 
Dt 

(A.69) 

where D summarizes the dissipative terms. Decompose the pressure into a 
hydrostatically balanced background part p(z) and a dynamically active part 
p'(x, t). The pressure equation then takes the form 

D I d - 2 -p +w-p=-pc V·u-D 
Dt dz 

(A.70) 
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Fig. A.4. Dispersion relations of different types of waves in a stratified and com­
pressible fluid layer. The horizontal axis represents horizontal wavenumbers (bot­
tom) or horizontal wavelengths (top); the vertical axis represents frequency (left) 
or period (right). The different types of wave motions are acoustic waves (related 
to compressibility), surface and internal gravity waves (related to gravitation and 
stratification), and Rossby waves (related to earth rotation and sphericity). The 
"mode" number n characterizes the vertical structure of the waves. It is number of 
nodes within the fluid layer 

Pressure disturbances are transmitted by sound waves at a speed of about 
c ~ 1410 m s-1 in water and c ~ 330 m s-1 in air. If one is interested in 
slower processes one can neglect the time derivative in (A.70) and obtains 
wdjj/dz = -pc2 V · u - D. This is a diagnostic equation for the velocity 
divergence V · u. In the ocean one can additionally neglect the advective term 
wdp /dz and the dissipative term D with respect to any of the individual terms 
of the velocity divergence. The three terms of the velocity divergence must 
thus balance and the velocity field becomes non-divergent or solenoidal 
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V·u=O (A.71) 

The dynamic part p' of the pressure is now determined by the divergence of 
the momentum balance 

V · (~Vp') = (A.72) 

-V·(u·Vu)+2!1·(Vxu)-V· (:v¢) +V· (~r) 

which is a three-dimensional Poisson equation for p'. Here p' is the dynamically 
active part of the density field. The essential effect of the neglect of the time 
derivative in (A.70) is the elimination of sound waves from the system. As 
a result the velocity divergence and the pressure adjust instantaneously and 
are given by the diagnostic equations (A.71) and (A.72), in the case of the 
ocean. Note that the fluid is still compressible. The equation of state still 
depends on the pressure. In the ocean one can further replace the density 
in the inertial terms by a constant reference density and then arrives at the 
Boussinesq approximation. 

In the next section we show that the pressure for large-scale atmospheric 
and oceanic motions is actually determined by a much simpler equation than 
(A.72), namely the hydrostatic balance. 

A.9.2 Shallow Water Approximation 

Another approximation arises from the fact that the atmosphere and the ocean 
can be regarded as shallow fluid layers if the horizontal length scale L of the 
fluid motion is much larger than its vertical scale H. For such motions the 
vertical velocity is much smaller than the horizontal velocity and the vertical 
momentum balance can be approximated by the hydrostatic balance 

0 I I 
-p =-pg oz (A.73) 

where g = IV ¢1 is the gravitational acceleration. Formally, the hydrostatic 
balance represents the lowest order of an asymptotic expansion of the vertical 
momentum balance with respect to the aspect ratio H / L. For consistency the 
hydrostatic approximation needs to be accompanied by other approximations. 

Consider first the Coriolis vector. At each latitude cp it can be written 
2!1 = (0, J, !) where J = 2D cos cp is the local meridional component and 
f = 2D sin cp the local vertical component. Both components appear .in the 
horizontal momentum balances. Consistency with the hydrostatic balance, 
however, requires neglecting the meridional component. This is the traditional 
approximation. Among the two directions in the original problem, the gradient 
of the geopotential which defines the local vertical direction and the axis of 
the earth rotation aligned with 2!1, the local vertical direction turns out to 
be more relevant. Gravitation wins over rotation. 
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Also for consistency one needs to approximate the expression (A.57) for 
the eddy-induced stress tensor. First, one needs to set the eddy viscosity 
coefficient A* to zero. Second, one needs to approximate 

2D13 = 8u/8z 

2D23 = 8v/8z 

The horizontal momentum balance thus reduces to 

(A.74) 

(A.75) 

with vertical and horizontal eddy viscosity coefficients Av and Ah. On the 
spherical earth these and the other equations are usually written in spherical 
coordinates (B, r.p, z = r-r0 ) where Bis longitude, r.p latitude and z the vertical 
coordinate with reference to some constant radius r0 . A third approximation 
then assumes the metric of these coordinates to be given by 

(A.76) 

with the constant radius r0 instead of the actual radius r = r0 + z in the 
coefficients. 

These and some further approximation constitute the shallow water ap­
proximation and result in the shallow water equations. These consist of prog­
nostic equations for the two horizontal velocity components u and v, the 
temperature T, and the concentration c2 . The density is given by the equa­
tion of state, the pressure by the hydrostatic approximation, and the vertical 
velocity by the constraint on the velocity divergence. They are diagnostic vari­
ables. General circulation models of the atmosphere and ocean are generally 
based on the shallow water equations, as discussed in Chap. 4. The shallow 
water approximation renders the problem more two-dimensional. This fact is 
utilized when the fluid is assumed to be a set of horizontal layers. 

These and other approximations are systematically derived in textbooks 
of oceanography and meteorology (e.g., [129], [63], [45]). 

A.10 Representations 

Dynamical equations can be expressed in different coordinate systems and 
by different sets of dependent variables. One usually strives for coordinate 
systems and variables, i.e., for representations, that are optimal in some sense. 
Processes on the spherical earth are best described in spherical coordinates. 
Other coordinate systems are not wrong but may be cumbersome. Less obvious 
are the advantages of other representations. We discuss two examples. 
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A.10.1 Vertical Coordinates 

Instead of the vertical coordinate z one can introduce any other coordinate 
77(x, y, z, t) as long as it is a monotonic and invertible function of z. The vertical 
coordinate z or the geopotential height </J = gz then becomes a dependent 
variable. Typical choices of 77 are the (potential) density, pressure, or specific 
entropy leading to the isopycnal, isobaric or isentropic coordinate systems. 
The transformation rules are well known. They imply the following: 

The advective derivative for any scalar function g becomes Dg/ Dt = 
(8t +uh· '\lh + w8/877)g, where w = D77/Dt is the fluid velocity through 
the 77 = canst. surfaces. It replaces the vertical velocity. If 77 is a materi­
ally conserved tracer (D77/ Dt = 0) then w = 0 and the advective operator 
becomes two-dimensional, a great simplification. In oceanography one often 
uses the isopycnal coordinate system with p = Ppot· In this case w is only due 
to dissipative processes, again a substantial simplification. 

The continuity equation can be written as gt lnp = - V · u. When trans­

formed it becomes gt ln p ~~ = - gt ln ~~ - V h · uh - ~~ . If the hydrostatic 
balance 8p/877 = -pg8z/877 is used then 

D 8p 8w 
-ln-=-Vh·Uh-- (A.77) 
Dt a,,, a,,, 

If one chooses 77 = p then the left hand side vanishes and the continuity 
equation becomes linear. 

Similarly, the horizontal acceleration due to pressure forces becomes 

(A.78) 

For 77 = p the first term on the right hand side vanishes and the pressure force 
becomes linear. Such linearizations, obtained simply by going from height co­
ordinates to isobaric coordinates may simplify analyses and computations con­
siderably. In oceanography, the continuity equation becomes linear in height 
coordinates when the anelastic approximation is applied (see (A.71)). The 
acceleration due to the pressure force becomes linear in height coordinates 
when one applies the Boussinesq approximation which allows replacing p by 
p = canst. in the inertial terms of the momentum balance and hence on the 
left hand side of (A.78). 

A.10.2 Decoupling 

Introducing new sets of dependent variables can also have its advantages. 
We demonstrate this by considering the linearized version of Laplace tidal 
equations 

8tU - fov = -g8x~ - 8x¢T 

8tv +Jou = -g8y~ - 8y</Jr 

8t~ + ho(8xu + 8yv) = 0 

(A.79) 
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on the f-plane with no friction. Here ho is the constant depth, Jo the constant 
Coriolis parameter and </>r the tidal potential. The three dependent variables 
are the zonal velocity u, the meridional velocity v, and the surface elevation 
~- If one introduces the vorticity and divergence 

the equations reduce to 

( = 8xv - 8yu 

d = 8xu + 8yv 

8t( +fad= 0 

8td - fa( = -g\J~~ - \J~</>T 

at~+ hod= 0 

(A.80) 

(A.81) 

If one further introduces the potential vorticity q = ( - {~ ~ one obtains 

8tq = 0 

8t8td + U6 - gho \l~)d = - \l~8t</>r (A.82) 

In this representation the equations for q and d are decoupled. The first equa­
tion describes steady currents which carry potential vorticity q. These cur­
rents are geostrophically balanced and horizontally non-divergent. They are 
not forced by the tidal potential. The second equation describes gravity waves 
which have zero potential vorticity and dispersion relation w2 = f6 - gh0 k2 . 

They are forced by the tidal potential. The decoupling has the advantage that 
it separates these two different types of dynamics that are intermingled in the 
original equations. The solutions for each type can be constructed indepen­
dently. The complete solution is then obtained by superposition. 

This strict decoupling becomes invalid once nonlinearities, friction, vari­
able water depth and the earth's sphericity are introduced. Nevertheless, even 
under these circumstances it might be advantageous to work with vorticity ( 
and divergence d, instead of the velocity components u and v, since these vari­
ables are still governed by distinctively different physics. While tidal studies 
generally do not make use of the inherent advantages of such a representation 
much of the theory of the large scale oceanic and atmospheric circulation does. 
There, balance equations are derived for flows that are in gradient-wind bal­
ance and weakly divergent and whose dynamical evolution is solely governed 
by the potential vorticity equation. A representation that decouples the lin­
ear problem is also advantageous when a solution to the nonlinear problem is 
sought by a perturbation expansion about the solution of the linear problem. 
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Numerics 

This appendix describes basic properties of the algorithms that are used to 
obtain numerical solutions of dynamical equations. The finite difference ap­
proximation and its truncation error are discussed first, in Sect. B.l. The most 
important property of any numerical solution of a differential equation is its 
stability. The stability of numerical solutions of partial differential equations 
depends on whether the equations are elliptic, parabolic or hyperbolic. These 
three cases are discussed separately in Sect. B.2. Equations describing envi­
ronmental systems also contain more than one dependent variable. Different 
dependent variables can then be placed on different spatial grids. The most 
common of these staggered grids are described in Sect. B.3. Instead of spatial 
grids numerical models also employ spectral or finite element methods to rep­
resent the spatial structure. These are discussed in Sects. B.4 and B.5. More 
details about numerical methods in ocean and atmosphere modeling can be 
found in [l], [2], [51], [54], [76], [113], and [186]. 

B.1 Discretization 

A digital computer can only manipulate a finite number of discrete pieces 
of information. Therefore a continuous function can only be reproduced at 
preselected discrete points. Derivatives must be replaced by finite differences. 
This introduces truncation errors. 

Consider the function u(t). The preselected points tn, n = 0, 1 ... N, form 
a grid. Often an equi-spaced grid is used such that tn = ni1t. Then i1t is 
called the grid spacing or the time step, if t denotes the time. The value of 
the function at the grid point is denoted by Un. If this function satisfies the 
differential equation 

du = F(u) 
dt 

then the derivative is obtained from the Taylor expansion 

(B.l) 
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du I 1 d2u I 2 Un+l =Un+ -d L1t + 21 d 2 (L'.lt) + ... 
t n . t n 

(B.2) 

as 
du I = Un+l - Un _ _!_ d2u I A 

d L1 21 d 2 £...J.t + ... tn t . t n 
(B.3) 

The first term is the finite difference approximation for the first derivative. The 
second and all higher terms are the truncation error. For this specific scheme, 
the truncation is O(L1t). The scheme is said to be of first order accuracy. If 
one uses the Taylor expansion 

du I 1 d2u I 2 
Un-1 =Un - dt n L1t + 2! dt2 n (L1t) + ... (B.4) 

then one obtains by subtraction 

du I = Un+l - Un-1 O((L1t)2) 
dt n 2L1t + (B.5) 

a finite difference approximation that is of second order accuracy. The finite 
difference approximation (B.3) is called forward (or downwind) differencing. 
The scheme (B.5) is called a centered difference. There is also a backward (or 
upwind) finite difference 

du I = Un - Un-1 O(L1t) 
dt n L1t + (B.6) 

which is of first order accuracy. Taylor expansion also provides finite difference 
approximations for higher order derivatives. Adding (B.2) and (B.4) gives 

d2u I = Un+l - 2un + Un-1 O((L1t)2) 
dt2 n (L1t)2 + (B.7) 

The truncation error is under control of the modeler. It can be reduced by 
decreasing the grid spacing L1t. Of course this will decrease the efficiency 
as a larger array of points has to be handled. Also, the larger number of 
operations increases the round-off errors introduced by the finite machine 
accuracy. Eventually, the round-off errors tend to become larger than the 
truncation errors and any further reduction of the grid spacing defeats its 
purpose. 

The truncation error can also be reduced by increasing the order of the 
finite difference approximation. The trade-off here is that higher order schemes 
increase the complexity of the code especially when formulating the boundary 
conditions. For this reason, atmosphere and ocean models generally use second 
order or, at most, fourth order schemes. 

When the finite difference approximations are substituted into the differ­
ential equation, one obtains the finite difference equation 
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dul dt n = F(un) (B.8) 

If the forward scheme (B.3) is implemented, we get the explicit equation 

(B.9) 

It explicitly gives the ( n + 1 )th value in terms of the nth value. One can march 
through the solution from an initial value u0 . If one uses the backward scheme, 
then one obtains the implicit equation 

(B.10) 

To obtain un+l from Un, one first has to invert F. This can be a major compu­
tational effort in geophysical problem, where F is generally a high dimensional 
operator. One can lessen the effort by using the semi-implicit equation 

(B.11) 

where F(un+i) has been approximated by a Taylor expansion. 
Finite difference approximations should also be consistent and convergent. 

A finite difference approximation is consistent with the original differential 
equation if the difference equation converges to the differential equation as 
the grid spacing Llt tends to zero. For finite difference approximations that 
are based on Taylor expansions this property is easily checked and satisfied. 
Consistency generally does not constitute a problem. The solution of a finite 
difference approximation is said to converge to the solution of the original 
continuous differential equation if the difference between the two solutions at 
a fixed point t tends to zero uniformly as Llt----) 0 and n----) oo. Convergence is 
much harder to prove1 . Generally one relies on the Lax Equivalence theorem. 
It states that consistency and stability imply convergence for linear systems. 

The most important property of a finite difference approximation is its 
stability. Let Un be the exact solution of the differential equation and Un the 
solution of the finite difference approximation. The finite difference solution 

1 Note, however, that consistency and convergence of difference schemes allow only 
for an assessment of the performance of the difference scheme. These properties 
cannot be transferred to the underlying "physical" differential equations. As out­
lined in Sect. 2.1.3 these equations are only valid for phenomena on a certain 
scale. The character of these equations changes qualitatively when phenomena on 
other scales are considered. Subgridscale parameterizations depend on scale and 
change in a discontinuous manner with scale. The number of dependent variables 
may change, etc. If a difference equation converges to a differential equation as 
Llt tends to zero this equation is not the physical equation valid for arbitrarily 
small scales. Such an equation does not exist because, among other reasons, one 
leaves the realm of continuum physics and enters the realm of discrete particle 
physics. 
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is stable if the difference Un - Un stays bounded as n tends to infinity for 
fixed Llt. 

Consider the linear differential equation ~~ = -"(U, with initial value 
u(t = 0) = u0 and "( > 0. It has the solution u(t) = u0e-7t, which tends 
to zero for t ---+ oo. Using the forward difference or explicit scheme, we get 
un+~~un = -"(Un, or Un+l = (1 - "(Llt)un. For Llt > 2h the value lunl in­
creases monotonically with n and the solution is unstable. For the backward 
or implicit scheme, we find Un+l = Un - Llt"(Un+l, or Un+l = Hu-;'L1t. In this 
case lun I decreases monotonically with n, independent of the grid size Llt. The 
implicit scheme is unconditionally stable. The semi-implicit method results in 

l-7L1t-72 L1t h. h . . d. . 11 bl Un+l - f_ 7 2L1t Un, w ic is agam uncon itiona y sta e. 

B.2 Partial Differential Equations 

Geophysical flows are governed by a set of partial differential equations. These 
PD Es contain nonlinear advection terms u · V cp which describe the advection 
of a fluid property cp by the fluid velocity u. These nonlinear advection terms 
are the major cause that renders analytic solutions impossible. The highest 
order derivatives are generally diffusive terms of the form DV · V cp. These 
highest order derivatives determine the general character of the PDE. This is 
usually demonstrated by the simple second order PDE 

(B.12) 

for the scalar u(x, t). The coefficients A, B and C of the highest order deriva­

tives determine the characteristic directions in (x, t)-space c± = B±v'~~-4Ac. 
These characteristics describe the lines in (x, t)-space along which informa­
tion propagates. This propagation differs depending on the nature of these 
characteristics. We call the PDE 

hyperbolic if 
parabolic if 
elliptic if 

B 2 > 4AC 
B 2 = 4AC 
B 2 < 4AC 

Hyperbolic equations have two distinct real characteristics. Wave propagation 
8t8tu - c28x8xu = 0 is a typical hyperbolic problem. 

Parabolic equations have two coinciding real characteristics. The diffusion 
equation 8tu = D8x8xu is the prototype example. 

Elliptic equations have two imaginary characteristics. They usually occur 
for steady state problems. Laplace and Poisson equations are typical examples. 

The distinction between elliptic, parabolic and hyperbolic systems also 
carries over to the PDEs that describe geophysical flows. These PDEs can be 
converted to a set of first order PD Es for a vector y = (y1 , ... , y N) which is 
a function of position x = (x, y, z) and time t 
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The eigenvalues of the matrices A, B and C then determine the character 
of the PDE. If the eigenvalues of A are real and distinct, the problem is 
hyperbolic in (x, t) space. If they are imaginary, the problem is elliptic in 
(x, t) space. Similarly, the eigenvalues of the matrices Band C determine the 
nature of the problem in (y, t) and (z, t) space. 

Since the numerical algorithms depend on the nature of the PDE, we 
discuss elliptic, parabolic and hyperbolic equations separately. 

B.2.1 Elliptic Problems 

Elliptic equations arise in oceanography and meteorology for steady state 
flows, such as the steady wind-driven oceanic circulations studied by Stom­
mel and Munk. They can also arise as part of a time-dependent problem. One 
example are oceanic flows under the Boussinesq but nonhydrostatic approxi­
mation. The Boussinesq approximation assumes the velocity field to be nondi­
vergent or solenoidal, V · u = 0. Mass conservation is replaced by volume con­
servation. To assure this condition in the nonhydrostatic approximation, one 
takes the divergence of the momentum equation 8tu+u· V ·u = -~Vp+F, 
and arrives at a Poisson equation for the pressure p 

V · (~v) p = V · (u ·Vu)+ V · F (B.14) 

This equation has to be solved at any time step for given u, F and p. An 
elliptic equation also arises for two-dimensional incompressible flows, 8xu + 
8yv = 0. In this case a stream function 'l/; can be introduced, such that u = 
-8y'l/; and v = 8x'l/J, and is governed by the equation i1'l/; = 8xv - 8yu, with 
the vertical component of the vorticity vector as the source term. 

A well-posed elliptic problem requires specification of boundary conditions. 
These may be Dirichlet, von Neumann, mixed, or periodic. The boundary con­
ditions affect the solution in the whole domain at once. Physically, any pertur­
bation is felt immediately everywhere. The speed of adjustment is infinite. In 
geophysical flows, pressure perturbations are transmitted by sound waves. The 
Boussinesq approximation eliminates sound waves by assuming their speed to 
be infinite. As a consequence the pressure is determined instantaneously by 
the Poisson equation (B.14). 

Most of the elliptic equations encountered in oceanography and meteorol­
ogy are well posed linear problems for which it is easy to show that a unique 
solution exists, sometimes to within an additive constant. The numerical al­
gorithms are designed to find these solutions accurately and efficiently. 

For illustration consider the two dimensional Poisson equation 

(8x8x + 8y8y)u(x, y) = J(x, y) (B.15) 
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The centered difference approximation (B. 7) results in ui+l,j -4ui,j +ui-l,j + 
Ui,j+l + ui,j-1 = 2fi,j, where i = 1, ... , I and j = 1, ... , J and where L1x = 
L1y = 1 for simplicity. This set of linear equations can be written as the matrix 
equation 

A·x=b (B.16) 

where x is a vector of length N = I · J which contains all the elements ui,j, 

b is a vector of the same length which contains all the elements li,1 and A is 
the N x N coefficient matrix. The coefficient matrix is sparse (most elements 
are zero) and banded (essentially tridiagonal). To find the solution ui,j one 
thus has to invert the matrix A. There are direct and iterative methods to 
do so. 

Direct methods are all variants of the Gauss forward elimination proce­
dure where all subdiagonal elements are eliminated by normalization and 
subtraction. The resulting upper triangular matrix is then solved by back­
substitution. These variants go by the name of Gauss-Jordan elimination, LU 
decomposition and Thomas algorithm. For large dense matrices these algo­
rithms are computationally inefficient. For sparse and banded matrices they 
can be made more efficient. However, for most geophysical problems, iterative 
or relaxation methods are used. 

Iterative schemes are based on the fixed point theorem. For vector func­
tions it states that the scheme 

(B.17) 

converges to the fixed point x = M x + b if the largest eigenvalue (i.e., the 
"spectral radius") of the matrix M is smaller than one. This can be seen 
by considering the error .:1x(m) = x - x<m) which is governed by .:1x(m+l) = 
Mx(m) = Mmx<0l. The error thus converges to zero if Mm converges to zero 
which requires the eigenvalues of M or its spectral radius to be smaller than 
one. The convergence is the faster the smaller the eigenvalues. If M =I - A 
where I is the identity matrix, the fixed point solves the equation Ax = b. 

To apply iterative schemes, one decomposes the matrix 

A=D-L-U (B.18) 

where D is diagonal (or easily invertible) and L and U are lower and upper 
triangular matrices. The matrix equation (B.16) then takes the form Dx = 
(L + U)x + b. The Gauss-Jacobi iteration is given by 

(B.19) 

the Gauss-Seidel iteration by 

(D - L)x(m+l) = Ux(m) + b (B.20) 

and the relaxation scheme by 
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where a/m+l) on the right hand side is given by the expression (B.19). The pa­
rameter a is called the relaxation parameter. Convergence requires 0 <a< 2. 

The major issue for these and other schemes is the rate of convergence. It 
can be shown that Gauss-Seidel is twice as fast as the Gauss-Jacobi scheme, 
and that the relaxation scheme is faster than the Gauss-Seidel scheme if a > 1, 
i.e., if one overrelaxes. Though the successive overrelaxation (SOR) scheme 
has been the method of choice in geophysical problems, it has recently been 
replaced by the more efficient conjugate gradient and multigrid methods. 

Overall, the characteristic of elliptic problems is that the solution must be 
sought simultaneously at all points of the domain. This implies the inversion 
of generally large matrices. The main issue is computational efficiency. 

B.2.2 Parabolic Problems 

Parabolic (and hyperbolic) equations describe time dependent problems. 
They must be formulated as initial boundary value problems. The prototype 
parabolic problem is the diffusion equation 

(B.22) 

It is linear and describes the diffusion of a property u in physical space from 
an initial distribution. In the course of time any gradients are smeared out. 
Consider a time step L1t such that t = nL1t, n = 1, ... , Nanda grid size L1x 
such that x = jL1x, j = 1, ... , J. 

The simplest finite difference scheme then is the explicit scheme 

uj+1 = uj + D(u'J+1 - 2u'J + uj_1 ) + O(L1t, (L1x) 2 ) (B.23) 

where fJ = L1tD / (L1x )2 • The major concern is the stability of such approxima­
tions. Linear stability requires that the spatial Fourier modes uj = AneikjLlx 

do not amplify with time for any wavenumber k. For the explicit finite differ­
ence scheme (B.23) this implies 

(B.24) 

with amplification factor G = 1- 4D sin2 kL1x/2. The scheme is thus linearly 
stable if IGI < 1 for all k which requires fJ < 1/2 or a time step L1t < 
(L1x) 2 /2D. The scheme is conditionally stable. 

If we violate this criterion the wave with kL1x /2 = 7f /2 or of wavelength 
2L1x is the most unstable, i.e., the fastest growing mode. Boundedness for 
finite times relaxes the stability condition to IGI :S 1 + O(N-1 ). For vector 
problems G becomes a matrix and the stability criterion is that the spectral 
radius of the matrix be smaller than one, i.e., all eigenvalues of G must have 
a magnitude smaller than 1. 
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The constraint on the maximum allowable time step Llt of the explicit 
scheme (B.23) can be avoided by using the implicit scheme 

(B.25) 

which requires solving the tridiagonal system -Duj~f + (1 + 2D)uj+l -

Dujtf = uj. In this case G = (1 +4Dsin2 kLlx/2)- 1 which is smaller or 
equal to one for all k. The scheme is thus unconditionally stable. Arbitrarily 
large time steps can be taken. 

In contrast the centered time difference scheme 

un+l - un-l = 2D(un - 2un +Un ) + O((Llt) 2 (Llx) 2 ) 
J J J+l J J-1 ' (B.26) 

has G =~[a± (a2 + 4) 112], where a= 8Dsin2 kLlx/2. Since IGI ~ 1 for all 

D > 0, the scheme is unconditionally unstable. This scheme was, unfortu­
nately, used by L. F. Richardson in his heroic but failed attempt at weather 
forecasting in the 1920's (see Sect. 5.1.3). 

For the two-dimensional diffusion problem, the explicit scheme leads to 

D :::; ~ (L1xl;1!i~Yl2. For Llx = Lly the allowable time step is half that of the 
the one-dimensional problem. For three dimensional problems it is one third 
of the one-dimensional problems. 

Commonly used schemes for parabolic equations are the Crank-Nicholson 
and the Dufort-Frankel scheme. 

B.2.3 Hyperbolic Problems 

Hyperbolic equations describe advection or propagation. A disturbance propa­
gates along the characteristics from its point of origin. Its influence is only felt 
within the wedge between the characteristics. As for parabolic problems solu­
tions can be constructed that march downwind into the "domain of influence". 
Again stability is the major concern. Physically, stability requires that the al­
gorithm does not propagate information faster than the propagation speeds. 
This requires a time step Llt :::; Llx / c or a Courant number C = cLlt / Llx :::; 1. 
This is the famous Courant-Friedrich-Levy criterion (CFL). Additional issues 
are numerical diffusion, numerical dispersion, and nonlinear instability. 

The simplest hyperbolic problem is the advection equation 

(B.27) 

It has the exact solution u(x, t) = u0 (x - ct) where u0 (x) = u(x, t = 0) is the 
initial distribution. The initial distribution just propagates along the x-axis 
without any change of form. 

One might attempt to solve this advection equation with an explicit scheme 
that is forward in time and centered in space 
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uj+1 = uj - ~C(u'J+ 1 - uj_1) + 0(.:1t, (.:1x) 2) (B.28) 

where C is the Courant number. Linear stability analysis gives the amplifica­
tion factor IGI = (1 + C2 sin2 k.:1x) 112 2 1. This schemes is unconditionally 
unstable. 

In the case c > 0 the upwind scheme 

uj+1 = uj - C(uj - uj_ 1 ) = (1 - C)uj + Cuj_ 1 + 0(.:1t, .:1x) (B.29) 

is stable if ICI < 1. However, it is diffusive. This can be seen by rewriting 
(B.29) in the form 

n+l n C( n n ) + 1 C( n n ) u1 = u1 - u1 - u1_1 2 uJ+1 - uJ+l 

n 1 C( n n ) 1 C( n n n ) = u1 - 2 uJ+ 1 - u1_ 1 + 2 uJ+ 1 - 2u1 + u1_1 (B.30) 

The first two terms represent the unconditionally unstable advection scheme 
(B.28). The last term is a second order approximation to a diffusion term 
Doxoxu. The upwind scheme actually solves an advection-diffusion equation 
with a diffusion coefficient D = 0 fx. This diffusion is called numerical diffu­
sion. The unstable scheme for the advection term is stabilized by introducing 
diffusion. 

Numerical dispersion occurs when second order schemes are introduced 
for the spatial coordinates. This can be seen by analyzing the second order 
scheme 

du· u·+1-u·-1 
_J+cJ J =0 
dt 2.:1x 

(B.31) 

It has solutions u 1(t) = U ei(kjL1x-wt), with phase speed Cp = ~ = csi~~~x and 

group velocity Cg = ~~ = ccos k.:1x. These waves are dispersive (Fig. B.1). 
Their phase speed depends on the wavenumber, whereas the original advection 
equation supports nondispersive waves with constant phase speed and group 
velocity. Any initial distribution thus disperses instead of staying intact. The 
problem is especially crucial for small scale features since their phase speed 
approaches zero as k --+ 7r / .:1x. Small scale features do not propagate at all 
but stay stagnant. 

These schemes are all not very satisfactory. The first order schemes intro­
duce numerical diffusion that smears out gradients. The second order schemes 
introduce numerical dispersion. Flux corrective transport (FCT) schemes com­
bine low order diffusive and high order dispersive schemes in a way to minimize 
diffusive and dispersive distortions. 

For the nonlinear advection equation 

(B.32) 

with periodic boundary conditions (i.e, u(L) = u(O)) additional issues come 
into play. One arises from the fact that (B.32) can be rewritten as 
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Fig. B.1. The phase speed (dashed) and the group velocity (continuous) of the finite 
difference approximation (B.31) (FDM) and of the finite element approximation 
(B.47) (FEM) of the linear advection equation (B.27) 

(B.33) 

In this form the nonlinear advection equation becomes a conservation equation 
for a property of density u and flux F = u 2 /2. The amount of the property 
within a "volume" only changes due to fluxes across the "surface" 

d lb dt a dxu = - [Flx=b - Flx=a] (B.34) 

Any numerical algorithm should be designed to not violate this conservation 
and to not introduce any artificial sources or sinks. This is most easily done 
by discretizing the flux form (B.33) rather than the advective form (B.32). In 
the flux form the finite differences are automatically of the form FJ+1 - Fj 
and satisfy (B.34) whereas finite differences of the advective form such as 
Uj ( UJ+ 1 - Uj) do not necessarily do so. The geophysical equations that rep­
resent balance equations for mass, momentum, energy and other properties 
should thus be discretized in their flux form. 

A second issue is that solutions of the nonlinear advection equation may 
become unstable even if the scheme is linearly stable. Most often variance 
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piles up at small wavelengths 2Llx and 4Llx, first slowly, then exponentially. 
The reason for this nonlinear instability is twofold. First, the nonlinearity in 
the equations couples the Fourier modes. Variance appears in modes that had 
no variance initially. Second, the smallest resolvable wavelength in a grid is 
2Llx. If the nonlinear interactions transfer energy to smaller wavelengths it 
is folded back or aliased into the larger resolvable wavelengths. This leads to 
build-up of variance at the smallest wavelengths and eventual instability. 

The possibility of this nonlinear instability also expresses itself in the fact 
that the numerical algorithm does not conserve the same properties as the 
original differential equation. The advection equation conserves the variance 
of u or the "kinetic energy" (see (B.34)) for periodic boundary conditions. 
The finite difference approximation 

(B.35) 

on the other hand gives 

(B.36) 

where the right hand side does not necessarily sum to zero. 
The same is true for the flux form 

(B.37) 

which leads to 

(B.38) 

and also fails to conserve energy. 
The build-up of variance at the smallest wavelengths can be avoided by 

removing the variance by scale selective filtering or the addition of artificial 
diffusion (e.g., [142]) or by introducing variance conserving schemes. 

If we add diffusion to the advection equation we arrive at the advection­
diffusion equation 

(B.39) 

Consider the scheme 
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(B.40) 

If D = 0 then the scheme is stable if ICI :::; 1. If c = 0 the scheme is stable if 
b = D L1t / L1x2 < 1/4. For the general case we find the stability criterion C 2 :::; 

1 - 4D, which reduces to the appropriate criterion for the purely advective 
and diffusive case but implies that the Courant number or time step needs to 
be reduced when diffusion is added to the advection equation. 

B.3 Staggered Grids 

The equations describing geophysical flows contain more than one dependent 
variable. A typical example are the equations 

8tU - Jov + g8x~ = 0 

8tV +Jou+ g8y~ = 0 

8t~ + ho(8xu + 8yv) = 0 

(B.41) 

which describe inviscid, unforced, linear, barotropic shallow water flow. Here 
u and v are the horizontal velocity components and ~ the surface elevation; J 0 

is the Coriolis parameter, ho the constant fluid depth and g the gravitational 
acceleration. Five different ways to arrange the three dependent variables on 
a grid are shown in Fig. B.2. They are called the Arakawa A to E grids. The 
grids A to D have a grid size L1x. The E grid has the same density of points 
if its grid size is chosen to be v12L1x. 

The different grids perform differently. This can be seen by calculating the 
dispersion relations of the waves that the grid supports. For ky = 0 we find 

1 + (f,,)2 (kL1x) 2 exact 

1 + (.:X) 2 sin2 kL1x grid A 
1+4 (.:X) 2 sin2 kL1x/2 grid B 
cos2 kL1x/2 + 4 (.:Xj2 sin2 kL1x/2 grid C 

cos2 kL1x /2
2 
+ C:x) sin2 kL1x grid D 

1+2 (:x) sin2 kL1x/v12 grid E 

(B.42) 

where R = V9Ji-O/ Jo is the Rossby radius of deformation. The exact dispersion 
relation depends on kR whereas the grid approximations depend on R/ L1x and 
kL1x. 

Figure B.3 shows the dispersion relations as a function of kL1x for R/ L1x=2. 
The dispersion relations are all different and deviate from the true solution. 
Grids A, D and E show negative group velocities for small wavelengths. For 
grids Band C zero group velocity is reached at the smallest wavelength 2L1x. 

Figure B.4 shows the dispersion relation for three different values of R/ L1x 
for the C-grid. For R/ L1x > 1/2 the frequency increases monotonically with 
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Fig. B.2. Five different ways, A to E, to arrange the three dependent variables u, 
v and e of the shallow water equations on a staggered horizontal grid 

k, for R/ i1x < 1/2 it decreases monotonically, and for R/ i1x = 1/2 it is 
constant. The implications of these differences need to be carefully evaluated 
when choosing a grid. Most ocean models use the Arakawa B or C grid. 

B.4 Spectral Models 

Instead of finite difference grids one can also use a truncated set of basis func­
tions to represent the spatial structure. Any function f(x) can be expanded 
into a generally infinite sum of basis functions </>n(x) 
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Fig. B.3. Dispersion relations for the exact shallow water equations (B.41) and for 
the Arakawa A to E grids as a function of kiJ.x for a Rossby radius R = 2iJ.x 

f(x) = L fncPn(x) (B.43) 
n 

Instead of performing operations on the function itself one then has to perform 
operations on the coefficients f n and on the basis functions ¢n ( x). Truncation 
of the expansion at a finite number allows numerical calculations albeit with 
a truncation error. The most common of these representations for geophysical 
flows are the spectral and finite element models. 

Spectral models represent the latitudinal ( c.p) and longitudinal ( B) depen­
dence of a function in terms of spherical harmonics 

(B.44) 
n m 

with µ = sin c.p and 

(B.45) 

and m = ... , -2, -1, 0, +1, +2, ... and n = 1, 2, 3, ... with fmf ::; n. Here Pn is 
the Legendre polynomial of order n and P;:' the associated Legendre polyno-
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Fig. B.4. C-grid dispersion relation for three different values of R/ dx 

mial of the first kind of degree n and order m. The basis functions P;:" (µ) e ime 
are orthogonal and normalized. The index m is the zonal wavenumber. The in­
dex n- lml is the meridional "wavenumber", i.e., the number of zero crossings 
in the open interval ( -n-/2, 7T /2). 

By substituting the expansion into the governing equations, evolution 
equations for the coefficients u;;i( .. . ) are obtained. The nonlinear advection 
terms are a major difficulty. They constitute double sums that describe the 
nonlinear interaction of modes. The number of these interactions is propor­
tional to the square of the number of resolved modes. 

The calculation of these nonlinear terms was a major roadblock to­
wards increasing resolution for spectral models. This situation changed in 
the 1970s when the Fast Fourier Transformation (FFT) became available and 
B. Machenhauer introduced the transformation method. At each time step, 
it transforms the nonlinear terms to physical space, evaluates them there and 
then transforms the result back to spectral wavenumber space, using FFT in 
both transformations. Gradients are thus evaluated in physical space. Nowa­
days spectral models have all the variables available in both spectral and 
physical space at each time step. 

Truncation is either done at N = M (triangular truncation) or at 
N = lml +M (rhomboidal truncation) (see Fig. B.5). Rhomboidal truncation 
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Fig. B.5. Triangular and rhomboidal truncation of spectral models 

provides the same meridional resolution for each zonal wavenumber, similar 
to a regular spatial grid. With only half the number of basis functions, tri­
angular truncation provides the same meridional resolution but only at low 
zonal wavenumbers. 

Spectral models are best suited for the atmosphere, which has no zonal 
and meridional boundaries. They are ill-suited for the oceans with their com­
plicated basin geometry. When applied to the atmosphere, spectral models 
offer a couple of advantages. First of all, they represent fields globally. The 
solution at a point in physical space depends on the solution everywhere else, 
whereas in a finite difference approximation it only depends on its neighboring 
points. This global representation conforms more to the underlying physics 
where "everything is connected with everything else". Also, spectral models 
can easily accommodate variance conserving schemes. 

The major disadvantage of spectral models is inflexibility. Local increase 
of resolution around mountain ranges or in regions of interest is impossible. 
Also, they are computationally somewhat less efficient than finite difference 
models. The number of operations grows at N log N rather than N, and they 
are harder to run on massively parallel computers. 
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B.5 Finite Element Models 

Finite elements are another method where the dependent variables are ex­
panded in terms of a set of basis functions. Unlike the global basis functions 
of spectral methods, the basis functions of the finite element method are local. 
They are low-order polynomials that are nonzero only in a limited domain. 
One can thus adopt the grid to any desired resolution locally. This is a great 
advantage when dealing with inhomogeneous flow fields and complex geome­
tries. 

The standard basis function for one-dimensional problems is the "tent" 
function 

{
o 
[x - (j - l)Llx]/Llx 

<Pi(x) = ~(j + l)Llx - x]/Llx 

for x < (j - l)Llx 
for (j - l)Llx :::; x :::; jL'.lx 
for jL'.lx :::; x :::; (j + l)Llx 
for x > (j + l)Llx 

(B.46) 

Some of the intrinsic advantages and disadvantages of the finite element 
method can be seen by applying it to the linear advection equation (B.27) 
which results in 

~(dui+l 4 dui duj-1) (uj+1 - Uj-1) _ 
6 dt + dt + dt + c 2Llx - O (B.47) 

Contrary to the finite difference approximation (B.31) the time derivative is 
smoothed over adjacent grid points. 

A wave dispersion analysis gives phase speed Cp = k~x · 2~~o~~~x and 

group velocity c9 = 3c · (~t~~~~~~)2 • This phase speed and group velocity is 
compared in Fig. B.l with the phase speed and the group velocity obtained 
for the second order finite difference method (B.31). The dispersion of the 
finite element method is less than for the finite difference method. However, 
the 2Llx wave is still stagnant and has a group velocity -3c, three times faster 
than for the finite different approximation. Small-scale inaccuracies propagate 
rapidly through the elements and distort the solution. 

Finite element methods have successfully been used for two-dimensional 
barotropic tidal and storm surge models. They were first applied by coastal 
engineers to fluid problems. 



c 
Statistical Analysis 

Statistical analysis is a difficult concept for the novice. Often it is reduced 
to the formal determination of relevant parameters, such as mean values, ex­
treme values, auto-covariance functions, spectra or empirical orthogonal func­
tions. Sometimes it is identified with testing hypotheses, by applying a certain 
formalism and then declaring a result to be "significant" 1. Statistics indeed 
encompasses these activities, but essentially statistics is a science which logi­
cally accounts for uncertainties when inferring information about a system for 
which only limited empirical evidence is available. Most often it takes the form 
of parameter estimation and the determination of the expected uncertainty of 
these estimates. 

Random variable is the key concept in statistical analysis. It is discussed 
in Sect. C.l. All statistical analyses are related to either characterize ran­
dom variables with the help of suitable parameters (as discussed in Sect. C.2 
"Characteristic Parameters"), or to infer a random variable consistent with 
limited empirical evidence from data (as discussed in Sect. C.3 "Inference"). 
Inference is at the core of statistical analysis: to infer rationally from limited 
empirical evidence, i.e., from a limited number of samples, as much as possible 
about an assumed, underlying, unknown random variable. This inference is 
usually done by choosing a method so that on average2 the estimated param­
eter is the true value, and that, also on average, the error in estimating this 
parameter is as small as possible. 

In the following we summarize these key elements of statistical analysis. 
For more details refer to [182] or [188]. 

1 When a result is found to be "significant", it does not necessarily imply that the 
result is important or relevant, but that a preconceived concept (or "model" as 
the statisticians often say) is likely to be inconsistent with the data. 

2 "On average" means here that the method is repeatedly applied, and that the 
outcomes of these repeated applications are averaged. 
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C.1 Random Variables and Processes 

C.1.1 Probability Function 

Let us consider a mechanism X that produces numbers. The outcome is uncer­
tain and differs from realization to realization. Call these numbers Xn where 
the index n denotes or counts the different realizations. Assume that all real­
izations are equivalent and independent, that the uncertainties are the same 
for each realization and that the value Xn provides no knowledge about the 
value of the next realization Xn+l or any other realization. The output is, 
however, assumed not to be completely irregular, but to satisfy 

r l{xn+k E [a, b]; k :S N}I F ([ b]) 
N~oo N = X a, (C.1) 

for any interval [a, b]. The term I · I denotes the number of elements of a set, 
i.e., in our case the number of realizations with values in the interval [a, b]. 
The function Fx is a non-negative real-valued function, operating on sets of 
numbers, with the properties 

Fx([-oo, +oo]) = 1 

Fx(0) = 0 (C.2) 
Fx([a, b]) + Fx([c, d]) = Fx([a, b] U [c, d]) if b:::; c 

Fx([a, b]) 2: 0 

where 0 denotes the empty set. It is called the probability function. The 
definition (C.l) says that by binning many samples into small intervals we 
can approximate with increasing accuracy the underlying probability function. 
The distribution function is given by 

Fx(Y) = Fx([-oo, y]) (C.3) 

If the realizations x can take only discrete values, the distribution function 
Fx (y) is a step function. When x varies across a continuum of real num­
bers, then in most cases the distribution function is differentiable, so that the 
probability density function can be defined as 

fx(Y) = dFx(Y) 
dy 

(C.4) 

The probability of a realization x having a value within an interval [a, b] 1s 
given by 

p(x E [a, b]) = Fx([a, b]) = Fx(b) - Fx(a) = 1b dy fx(y) (C.5) 

A mechanism satisfying these conditions is called a random variable, named X, 
with probability distribution function Fx (or probability density function fx). 
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The distribution function describes the "uncertainty" of the mechanism. The 
uncertainty is characterized both by the location of the distribution (given for 
example by the medianµ = F)(1 (0.5)) and by the width of the distribution 
(given for example by the quartile difference F)( 1 (~) - F)( 1 (~)). 

For clarity we denote random variables by boldface upper-case letters such 
as X, their realizations by boldface lower-case letters such as x, and other 
numbers such as (dummy) arguments of functions by lower-case letters x. 

For the above definition of a random variable it is not relevant if the out­
come x of the mechanism X is really random, or if the outcome is deterministic 
but so complicated that we are unable to disentangle the deterministic rules 
behind it. If we cannot discriminate the output from that of a random mech­
anism we may treat it as random. In Fig. 2.1 of Sect. 2.5 we demonstrated 
that a sum of several deterministic but highly chaotic processes cannot be 
distinguished from the realization of a white noise process. 

There are many families of probability distributions. They include the 
normal, or Gaussian, the lognormal, the gamma, and the Weibull distributions 
(see e.g., [188]). Here we briefly discuss the normal, Weibull, and Gumbel 
distributions. 

The most important distribution is clearly the normal or Gaussian distri­
bution 

1 (x- µ) Fn(x) = 2[1 + erf ../2a ] 

1 
fn(x) = r,c. exp [-(x - µ) 2 /2a2] 

v27ra 

where erf is the error function. The parameter µ characterizes the location 
of the distribution and the parameter a its width. Its importance is empha­
sized by the adjective "normal". The reason for its importance is the Central 
Limit Theorem. It states that the distribution of the average of a series of 
random variables converges towards a normal distribution, when the series 
becomes longer and longer. The only provisions that need to be satisfied are 
that the elements in the series are described by the same probability distri­
bution function, and that they are independent from each other (or contain 
enough independent samples)3 . The convergence towards "normality" holds 
for all probability distributions, but for some distributions the convergence 
is faster (e.g., for symmetric uni-modal ones) than for others (e.g., for highly 
skewed ones). 

In environmental sciences we often consider time mean values, say monthly 
means or even yearly means. Thus, the considered variable is an average of 
many equally distributed variables - and in fact, many of the time averaged 
quantities are nearly normally distributed. The longer the time averaging, the 
better the normal distribution describes the probability density function. For 

3 These conditions may be relaxed. A finite number of distributions that are about 
equally frequent, suffices, as for instance in case of an annual cycle. 
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some variables this convergence is fast, as for temperature or nutrient loads, 
whereas for others, as for rainfall or mixed layer depth, the convergence is less 
fast. 

The Weibull distribution is a 2-parameter distribution given by 

Fw(x) = 1-exp [-(~)a] 

fw(x) = ~ (~) a-l exp[-(~) a] 
with positive parameters a and (3. The parameter a is a shape parameter: 
probability density functions with a < 1 are monotonically decreasing func­
tions with a maximum at x = O; functions with a = 1 are identical to ex­
ponential distributions; functions with a 2: 3.6 are very similar to normal 
distributions. The parameter (3 is a scale parameter, i.e., the larger (3 the 
broader the distribution. 

The Weibull distribution is useful to characterize the distribution of wind 
speed in the extratropics [6]. As an example, Fig. C.1 shows the histograms 
(binned frequency distributions) for the observed daily mean wind speed at 
Ocean Weather Station M derived from 45 years of data, for the four seasons, 
and Weibull distributions fitted to these histograms. In summer, a = 2.64 
is smallest and the distribution is most skewed, with a mean wind speed of 
only 7.3m/s and an extended tail towards larger values. In winter, a= 3.04 
is largest and the distribution is almost symmetric, close to normal, and has 
the strongest mean wind speed. 

Among the distributions that describe extreme values the Gumbel distri­
bution or EV-I distribution is the most relevant one. It measures the prob­
ability that the maximum of infinitely many samples4 drawn, say, within a 
year, is larger than some value x. It is given by 

Fc(x) =exp {-exp [- x ~a]} 
1 { [x -a] x - a} fc(x) = 7J ·exp -exp -(3- - -(3-

Again, it contains two parameters. This time, a represents the location of the 
maximum of the distribution, and (3 is again a shape parameter. The distri­
bution is skewed, with the mean value larger than the maximum value. By 
inverting the distribution function Fe "return values" can be determined by 

Rr = a - (3 · Zn [-zn ( 1 - ~)] 
On average, once within the time T the threshold Rr will be passed. 

4 This is an asymptotic statement. The statement is an approximation for a finite 
number of samples; how good an approximation depends on the type of distribu­
tion from which the samples are drawn. 
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FREQUENCY DISTRIBUTIONS OF WIND SPEEDS 
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Fig. C.1. Weibull distributions fitted to daily mean wind speeds recorded at the 
North Atlantic Ocean Weather Station (OWS) M off the Norwegian coast for the 
four seasons: MAM, JJA, SON und DJF. From Bauer [6] 

C.1.2 Bivariate Random Variables 

So far we have assumed that X generates real numbers, but this assump­
tion can easily be relaxed. In particular complex numbers, vectors, functions 
or other objects may be generated. Here we first consider bivariate random 
variables. 

A bivariate random variable Z = (X, Y) is characterized by a joint prob­
ability density function fz(x, y) which describes the probability that the ran­
dom variable has a particular outcome z = (x, y). From this joint probability 
density function one can derive the marginal density function 
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fx(x) = 1: dy fz(x, y) (C.6) 

which describes the probability that the outcome of X is x, no matter what 
the outcome of the variable Y. The marginal density function fy (y) is defined 
similarly. The conditional probability density distribution is defined by 

f ( ) _ fx,v(x, y) 
XIY x - fy(y) (C.7) 

It describes the probability that the outcome of X is x given that the outcome 
ofY is y. The conditional density distribution fv1x(Y) is defined likewise. The 
two variables X and Y are called statistically independent when the joint 
density function has the separable form 

fz(x, y) = fx(x)fy(y) (C.8) 

In this case fx1v(x) = fx(x) and fv1x(Y) = fy(y). The probability of the 
outcome x of X is independent of the outcome y of Y; and the probability 
of the outcome y of Y is independent of the outcome x of X. The random 
variable X does not provide any information about the variable Y and vice 
versa. 

An example of a bivariate random variable appeared in our discussion of 
weather forecasting (see Sect. 5.1.5). In this case X is the forecast, and Y 
is the state to be predicted. The top of Fig. 5.15 is an estimate of the joint 
bivariate distribution. The forecast of a certain weather variable depends very 
much on the the state to be predicted; otherwise the forecast would be useless. 
This fact is reflected in the conditional distribution fv1x(Y) of the predictand 
Y (temperature at some location), given the forecast X. This conditional 
distribution peaks around y = x and has a narrow width, i.e., when a value x 
of X is predicted, then on average the observed temperature y is close to x. 
The forecast summarized in Fig. 5.15 may therefore be considered useful. 

C.1.3 Random Processes 

When the output of our mechanism is not numbers or pairs of numbers but 
is an infinite series Xt or functions x(t) one speaks of random processes Xt or 
X(t). The index tis usually taken to be time. It is a discrete index in Xt with 
t = nf1t and n = ... , -1, 0, 1, ... and a continuous argument in X(t). Often 
L1t = 1 for convenience. When such random processes are considered, the in­
tervals in equations (C.l, C.2) have to be replaced by different suitable sets 
and other modifications have to be introduced. However, the overall line of rea­
soning will not change by these replacements and modifications. Realizations 
are now infinite series Xt or functions x( t). The (joint) probability distribution 
functions now have these infinite series or functions as their arguments, and 
are hence quite cumbersome objects. Marginal and conditional distributions 
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can nevertheless be defined in a straightforward manner. Two new important 
concepts of these random processes are stationarity and memory. To keep the 
discussion simple we only consider discrete random processes Xt. 

A random process Xt is called stationary if its (joint) probability distri­
bution does not depend on time or, equivalently, is invariant under a time 
translation. This condition is violated in many applications by trends and cy­
cles, in particular by the annual cycle and the diurnal cycle. The probability 
for strong winds is larger in winter than in summer. However, in most cases 
simple transformations produce time series that are approximately stationary. 
In particular, if Xt is a process with a trend, then 

Yt = Xt - a· t (C.9) 

with an appropriate coefficient a will often be a process that satisfies the 
stationarity condition. Similarly, when the data include a deterministic cycle 
of length T, then any time t may be written as t = nT + t' where n is the 
number of cycles passed so far, and t' the time passed in the present cycle. 
Then 

y _ Xt - h(t') 
t - g(t') (C.10) 

with two periodic functions h(t') and g(t') will also often produce a more 
stationary process. In both these transformations it is assumed that the trend 
or cycle are in the mean. The variability may also have a deterministic trend or 
cycle. Then additional transformations may yield more stationary time series. 

A discrete random process can be viewed as a series of random variables. 
Each term of the series, Xt with t fixed, is a random variable. Its probability 
density function ft ( x) is a marginal density function of the process. Similarly, 
two terms of the series, Xt and Xt+k with t and t + k fixed, constitute a 
bivariate variable. Its joint density function ft,t+k(x, x') can again be viewed 
as a marginal distribution of the process. For a stationary process it only 
depends on the time difference or lag k but not on time t itself. For many 
processes the two variables become independent as the lag k increases. These 
are processes with a finite memory. The lag needed to obtain independence is 
an important characteristic of such processes. 

The most important random process is the white noise process discussed 
in Sect. 6.1.3. In its discrete version the white noise process Nt is defined as 
a process with probability density function 

t=oo 

fN( ... ,Xt-1,Xt,Xt+1, ... )= IT fn(xt) (C.11) 
t=-oo 

where f n ( x) is the normal distribution with mean µ = 0 and variance a 2 = 1. 
The white noise process is stationary. All terms in the series are independent 
from each other. The process has no memory. A continuous version can also 
be defined. Often the variance is assumed to have an arbitrary value a;. The 
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importance of the white noise process is that it allows to construct other 
processes. Prominent examples are auto-regressive processes 

6 
0. = 0.9 

6 
a= 0.3 

3 3 

0 0 

-3 I , 
-6 -6 

6 6 
UJ = 0.3 a2 = 0.3 <X1 = 0.9 U2 = -Q.8 

3 3 

0 
0 

-3 

·3 

-6 

-6 

Fig. C.2. Realizations of two AR(l) processes (top row) and two AR(2) processes 
(bottom row) for 240 time steps. AR(l), left: a1 = 0.3; right: a1 = 0.9. AR(2), left: 
a1 = a2 = 0.3; right: a1 = 0.9 and a2 = - 0.8; All processes are forced by normally 
distributed white noise Nt with zero mean and unit variance. From von Storch and 
Zwiers [182] 

K 

Xt = ao + 2::: akXt- k + N t (C.12) 
k=l 

They are stationary if IYk I > 1 for all (complex and real) roots Yk of the 
characteristic polynomial 1 - :Ek akyk [182] (p. 207). K is called the order 
of the auto-regressive process. An auto-regressive process of order K is often 
abbreviated AR(K). One can think of (C.12) as a discretized linear ordinary 
differential equation with constant coefficients and a stochastic forcing term. 

The two most important classes of auto-regressive processes are of 1st and 
2nd order. A first order process, Xt = a0 + a 1Xt- l + N t shows a stationary 
piecewise decaying behavior, while a second order process X t = a0 +a1X t- l + 
a2Xt- z + Nt shows a stationary piecewise decaying or piecewise oscillatory 
behavior. Figure C.2 shows examples of two first order and two second order 
AR-processes. 
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The stationarity condition for an AR(l) process is simply la1 1<1. For an 
AR(2) process, stationarity requires a2 ± a1 < 1, la2 I < 1. 

Stationary AR(l) processes are also called red noise processes. 

C.2 Characteristic Parameters 

Random variables and random processes are fully characterized by their prob­
ability density functions. These probability density function are, however, of­
ten quite cumbersome, if not impossible, to deal with. Therefore one considers 
a variety of parameters that characterize limited but relevant aspects of a ran­
dom process (or variable). A parameter can be a number, but it can also be a 
vector, a matrix or a function. In the first subsection we define the standard 
parameters: mean, variance, covariance (correlation), auto-covariance func­
tion (auto-correlation function) and spectrum. In the subsequent subsections 
we discuss empirical orthogonal functions, the decomposition of variance, and 
skill scores, parameters that are specifically employed in atmospheric and 
oceamc sciences. 

C.2.1 Expectation Values 

Mean. To define characteristic parameters one needs the concept of expectation 
of a random variable. It is the average of all possible outcomes weighted by 
their probability density 

µx = E(X) = J dx x fx(x) (C.13) 

and is a number. The number µx is also called the mean. If the distribution 
is symmetric, half of the outcomes will be larger than µx, and half of them 
smaller. 

Variance. If Xis a random variable, then (X - µx) 2 is a random variable 
as well. It describes the squared distance of an outcome of X from the mean 
µx. The expectation of this random variable is the variance 

(C.14) 

where O"x is called the standard deviation and is a measure of the width of the 
distribution. 

The parameters µ and u in the normal distribution are indeed the mean 
and standard deviation. For the Weibull distribution the mean and variance 
are 

(C.15) 

where I'(·) is the gamma function. For the Gumbel distribution 
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µc =a+ 0.57721 · (3 and ab= (32n 2 /6 (C.16) 

Covariance. When a bivariate random variable Z =(X,Y) is considered, the 
strength of the link between the two paired outcomes may be characterized 
by the covariance of the two variables 

Cov(X, Y) = E((X - µx)(Y - µy)) (C.17) 

An alternative is the normalized variant of the covariance, the correlation 

Cov(X,Y) 
Pxy = 

axay 
(C.18) 

Covariances vary between -oo and +oo, and correlations between -1 and 
+l. A zero-value usually indicates, in particular when the joint distribution 
is normal, that the two random variables are independent. A positive value 
indicates that we may on average expect outcomes of X and Y to be both 
larger, or both smaller, than their respective means, whereas a negative value 
indicates a preferences for opposite signs. The correlation is + 1 if the two 
variables are linearly related, i.e., if X =a+ bY. 

Auto-covariance function. When a stochastic process is considered, then 
the link between consecutive outcomes can be measured by the auto-covariance 
function. 

(C.19) 

For stationary processes it only depends on the lag L1 but not on t. Its nor­
malized variant is the auto-correlation function 

(L1) = !x(L1) 
Px !x(O) 

(C.20) 

For discrete random processes both functions are discrete symmetric func­
tions, i.e., L1 = 0, ±1, ±2, ... ± oo and /x(L1) = /x(-L1). They have a positive 
maximum at the origin. In case of limited memory processes they level off to 
zero values after some time. The decay time of this auto-covariance function 
is often taken as a proxy for the memory of the process. Auto-covariance func­
tions of the AR(l) and AR(2)-processes shown in Fig. C.2 are given in [182]. 

Spectrum. An alternative representation of the time behavior of a process 
is given by the spectrum, which is simply the Fourier transform of the auto­
covariance function (for more details, see [71] or [182]). The Fourier transform 
maps the discrete auto-covariance function Ix to a continuous positive func­
tion 

00 00 

I'x(w) = L /x(L1)e-iZnwLl = /x(O) + L !x(L1) cos(2nw"1) (C.21) 
Ll=-oo 
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on the frequency interval w E [O, ~]. The operation (C.21) is invertible, i.e., 
the spectrum and the auto-covariance function contain the same information, 
but they differ with respect to their interpretation. 

An important property of the spectrum is that its integral equals the 
variance 

1 

VAR(Xt) = 'Yx(O) = 2 fo 2 dw I'.,(w) (C.22) 

Note that at this point the spectrum has nothing to do with oscillations or 
harmonic analysis, which decomposes a series of numbers into contributions 
from different waves or oscillations5 • A link to harmonic analysis emerges when 
we address the problem of how to estimate a spectrum from a limited time 
series of numbers {x0 , ... , xr} in Appendix C.3. The proper interpretation 

of a spectrum is that the variance J:;+8w dx I'.,(x) in a small frequency band 
[w, w + 8w] is due to variations on time scales of w-1 . It does not mean that 
these variations are in any sense regular oscillations. A peak in the spectrum 
indicates that the considered process varies at that time scale more strongly 
than at other time scales. When the process is an auto-regressive process, 
such a peak represents the frequency of an oscillatory eigenmode of that linear 
process (see [182], chapter 11). 

C.2.2 Empirical Orthogonal Functions 

Consider a random vector X = (Xi, ... , XJ )T with J components. Then, 
one can calculate all covariances among the components. This results in the 
symmetric covariance matrix 

( 

VAR(X1) Cov(X1,X2) ... Cov(Xi,XJ)) 
Cov(X2, X1) VAR(X2) ... Cov(X2, XJ) c -x - . . . . . . . . . . . . 
Cov(XJ, X1)Cov(XJ, X2)... VAR(XJ) 

(C.23) 

This matrix describes the co-variability of all components. 
C., is a positive semi-definite matrix. All its eigenvalues Aj (j = 1, ... , J) 

are real and non-negative, and its eigenvectors ej form an orthogonal basis6 . 

5 For certain pathological cases such a link can be constructed. Harmonic analysis 
is also helpful when a deterministic cycle is contained in the data; in this case, 
however, the autocovariance function does not level off to zero with increasing 
lag and the Fourier transform (C.21) does not exist. 

6 A number .>.. is an eigenvalue of a matrix C if there is a non-zero vector e such 
that Ce = >..e. The vectors e are not uniquely determined, as they may be 
multiplied by any constant. However, ifthe eigenvalues.>.. are all different, then the 
directions are uniquely determined. If some of the eigenvalues are identical, then 
the directions of the associated eigenvectors are arbitrary but can be chosen to be 
orthogonal. Vectors are orthogonal if the scalar product between them vanishes, 
eiT · ek = 0 for j -:f. k. 
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Therefore the random vector may be expanded into the series 

J 

X = l::cjej 
j=l 

T . 
Cj = X · eJ 

(C.24) 

This expansion is simply a coordinate transformation. The state of the system 
may be given by the components Xj or by the coefficients Cj. The vectors e 
are named principal vectors or, particularly in meteorology and oceanography, 
empirical orthogonal functions (EOFs). The coefficients Cj are called principal 
components or EOF coefficients. 

A similar expansion can be made with respect to any set of orthogonal 
vectors. The expansion with respect to the eigenvectors e of the covariance 
matrix has the property that the truncated expansions 

L 

X=l::cjeJ+rSL 
j=l 

(C.25) 

with L < J are more efficient in representing the variance than expansions 
using any other orthonormal set of vectors. This is true for all truncations "L". 
"Efficiency" means that the first EOF describes more variance of X than any 
other vector, i.e., 

J 

VAR(X - c1e 1) = rSi = VAR(X) - A.1 = L Aj 
j=2 

(C.26) 

is a minimum. The amount of variance left unaccounted for is equal to the 
sum of all eigenvalues Aj with j 2". 2. Similarly, the EOF e 2 represents the 
second largest amount of variance of X that can be described by a vector 
orthogonal to e 1 , and so forth. 

In most cases, the size of the eigenvalues is very non-uniform, with a few 
very large eigenvalues and many very small eigenvalues. In this case, just 
the first few EOFs are capable of describing the bulk of the variance of the 
vector X. Thus, the EOFs are efficient in compressing most of the information 
in a multivariate data set into a smaller-dimensional space. Instead of the full 
vector X = (X1, ... , XJ) the transformed, truncated vector XL= (c1 , ... , cL) 
with a small number L is used. 

EOFs are not necessarily related to certain physical processes. Often this 
is the case for the first EOF, sometimes for the second, but usually not for 
the higher-indexed EOFs. Due to construction, all higher-indexed EOFs must 
be orthogonal to all lower-indexed EOFs, and physical processes are usually 
not "orthogonal" to each other. 

For further reading on EOFs, see the textbooks by Preisendorfer [134], 
Jolliffe [72] and von Storch and Zwiers [182]. Von Storch and Frankignoul 
[176] offer a discussion about applications in oceanography. 
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C.2.3 Decomposition of Variance 

The variance of a random variable might be due to different sources. This oc­
curs when one considers a statistical model 7 that describes a plausible physical 
forcing-response link between two variables. 

Let us assume that one state variable Y affects another variable X, like 
the large scale atmospheric circulation affecting the synoptic variability. Such 
a link may be conceptualized by assuming that the random variable X is 
conditioned upon the random variable Y 8 . In this case the probability density 
function fx ( x) of X may by partitioned such that 

fx(x) = j dy fx1v(x)fy(y) (C.27) 

Here fx1v is the conditional probability function of X provided that the ran­
dom variable Y takes the value y, and fy is the probability density function 
of Y. The expectation and the variance of X may then be written as 

E(X) = E(E(XIY)x )y 

VAR(X) = E(VAR(XIY)x)y + VAR(E(XIY)x)y 

(C.28) 

(C.29) 

where the subscript indicates with respect to which random variable the op­
eration "expectation" and "variance" is to be executed. 

Equation C.29 implies that the overall variance can be attributed to two 
different sources, namely to the mean uncertainty of the conditional distribu­
tions, and to the variability of the different conditional means. The variations 
of the model state may be understood as composed of forced variations, related 
to Y, and intrinsic variations within the model. The intrinsic variations may 
be modulated by Y, different values ofY representing different "regimes", but 
in many cases this dependence is suppressed and the last term in equation 
(C.29) assumed to be independent of the value of the forcing Y. 

Such a forcing-response model often takes the form of a regression model 

X=µo+,BY+N (C.30) 

where Xis the response, Y the forcing and N white noise with variance u;,. If 
the driving process Y has zero expectation and variance u; and is independent 
of N then 

7 Note that we use the term "model" here to formulate a dynamical link in time or 
between different state variables. This use is different from its use in mathematical 
statistics. There a model usually means a set of assumptions about the collection 
of data and about the probabilistic structure of the problem at hand - such as 
that the observations are taken from the same random variable, that they are 
independent, that the probability density function is Gaussian, etc. 

8 Validation of a dynamical model sometimes includes the identification of such 
links, found in either observational records or in model output. 
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E(X) = µo 

E(XIY) x = µ 0 + (Jy 

VAR(E(XIY)x )y = VAR(µo + (JY) = (J2a~ 
VAR(XIY)x = E((X - µ0 - (JY)2) =a~ 

(C.31) 

The resulting decomposition a; = (J2a; +a; is a special case of equation 
(C.29). Part of the X-variance is due to the intrinsic variability (a;) unrelated 
to the driving process, and the other part is due to the variability of the driving 
process (a;). 

C.2.4 Skill Scores 

The success of forecasts is described by skill scores (see also [100] or [73]). 
These scores characterize the outcome of the bivariate random variable (F ,P) 
consisting of the forecast F and the predictand P. The most often used mea­
sures are the correlation skill score and the mean square error. The correlation 
between the forecast F and the predictand P is the correlation skill score 

Cov(F,P) 
p = ----;:===== 

yiVAR(F)VAR(P) 
(C.32) 

The correlation skill score is not affected if the forecasts contain a constant 
bias or if the amplitude of the two differs by a constant factor. The mean 
square error is the expected square error 

(C.33) 

For a perfect forecast, that is, F = P, the correlation skill score p is 1 and 
the mean square error S'j,,p is zero. If F is the climatological forecast (i.e., 
F = E(P)), then p = 0 and S'j,,p = VAR(P). If Fis a random forecast, with 
the same mean and variance as P then p = 0 and S'j,,p = 2VAR(P). Thus, the 
correlation skill score is constructed so that it has the value 1 for a perfect 
forecast and zero or less than zero for trivial reference forecasts. 

The proportion of described variance9 is the percentage of P-variance that 
is described by F 

R2 _ VAR(P) - VAR(F - P) _ l _ VAR(F - P) 
FP - VAR(P) - VAR(P) (C.34) 

9 Often, the term "explained" variance is used here. However, this terminology is 
misleading. According to "Merriam Webster's Collegiate Dictionary" the word 
"explain" stands for: "la: to make known. b: to make plain or understandable. 2: 
to give the reason for or cause of. 3: to show the logical development or relation­
ships of". In the statistical methodology used here, nothing is implying a causal 
relationship or a dynamical understanding. Thus "described" variance is a more 
adequate term. 
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The Brier skill score is a measure of the skill of the forecast F relative to 
a reference forecast R of the same predictand P. The comparison is made on 
the basis of the mean square error of the individual forecasts 

B - i sip - s~p - sip 
FRP - - -2- - 2 

SRP SRP 
(C.35) 

The Brier skill score differs from the other scores as it explicitly compares 
against another forecast. This other forecast is usually a much simpler one, 
often named a "strawman". If the Brier score is larger than zero, then the 
(usually more advanced) forecast Fis more skillful than the simpler forecast 
R. Thus, one would conclude, that the extra complexity required for F over R 
is worth the effort. However, if the Brier skill score is below zero then nothing 
is gained by using the more complex forecast F. 

C.3 Inference 

Inference covers two broad areas: the estimation of characteristic parameters 
from finite samples and the testing of hypotheses. We first discuss the basic 
aspects of estimation and illustrate them by some standard examples. Then 
we consider the estimation of auto-correlation functions, spectra and EOFs in 
some detail, before turning to hypothesis testing. 

C.3.1 Basic Aspects of Estimation 

Numbers and random variables are different entities. Numbers are realizations 
of a random variable. As a function of a number is another number so is a 
function of a random variable another random variable. Thus, the result of 
the process of manipulating random variables is a random variable as well. We 
thus have to distinguish between two things: when a mean value of T outcomes 
xi, ... xr of a random variable Xis calculated, then a number is calculated, 
namely the sample mean x = 1' I:I=l Xj; when the process of calculating a 
mean from T samples is considered, then another random variable, namely 
X = 1' I:I=l Xj is introduced. The sample mean has no uncertainty; it is just 
a number; the random variable X, on the other hand, has uncertainty, since 
it is a statement about how to do the calculation. The former is a realization 
of the latter. What is the expectation of the X? It is E(X) = µx. Thus, 
calculating the mean of samples is a meaningful way of estimating the mean 
of X. We can even calculate the distribution of the difference between X and 
µx. This difference is again a random variable, with zero mean and a standard 
deviation of ax/VT if the samples are drawn independently. 

This is an important point, often misunderstood by the novice: When we 
repeatedly apply the estimation formula x = 1' I:I=l Xj to many independent 
samples X1, ...... xr , then the error of this operation x - µx will be on 
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average zero, and the standard deviation of this operation will be <Yx/-./T. 
This is a useful assertion, but it does not imply anything about the error 
made, when one concrete set of samples is used to estimate the mean of 
the random variable X. The estimation theory makes statements about the 
accuracy of the process of estimating something, not about the error made 
when a best guess is derived from a sample. When one estimate is calculated, 
then one realization of a random variable is drawn. This may be a number 
much larger or much smaller than the mean, and there is no way to find out 
how close it actually is to the mean value. 

This line of argument, presented here with the simplest of all cases, namely 
the estimation of the mean, applies for all estimation problems. When we cal­
culate a confidence interval for a parameter, we are not voicing our confidence 
about the numbers but about the process of calculating these numbers. 

In general, an estimator p of a parameter p of a random variable X is a 
function of the random variables X1 ... , Xr. The estimator is used to infer 
an estimate or best guess of p by inserting the sample x 1 ... , xr but p itself is 
a random variable. It has a probability density function, an expectation E(p) 
and a variance VAR(p). One would like to see the mean square error (MSE) 
small 

M(p,p) = E((p- p)2) (C.36) 

Generally, estimators make use of all available samples; thus they depend on 
the sample size T. An estimator is called consistent if the MSE converges 
towards zero for T---+ oo. If two estimators for the same parameter p exist, 
then that one with a smaller MSE is more efficient. The mean squared error 
may be split into two components 

M(p,p) = [B(p)] 2 + VAR(p) (C.37) 

with the bias B(p) = E(p) - p being the expected error of the estimator. 
The first term on the right hand side of (C.37) represents the systematic 
error, while the second stands for the irregular fluctuations of the estimator. 
Often, one wants the bias to be zero - then the estimator is unbiased. But the 
efficiency of an estimator depends on both, the bias and the variance. 

Example C.1. For the variance <Y; of a random variable, two estimators are in 
common use, namely a-; = ~ Lj=l (Xj - X) 2 and 82 = T~l Lj=l (Xj - X)2 . 

They differ only with respect to the factor in front of the sum. The former is 
biased with B(&;) = ~<Y; and the latter is unbiased. But the variance of the 
former is smaller than that of the latter, so that M (a-;, <Y;) < M ( 82 , <Y;). 

There are no strict rules of how to design estimators. Estimators are not 
right or wrong, but more or less efficient. 

One way of constructing efficient estimators is the Maximum Likelihood 
method (ML method). The parameters are determined such that the proba­
bility density function takes its maximum value for the observations: Let us 
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assume that we have T realizations x 1 ... , xr available to estimate a para­
meter p. Let fx(x,p) be the known density function of X with the unknown 
parameter p. The joint probability density function of the T independent sam-
ples Xj is then fx1 ... xT(x1, ... , xr;p) = I1f=1 fx(xj;p). In this formula pis 
a given parameter and (x1 ... , xr) the independent arguments. By inserting 
the realization x 1 ... , xr into this formula we obtain the likelihood function. 
In the likelihood function, the realizations are fixed and p is variable. A max­
imum likelihood estimate of the parameter p is the value of p that maximizes 
this likelihood function. This estimate depends on the realization. By substi­
tuting the random variables for the realizations we obtain an estimator p, the 
maximum likelihood estimator. It can be shown under fairly general condi­
tions that the ML method generates consistent and asymptotically optimally 
efficient estimators. Examples are the sample mean X as an estimator of the 
mean of a Gaussian random variable X, and a-; as an estimator of its variance. 

When estimating a parameter pone would like to have an interval [AL, Au] 
such that, with a certain probability, the true parameter p is contained in 
that interval. These intervals are unknown and need to be estimated. One 
needs estimators AL and Au that are random variables. The interval [AL, Au] 
is called a confidence interval. From it one can calculate the probability 

prob(p E [AL,AuJ) = q. Its correct interpretation is that when we repeat 

the sampling and calculate the interval often enough, then in q x 100 per­
cent of all cases, the (changing) interval will contain the fixed parameter p. 
Again, nothing is said about any concrete realization. When we calculate a 
realization [aL, au] of the random variable "confidence interval", then we do 
not know whether it contains the parameter p or not. The confidence interval 
does not provide us with confidence about the location of the true parameter, 
but about the accuracy of the method. 

Example C.2. Let X be a normally distributed variable with mean µx and 
standard deviation u x. For simplicity let us assume that u x is known. T 
samples Xj are available. The considered estimator is that of the mean, 

X = ~ Ef=l Xj, which is unbiased and has the variance u;/T. To arrive 

at the confidence band, we transform to the variable Z = VT(X - µx)/ux 
with the unknown µx. The distribution of Z is a standard Gaussian dis­
tribution (with zero mean and unit variance). Given q, we can thus deter­
mine numbers ZL and zu = -ZL such that prob(z E [zL, zu]) = q. Then 

prob( x - zu Fr < µx < x + zu Fr) = q, and the q-confidence interval for µx 

is [ X - zu Tr, X + zu Fr J . 

Example C. 3. Confidence intervals for correlation coefficients can be obtained 

by calculating the Fisher transform z = !Zn ( ~~~=~) of the correlation coef­

ficient estimator Pxy. The q-confidence interval for z is approximately given 
by z ± Zl+q/2 /vT - 3, with Zl+q/ 2 being the 1 + q/2-percentile of the stan-
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dard normal distribution. Confidence intervals for other parameters, such as 
variances and regression coefficients, can be calculated as well. 

C.3.2 Estimation of Auto-covariance Functions 

Here we consider the estimation of the auto-correlation Junction (C.20). In 
analogy to the estimator of the variance, one usually uses the estimator 

,0(.1) = i(.1)/i(O) 

with i(.1) being the sample auto-covariance function estimator 

{

1 TL1 - -
T Lt=~ (Xt - X)(Xt+Li - X) 

i(.1) = 0 
i(-.1) 

for 0 < .1 ::; T - 1 
for T ::; .1 
for .1 < 0 

(C.38) 

(C.39) 

The estimator (C.38) can have substantial bias. For a white noise process, the 
bias is B(,0(.1)) ~-~,and for an AR(l) process with coefficient a 1 it is 

for .1=1 

for l.11 > 1 
(C.40) 

Under the assumption that Xt is a stationary normal process, the variability 
of ,0(.1) is asymptotically given by 

VAR(,8(.1)) ~ ~ 2=~-oo (p2 (j) + p(j + .d)p(j - .1) (C.41) 

-4p(L1)p(j)p(j - .1) + 2p2(j)p2(.1)) 

Thus, if there exists a p such that p(.1) is zero for .1 ~ p, then VAR(p(.1)) ~ 

~ ( 1 + 2 "E~=l p2 (j)) for .1 ~ p. This result is of importance as it tells us 

that the estimated auto-correlation function does not decay as quickly as the 
"true" auto-correlation function . The tail of any estimated auto-correlation 
function shows significant10 values, which have no counterpart in the true 
auto-correlation function. The estimated auto-correlation function may thus 
lead to the false conclusion that there is memory across very long lags .1. Even 
if this cannot be ruled out in certain cases, it appears likely that in almost 
all cases, these long-term correlations are a mere artifact of the estimation 
method. In fact, when a long time series is cut into two pieces, then the 
similarity of the estimate for short time lags .1 is usually high, whereas the 
tails of the two estimates differ greatly from each other. 

Moreover, the estimated auto-correlation function has a complex correla­
tion structure of its own 

10 Not meant in the statistical sense! 
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1 00 

Cov(p(L1), p(L1 + o)) ~ T L p(j)p(j + o) 
J=-00 

For an AR(l) process with coefficient a1, this approximation gives a corre­
lation of p(Ll) and p(L1 + o) of approximately a~ at large lags L1. That is, 
the correlations between the auto-correlation function estimates are roughly 
similar to those of the process itself. When these correlations are persistent, 
then the estimated auto-correlation function will vary slowly around zero even 
when the real auto-correlation function has dropped off to zero. This is an­
other reason for exercising even more care when interpreting the tail of the 
estimated auto-correlation functions. 

For further details refer to [71] and [182]. 

C.3.3 Estimation of Spectra 

The estimation of the auto-covariance function has many inherent problems. 
Estimating spectra and assessing the uncertainty of these estimates is even 
more demanding. 

There are two main approaches to estimate the spectrum (C.21). One ap­
proach consists in making a harmonic analysis of the sample x 1 ... , xr 

q 

Xt = ao + L aj cos(21Twjt) + bj sin(21Twjt) (C.42) 
j=l 

with expansion coefficients aj and bj, frequencies Wj = j /T and q = T /2. 
The sample size T has been assumed to be even. The periodogram is then 
defined by 

T 2 2 
Irj = 4(aj + bj) (C.43) 

It distributes the sample variance among the different frequencies: 

2 q-l 1 
VAR(Xt) =TL Irj + Tlrq 

J=l 

The periodogram provides asymptotically unbiased estimates of the spectrum 
at the frequencies Wj = 0, 1/T, 2/T, ... 1/2. 

The alternative is to use the definition of the spectrum (C.21) and to 
calculate the Fourier transform of the estimated auto-covariance function: 

T 

fx(w) = i'x(O) + L i'x(L1)cos(21TwL1) (C.44) 
Ll=l 

Different from the periodogram, this is an estimate of the continuous spec­
trum 11, ranging from [O, ~].It returns the same numbers as the first estimate 
at the frequencies Wj = 0, 1/T ... , T~l /T, 1/2. 

11 This is an artifact due to the fact that the estimator (C.39) of the autocovariance 
function is extended to infinite lags. 
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Neither estimator is consistent. When the time series gets longer, the esti­
mation errors do not get smaller; instead the number of frequencies increases. 
Furthermore, the estimates suffer from severe variability. The periodogram is 
approximately distributed as 

I'(O) · x2 (1) 

r(~) · x2 (1) 

for Wj = Q 

for w· - l J - 2 (C.45) 

if Tis even. Here x2 (k) represents the chi-square distribution with k degrees 
of freedom. A relevant detail is that the periodogram at different frequencies 
varies independently, at least asymptotically. 

Thus, both estimates are more or less useless, even if they appear appealing 
to the physically trained novice. The reason is that we are trying to estimate a 
"parameter" of a random process. The sample x 1 ... , xr represents T samples 
of the random variable Xt with t fixed but only one sample of the random 
process Xt with t = ... , -1, 0, 1, ... 

The situation can be saved, though, in various ways. One way is to use 
an extension of the time series to split the time series into "chunks" and to 
calculate a periodogram for each chunk separately (Bartlett chunk method). 
One then has more than one sample of the random process and the differ­
ent periodograms can be averaged, which leads to a significant reduction of 
the variance of the estimate (proportional to the number of chunks). This 
splitting into chunks can be made in such a manner that both the number of 
frequencies is increased and the variance reduced, so that the estimator be­
comes consistent. This method can also be applied to the Fourier-transform 
of the estimated auto-covariance function. 

The alternative is to calculate the full periodogram (or the Fourier­
transform of the full estimated auto-covariance function) and to smooth the 
estimates from neighboring resolved frequencies. This method is usually more 
efficient - in terms of reducing variability - than the Bartlett chunk method. 
A variety of smoothing functions are available, which go under names such as 
Daniell, Parzen and Bartlett. For further details refer to [71] and [182]. 

When the data are drawn from an auto-regressive process, then spectra 
may be estimated by fitting an autoregressive process to the data, and by using 
the spectrum of the estimated process as an estimate for the spectrum. Any 
application of this method, of course, presumes that the considered process is 
closely approximated by an AR process of suitable order. 

C.3.4 Estimation of EOFs 

The estimation of empirical orthogonal functions (EOFs) is done straightfor­
wardly by first calculating the sample covariance matrix and then computing 
the eigenvalues and eigenvectors of this positive semi-definite matrix. When 
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the number T of independent samples is less than the length K of the random 
vector X, then only T non-zero eigenvalues can be found, and the remaining 
K - T eigenvalues are zero. 

Not much can be said about the uncertainty of estimated EOFs (see [72]). 
There are some rules available about the expected error of the eigenvalues, but 
hardly anything for the vectors themselves. However, it is a general experience 
that the vectors associated with the largest eigenvalues are usually robustly es­
timated, whereas the higher indexed EOFs usually exhibit large variability12 • 

Thus, in cases when details of the vectors matter, and not just their efficiency 
in compressing data into a few degrees of freedom, the practitioner is ad­
vised to resort to methods of resampling and splitting. The full data sample 
is divided into independent subsamples, EOFs and eigenvalues are calculated 
from the subsamples. Then the robustness of the estimated vectors may be 
determined by comparing EOFs derived from different subsamples. Also the 
efficiency in compressing data may be tested by calculating the vectors from 
one subsample, and by determining their efficiency from another subsample. 

There is one group of techniques that allegedly leads to the identifica­
tion of "significant EOFs". However, this terminology is a misnomer. These 
techniques deal with a rather special problem. When eigenvalues are identical 
then the directions of the associated eigenvectors are no longer uniquely deter­
mined. The eigenvalues are "degenerate". When two eigenvalues are the same, 
then all vectors from a two-dimensional linear subspace qualify as eigenvec­
tors. 

In such a situation, the estimation process will bring forward very different 
vectors when different samples are used, not so much because of sampling vari­
ability, but because of the inherent degeneracy of the vectors. Therefore some 
rules have been devised to identify eigenvalues that may be equal. Experience 
has shown that, in fact, most of the high-indexed EOFs of high-dimensional 
random vectors have eigenvalues that cannot be distinguished from a series of 
small but equal eigenvalues; thus the eigenvectors belonging to the tail of the 
eigenspectrum may all be degenerate and should not be interpreted physically. 
They nevertheless may be useful in compressing data in an efficient manner. 

C.3.5 Hypothesis Testing 

Another widely used inference approach is the test of a hypothesis. The basic 
idea is to define a "reference", and to examine whether a system is consistent 
with this reference. To do so, empirical evidence about the system is gathered 
and compared with the expected statistics of the reference. If this comparison 
leads to the assessment that the evidence is unlikely to emerge from the ref­
erence, the null hypothesis "system complies with reference" is rejected. If the 

12 It is actually the spacing between the eigenvalues that matters. A small spacing 
implies large variability. In most environmental applications, the largest eigenval­
ues are well separated, while the higher indexed eigenvalues are often very close 
together. 
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assessment finds no contradiction then the null hypothesis is not rejected, but 
it is also not accepted. Instead a weaker statement is made, namely that the 
evidence is not inconsistent with the reference. It may be that at a later time, 
when more evidence has been gathered, the null hypothesis will be rejected. 

To introduce the concept more formally, we consider a simple prototypical 
case. Let X be random variable with density function fx. This is the statistical 
model, upon which the test is based. We have one realization x', but it is 
unknown if x' has been drawn from X or not. The null hypothesis, usually 
denoted by H 0 , is "x' is drawn from X". We determine the smallest possible 
range 8 of outcomes of X so that prob(x E 8) = p with some pre-specified, 
normally large probability jj. When X is a univariate Gaussian distribution 

with zero mean and density function fn, then 8 = [-d, d] with J~d dy fn(Y) = 
p. If the sample x' lies in the interval, we consider x' as consistent with X, 
even if we admit that it may be drawn from a distribution very similar to that 
ofX. 

However, if Jx'I > d, then we consider this a sufficiently unlikely event 
under the null hypothesis - and we decide to reject the null hypothesis. When 
X is a bivariate Gaussian distribution, the "region of non-rejection" 8 is an 
ellipse (given by the covariance matrix) so that the integral of the probability 
density function over this area is just jj. The situation is sketched for both 
the uni- and bivariate cases in Fig. C.3. The null hypothesis is rejected for x', 
and it is not for x". 

The above line of argument is objective apart from the choice of jj. The 
number 1-jj is called the significance level and gives the acceptable probability 
to erroneously reject the null hypothesis. It must be selected subjectively. 
Its choice has something to do with the risk of a false rejection that one is 
willing to accept. Obviously, this choice depends on the context within which 
the decision is made. Instead of a risk of 1 - p, also the term "testing at 
a significance level of 1 - p" is used. When the null hypothesis is rejected, 
the finding is declared "significant at the 1 - p level" 13 . The probability of 
correctly rejecting the null hypothesis, the power, is not known. It is at least as 
large as the significance level and may be arbitrarily close to the significance 
level, since the correct model to describe the outcome x' may be very close to 
the tested model X. Generally, the concept of "power" is theoretically useful, 
but the power can in most practical situation not be determined because it 
depends on the unknown true parameter. However, the power of all reasonable 
tests increases with increasing sample size, for a given deviation from the null 
hypothesis. 

13 Note that the use of the term significance is different here from its colloquial use, 
where it represents "the quality of being important". 

Even the statistical term "significance" is often used in a confusing manner, 
as for instance in: "953 significant" when p = 953, or "the null hypothesis is 
rejected with a 953 confidence level". Correct language would be that the result 
is "significant at the 53 level" or "the null hypothesis is rejected with a 53 risk 
of error". 
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Fig. C.3. Schematic diagrams illustrating the univariate (top) and bivariate (bot­
tom) domains e for which t he null hypothesis "xis drawn from X " is not rejected. 
The points x' are examples of samples that provide evidence contrary to the null 
hypothesis, whereas the realizations x" are consistent with the null hypothesis. From 
von Storch and Zwiers [182] 
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The most widely used test of a null hypothesis is the t-test. It addresses the 
problem whether a sample x 1 , ... xr is consistent with the assumption that 
the unknown random variable X, which has generated the samples, has an 
expected value of µo. Formally: Ho : E(X) = µo with some number µ0 . The 
model is adopted that X is a normally distributed random variable, of which 
neither the mean µx nor the standard deviation ax are known. If the null 
hypothesis is true, then the derived variable Y = yrX.5pa with X = ~I: X 1 
and the sample standard deviation S, is t-distributed with T - 1 degrees of 
freedom. Again, a number d can be determined so that J~d dy ft (y) = p, and 
the null hypothesis is rejected with a risk of p if IYI > d. 

The detection problem (see Sect. 5.4) also constitutes a hypothesis test. 
The null hypothesis is that the recent temperature trends, or other appro­
priately defined events, are in the range of "normal" variations. When the 
trend is found to be at the outer fringes of the distribution, then this does 
not imply that the trend is not caused by internal climate variations but only 
that it is highly unlikely; the alternative explanation - that the trend is due 
to anthropogenic causes - is considerably more plausible. 

Model validation is another case of a hypothesis test. The model simulation 
is compared with observations or analyses. The null hypothesis is that the 
statistics of the model and of the observations are identical. The test can 
be formulated in terms of mean values and/ or of variances. When numerical 
experiments are made to study the effect of different boundary conditions or 
different parameterizations, then one simulation with "control" and one with 
"experimental" conditions is done. The comparison of the two again takes 
the form of a statistical test, using the null hypothesis of equal statistics. In 
the first case, the validation case, the desired result is to not reject the null 
hypothesis, whereas in the second case, the sensitivity analysis, it is rejection. 
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Data Assimilation 

Data assimilation (DA) refers to techniques that combine models and data for 
a variety of purposes. DA techniques consists of a set of observations (or other 
data), a dynamical model and a blending scheme that combines the two. Most 
of these techniques fall into two categories: filtering and smoothing. Filtering 
is the sequential update of the state vector to improve the forecast. Smoothing 
combines model output and data to obtain optimal field estimates. These two 
techniques can be put into a common framework which is summarized in this 
appendix, following [141]. For simplicity of presentation it is assumed that 
both the model and observation equations are linear. The basic methodology 
of DA is first demonstrated by a simple example in Sect. D.1. Then filtering 
is discussed in Sect. D.2. It uses the optimal Kalman filter as a framework 
to describe other less optimal filters. Two smoothing methods, the adjoint 
and inverse method are discussed in Sect. D.3. These smoothing methods 
can easily be generalized to include parameter estimation and to arrive at 
optimal sampling strategies. More details on DA techniques in meteorology 
and oceanography can be found in [8], [22], [43], [76], [141] and [191]. 

Data assimilation is a relatively new approach within environmental sci­
ences; however, it receives more and more attention as it helps to overcome 
one of the fundamental problems in environmental sciences, namely that the 
segments of the environment cannot be observed in their entirety. The greatest 
success of DA is its operational use in weather forecasting, and it is expected 
that similar routines will become common in other fields as well, as our ex­
amples in Chaps. 5 and 6 illustrate. 
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D.1 Estimation 

Consider two estimates X1 and X2 of a random variable X with 

E(x1) = E(x2) = E(X) 

VAR(.Xi) =ai2 for i=l,2 (D.l) 

Cov(Xi,X2) = O 

The estimates are unbiased, have variances a 1 2 and a 22 and are uncorrelated. 
What is the best estimate that can be constructed from X1 and X2? Try the 
linear combination 

(D.2) 

where the subscript a stands for "analysis". For this estimate to be unbiased 
a1 + a2 = 1 must be fulfilled or Xa = X1 + a2(X2 - X1). The variance of this 

estimate is VAR( X) = (1 - a2)2a 12 + a~a2 2 . The minimum occurs when 

(D.3) 

The optimal estimate therefore is 

(D.4) 

with inverse variance 
<Ya -2 = <Y1 -2 + <Y2 -2 (D.5) 

If we interpret the subscript 1 as model and the subscript 2 as data we have 
all the ingredients of a data assimilation scheme: The two estimates X1 and 
X2 correspond to the dynamical and observational model. In order to proceed 
one needs to specify the errors of these two models. The linear combination 
(D.2) of the two estimates is the blending scheme. The optimal estimate (D.4) 
is obtained by minimizing the variance of the blended estimate. The variance 
of the blended estimate is calculated in (D.5). The DA schemes discussed in 
the next sections are application of this procedure to specific dynamical and 
observational models. 

D.2 Filtering 

The discussion of filtering schemes is best started with the Kalman filter. 
The Kalman filter is the optimal DA scheme for a certain class of filtering 
problems. It provides a convenient framework to describe other less optimal 
schemes. 
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D.2.1 Kalman Filter 

The Kalman filter is based on the following assumptions, definitions and 
derivations: 

1. The dynamical and observational models are assumed to be linear. The 
model and observation equations (3.2)and (3.3) thus take the form 

(D.6) 

and 
(D.7) 

where Ai is a M x M matrix and Ci a M x N matrix. M is the dimension 
of the state vector, N the dimension of the observation vector and i the 
discrete time index. 

2. The errors in the dynamical and observational models are assumed to have 
the following properties: 

E(€i) = E(oi) = 0 for i = 0 .. . K 
E(€i€J) = E( oion = 0 for i,j = 0, ... , K; i # j 

E(€i€n =Qi for i = o ... K (D.s) 

E(oior) = Ri for i = o . .. K 

E(€i0n = o for i,j = o .. . K 

where Qi is the M x M covariance matrix of the dynamical error and R 
the N x N covariance matrix of the observational error. Usually both error 
matrices are assumed to be independent of the time index i. The dynam­
ical and observational errors are uncorrelated. With these specifications 
the dynamical model becomes a multivariate autoregressive process. 

3. For any estimate {pi at time i an estimate at time i + 1 can be obtained 
by 

{pi+l = Ai{pi 
The covariance matrix of this estimate 

satisfies the recursion formula 

since {pi - 'I/Ji and €i are uncorrelated. 
4. The blending scheme is assumed to be the linear combination 

(D.9) 

(D.10) 

(D.11) 

(D.12) 
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where Ki is the N x M gain matrix and (wi-Ci{/Ji) the data-model misfit. 
The error covariance matrix of this estimate is Pf = Pi - PiCfKf -

T T A 

KiCiPi+Ki(CiPiCi +Ri)Ki because ('lj;i-1/Ji) and t5i are uncorrelated. 
It becomes minimal for 

(D.13) 

and then has the value 

(D.14) 

Kalman filtering then consists of the following steps: 
Aa 

• Specify initial conditions 'lj;0 and their error covariance matrix P 0 
• Obtain forecast 

(D.15) 

• Obtain forecast error 

(D.16) 

• Compute Kalman gain 

(D.17) 

• Update forecast 

(D.18) 

• Update error covariance matrix 

(D.19) 

Kalman filtering is thus a recursive sequential procedure. It not only provides 
Aa Aa 

estimates 1/Ji for i = 1, ... , K given an initial condition 'lj;0 but also the error 
covariance matrix Pf of these estimates given the covariance matrix of the 
initial condition P 0, and Ri and Qi. The Kalman filter is the optimal sequen­
tial filter for linear systems under the stated assumptions. Though optimal it 
has a number of deficiencies: 

(i) The Kalman filter is the optimal filter only if the dynamical and obser­
vational models are linear. While one can always linearize more general 
models the time step of the Kalman filter is given by the time bins 
into which observations have been collated. This time step is usually 
much larger than any time interval for which the dynamical model can 
reasonably be linearized. 

(ii) The Kalman filter depends crucially on the model covariance matrices 
R; and Qi which are generally poorly known. 
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(iii) The calculation of the error covariance matrix Pi is computationally 
very demanding. It requires M 4 multiplications per time step and the 
storage of M 2 variables. For GCMs with several state variables and 
106 grid points this is computationally not feasible with present day 
computers. 

For these reasons Kalman filtering is only applied to models with low dimen­
sional state vectors. For high dimensional state vectors less optimal but com­
putationally feasible filtering schemes have been developed. These schemes are 
generally of a more heuristic nature as can be seen by the following examples. 

D.2.2 Optimal or Statistical Interpolation 

Optimal or statistical interpolation (OI) uses the Kalman filtering scheme but 
prescribes the filter gain and does not calculate the error covariance matrices. 
OI thus uses the recursion formula 

(D.20) 

and the blending scheme 

(D.21) 

where the filter gain Ki+1 is prescribed. OI is currently the most popular DA 
scheme for numerical weather prediction. The gain is usually determined from 
the grid to measurement point correlation matrix and the measurement error 
covariance matrix. 

D.2.3 Nudging 

Nudging of point observations w was originally introduced as a non-statistical 
method to relax the dynamical model to observations. In continuous nota­
tion this is achieved by adding a relaxation term (w - 'lf;)/r to the governing 
dynamical equation 

(D.22) 

Here r is the relaxation time that needs to be prescribed. The smaller the 
relaxation time the closer does the dynamical model follow the observations. 
The value of the relaxation time should thus depend on the model and the 
data uncertainties. It must be smaller than the decorrelation time over which 
initial conditions affect the evolution of the dynamical system. For a multidi­
mensional state vector equation (D.22) may be written 

(D.23) 
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where c- 1 is the generalized inverse of C and Ka diagonal M x M matrix 
of relaxation rates. Discretizing this equation in time leads to 

(D.24) 

which shows that nudging can also be regarded as a Kalman filtering scheme 
with prescribed gain matrix. 

The nudging technique described in the reconstruction of regional weather 
in Sect. 5.2.2 is an example where nudging is applied in the spectral domain 
(cf. Appendix B.4). 

D.2.4 Blending and Direct Insertion 

Blending consists of the recursion formula 

and the blending scheme 

1/Jf = awi + (1 - a)Ci{/;i 

at grid points where data are available and 

1/Jf = ;pi 

(D.25) 

(D.26) 

(D.27) 

at the other grid points. The parameter a with 0 ~ a ~ 1 needs to be pre­
scribed. It determines how much weight is given to the data, a, and how much 
weight is given to the model, (1 - a), and should be inferred from the model 
and data uncertainties. Direct insertion is the special case a = 1. In this case 
one assumes that observations do not have any errors. 

D.2.5 Minimization 

As discussed in Sect. 3.2 the various filtering schemes can also be obtained by 
simultaneously minimizing the "distance" 

(D.28) 

between data and analysis and between analysis and model (see also Fig. 3.3). 
For quadratic norms NJ and Ni this distance becomes Ci= (wf -1/JfTCf) 
Ni(wi - Ci'l/Jf) + (1/Jf -1/Jf)Ni('l/Jf -1/Ji) and minimization leads to 

(D.29) 

with gain 

(D.30) 

Different choices of Ni and Ni lead to different filtering schemes. The choice 
Ni = Ri1 and Ni = Pi1 reproduces the Kalman gain (D.13). The min­
imization of a distance or costfunction is also the method of choice for the 
smoothing problem, as discussed next. 
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D.3 Smoothing 

Smoothing methods (see also Fig. 3.4) construct an optimal field estimate 
'I/Ji, i = 1, ... , K from a complete data time series wi, i = 1, ... , K and a 
dynamical model. This optimal field estimate is obtained by minimizing the 
model-data misfit, weighted by some cost (or penalty or risk) function. The 
minimization employs the calculus of variation. Smoothing methods have their 
roots in control theory. They differ in the choice of the control variables which 
are the variables that are allowed to vary in order to obtain the minimum. The 
standard methods designate the field estimates themselves or their initial con­
ditions as control variables, but the methods can easily be modified to include 
parameters, boundary conditions, or forcing fields as control parameters. 

The cost function must be specified by the user. It is an a priori and sub­
jective choice which depends on the goal of the study. Typically one employs 
a weighted sum of the squares of the model-data misfit with the weights being 
inversely proportional to error covariances. The more accurate the model or 
data are the more weight they get. In the following subsections we discuss the 
adjoint method which treats the dynamical model as a strong constraint, the 
inverse method which treats the dynamical model as a weak constraint, and 
parameter estimation. 

D.3.1 Adjoint Method 

The adjoint method regards the dynamical model as a strong constraint. The 
model is assumed error-free. The final field estimate is a solution of the dy­
namical equations. The free parameters or control parameters are the initial 
conditions. 

In this case the cost function is the sum of two contributions. One penalizes 
the uncertainty of the initial conditions 1f;0 -1f;~o), where 1/J~o) is an initial guess 
of the initial condition. This uncertainty is weighted by the inverse of the 
error covariance matrix Po of the initial conditions. The second contribution 
penalizes the model-data misfit oi = Wi - Ci'l/Ji at all times i = 1 ... K 
weighted by the inverse of the data error covariance matrix Ri and summed 
over all i. The strong constraint that 'I/Ji = Ai-11/Ji-l for all time i = 1 ... K 
is added to the cost function with undetermined Lagrange multipliers Ai· The 
cost function to be minimized then becomes 

K 

C = (1/J0 -1f;~0lf P01 ( 'I/Jo -1/J~0)) + L 2.Xf_1 ('I/Ji - Ai-11/Ji-1) 
i=l 

K-1 

+ L (wf -1/Jf C[)R;1(wi - Ci'l/Ji) (D.31) 
i=l 

where we have used the convention that there are no data at time i = O and 
i = K. Setting to zero the derivatives with respect to the 2K + 1 free variables 
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Ai-1 for i = 1, ... , K, '¢0 , 1/Ji for i = 1, ... , K - 1 and '¢ K one obtains the 
2K + 1 equations 

1/Ji = Ai-11/Ji_1, for i = 1, ... , K 

'¢0 = '¢6°) + PoAif Ao 

Ai-1 = Af Ai+ CfRj1 (wi - Ci1/Ji), for i = 1, ... , K - 1 

AK-1 = 0 

(D.32) 

(D.33) 

(D.34) 

(D.35) 

The field estimates 1/Ji are obtained by forward recursion of (D.32), with initial 
condition '¢0 (D.33). The Lagrange multipliers Ai are obtained by backward 
recursion of equation (D.34) with initial condition AK-l = 0. This backward 
recursion is governed by the adjoint operator Af. The forward recursion re­
quires Ao. The backward recursion requires '¢ K _ 1. The equations thus con­
stitute a two-point boundary value problem, which are notoriously hard to 
solve. There exists software that calculates the adjoint model of any discrete 
forward model [44]. 

D.3.2 Inverse Method 

Inverse methods assume that the dynamical model is only a weak constraint. 
The model is assumed to have errors. The final field estimate is not a solution 
of the dynamical model. One thus minimizes the cost function 

C = (1/Jo -1/J6°lf P[J1(1/Jo - '¢6°)) 
K-1 

+ L (wf -1/Jf Cf)Rj1(wi - Ci1/Ji) (D.36) 
i=l 
K 

+ L('¢f -1/JL1AL1)Qi_!1(1/Ji -Ai-11/Ji-1) 
i=l 

Setting to zero the derivatives with respect to the K + 1 free variables 1/Ji for 
i = 0, ... , K one obtains the equations 

1/Ji = Ai-11/Ji-1 + Qi-1Ai-1, for i = 1, ... , K 

'¢0 = '¢6°) + PoAif Ao 

if one introduces the variables 

Ai-1 = AfAi + CfRj1(wi - Ci1/Ji), for i = 1, ... ,K -1 

(D.37) 

AK-1 = 0 (D.38) 

These equations are very similar to those for the adjoint method, except that 
the dynamical model equation contains the error term Qi-lAi-1· This er­
ror term also couples the forward and backward recursions and complicates 
numerical solutions even more. 
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D.3.3 Parameter Estimation 

If the matrix A depends on parameters a = (a1 , ... , aL) these can also be 
estimated by including a in the list of control parameters. This is done by 

• introducing the parameter equation a = a<0l + -y where a<0l is the initial 
guess of the parameter and -y its associated error with zero mean and 
covariance matrix S, and 

• adding a term oC =(a - a<0l)Ts-1 (a - a<0l) to the cost function. 

Differentiating this extended cost function then also with respect to a 
yields the additional equations from which the optimal parameter values can 
be determined. This approach usually treats the dynamical model and the 
initial conditions as weak constraints. The model and initial conditions can 
also be treated as strong constraints. Then the model and initial condition 
are added to the cost function with associated undetermined Lagrange mul­
tipliers, as in equation (D.31). This strong constraint approach often leads 
to physically and mathematically ill-posed problems since the parameter a 
might attempt to correct for errors that are really in the dynamical model or 
initial condition, and a poor estimate of a may result. 

The actual application of any of the above data assimilation schemes to a 
specific problem requires modifications. These modifications must account for 
forcing and boundary conditions, for dynamical equations that are perhaps not 
of the autoregressive type, and for any peculiarities of the problem at hand. 
They are often technically quite challenging. Some of these modifications can 
be seen in the examples of Chaps. 5 and 6. 
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