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Simultaneous Analysis of Space-Time Variability: 
Principal Oscillation Patterns and Principal Interaction Patterns with Applications to the 
Southern Oscillation 

By H. v. Storch, U. Weese and J. S. Xu 

With 3 Figures 

Summary: The merits of the analysis techniques "POP" (Prin­
cipal Oscillation Pattern) and "PIP" (Principal Interaction 
Pattern) are demonstrated by applying them to a combined data 
set of surface wind and sea surface temperature along the equa­
tor. 

The POP analysis detects a dominant low-frequency oscilla­
tory mode with a time scale of about 2 to 3 years which can be 
identified as the Southern Oscillation. With respect to SST, the 
mode behaves approximately as a standing pattern with maxi­
mum extremes in the Central and Eastern Pacific. In the zonal 
surface wind, however, an eastward propagating feature can be 
detected. The meridional wind component is less organized, 
except for the occurrence of southerly winds in the Eastern 
Pacific during the "peak phase" of El Nifio. 

The result of the PIP analysis is essentially the same as that 
of the POP analysis, except for a seasonal dependence of the 
system's stability: disturbances tend to be amplified during 
April to July and damped throughout the rest of the year. 

Zusammenfassung: Die Mi:iglichkeiten der Analyseverfahren 
,,POP" (Principal Oscillation Pattern) und ,,PIP" (Principal 
Intercation Pattern) werden diskutiert anhand eines Beispiels. 
Der analysierte Datensatz enthalt Monatsmittel des oberflachen­
nahen Windes sowie der Ozeanoberflachentemperatur langs des 
Aquators im Indischen und Pazifischen Ozean. 

Das POP-Verfahren filtert aus den Daten ein dominantes 
Schwankungsmuster mit einer charakteristischen Zeit von 2 bis 
3 Jahren heraus. Es kann mit der Southern Oscillation identifi­
ziert werden. In bezug auf die Ozeantemperatur erscheint das 
Signal als ein stehendes Muster mit Extrema im zentralen und 
i:istlichen Aquatorialpazifik. Im Zonalwind analysiert das POP­
Verfahren ein nach Osten wanderndes Signal, das im Indischen 
Ozean zuerst erscheint und im i:istlichen Pazifik dissipiert. In der 
Meridionalkomponente des Windes erscheint kein klares Signal 
abgesehen vom Siidwind im i:istlichen Pazifik wahrend der 
"peak phase" eines El Nino Ereignisses. 

Das PIP-Verfahren interpretiert die Daten in fast gleicher 
Weise wie das POP-Verfahren. Im PIP-Verfahren wird aller­
dings zusatzlich eine saisonale Modulation der Dampfungseigen­
schaften des betrachteten Systems beriicksichtigt. Demnach 
werden Sti:irungen, die im April bis Juli auftreten, verstarkt. 
Andere Sti:irungen werden gedampft. 

1. Introduction 

"PIP" (Principal Interaction Pattern) and "POP" 
(Principal Oscillation Pattern) analyses are multivariate 
techniques to infer empirically the characteristics of the 
space-time variations of a complex system in a high­
dimensional space. The basic ansatz is to specify a 
low-order system with a few free parameters which are 
fitted to the data. Then, the space-time characteristics of 
the low-order system are regarded as being the same as 
those of the full system. The POP analysis is in operatio­
nal use at the Max-Planck Institut fiir Meteorologie 
and has been used to analyze the tropical 30-60 day 
wave in a multi-year GCM run (Storch et al., 1988), and 

to design a statistical forecast scheme to predid the 
Southern Oscillation (Xit and Storch, 1989). 

The PIP ansatz (Hasselmann, 1988) is a fairly general 
approach which allows for a large variety of complex 
scenarios. It may be seen as a particular case of "state 
space models" (Honerkamp and Weese, 1989). POPs 
(Storch et al., 1988) may be understood in two concep­
tually different ways, namely as being normal modes of a 
linear system and those parameters are inferred from a 
vector time series, or as a somewhat trivial case of PIPs. 

The purpose of the present paper is to describe both 
approaches (sec. 2 and 4) and to show results which were 
obtained by the simple POP (sec. 3), and the more so­
phisticated PIP analysis (sec. 5) when applied to the 
same combined anomaly data set, equatorial zonal and 
meridional components of the surface (10 m) wind and 
equatorial sea surface temperature (SST). 

2. POPs as Normal Modes 

2.1. Normal Modes 

The normal modes of a linear discretized system 

x (t+l)=A • x(t) (2.1) 
are the eigenvectors p of the matrix A. In general, A is 
not symmetric and some or all of its eigenvalues I. and 
eigenvectors p are complex. However, since A is a real 
matrix, the conjugate complex quantities I.* and p* 
satisfy also the eigen-equation A· p*=l.*p*. In most 
cases, all eigenvalues are different and the eigenvectors 
form a linear basis. So, each state x may be expressed in 
terms of the eigenvectors, 

X= l} Zjpj (2.2) 
j 

Since the basis of eigenvectors is complete, this ex­
pansion is unique, i.e. 

0= l} Zjpj 9Zj=O for all j. (2.3) 
j 

The coefficients of the pairs of conjugate complex 
eigenvectors are conjugate complex, too. Inserting (2.2) 
in (2.1) and using (2.3) leads to a set of time evolution 
equations for the coefficients zj(t): 
Zj (t+l)=AjZj(t) for all j. (2.4) 

If the eigenvalue I. is complex, (2.4) may be written in 
terms of real quantities by introducing the notation 
z=zI+iz2, l.=J.I+iJ.2, e=ll.I and w=tan-l(J.2/J.1): 

(zl (t+l))- ( cos (w) sin (w)) (zl(t)) 
z2 (t+1) -(! - sin (w) cos (w) z2(t) · 

(2.5) 

As sketched in Figure 1, the system (2.5) performs a 
damped rotation in the two-dimensional subspace span-
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Fig. 1. Schematic diagram of the time evolution of POP coeffi­
cients 
Abb. 1. Schematische Darstellung der zeitlichcn Entwicklung 
von POP-Koeffizienten. 

ned by the real and imaginary part of the eigenvector 
p=pl +ip2. From the complex eigenvalue A. two cha­
racteristic numbers can be derived, the oscillation period 
T= 2n/tan -l(A.2/;.1) and thee-folding time T = ln (IA.l)-1. 

In the original x-space the trajectory given by the 
complex normal mode p is given by 

zl(t) . pl + z2(t) · p2 , (2.6) 

which together with (2.5) leads to this interpretation: if 
at a certain time to the system is in state pl, it will be at 
lo+ T/4 in state -p2, at time to+ T/2 in state -pl, at 
to +3 T/4 in p2, and eventually at time t=to + T back in 
state pl. Or, the system is generating the cyclic sequence 
of patterns 
..• -+pl-+ -p2-+ -pl -+p2 -pl-+ ... (2. 7) 

2.2. Estimation of Normal J\lodes: 
Principal Oscillation Patterns 

All information used so far was the existence of a linear 
equation (2.1) with some matrix A. No assumption was 
made where this matrix originates from. In dynamical 
theory, the origin of (2.1) are linearized and discretized 
differential equations. In case of the POP analysis the 
relationship 

x (t+l)=A·x(t)+noise (2.8) 

is hypothesized. Multiplication of (2.8) from the right­
hand side by the transposed x(t) and taking expectations, 
(·), leads to 

A= (x (t + 1) · xT(t)) · (x(t) · xT(t))-1. (2.9) 

The eigenvectors of (2.9), or, the normal modes of 
(2.8) are called Principal Oscillation Patterns. Their time 
evolution is given by (2.5-6), superimposed by noise. 

To estimate A the lag covariance matrix (x (t + 1) X 
xxT(t)) and the covariance matrix (x(t) • xT(t)) are 
estimated in the usual way. 

Criteria to decide whether a POP contains useful 
information or if it should be regarded as reflecting 
merely sample properties are given by Storch et al. (1988). 
The most important rule-of-thumb is related to the cross 
spectrum of the POP coefficients zl and z2: at the POP 
period T, or at least in the neighbourhood of T, the two 
time series should be significantly coherent and 90° 
out-of phase, according to the interpretation given in 
(2.7). 

3. Example of POP Analysis 

3.1. Data 

A POP analysis was carried out for monthly mean equa­
torial sea surface temperature (SST) and the zonal and 
meridional components of surface (10 m) wind (u and v) . 
The data sets were collected from ship data for the period 
1951-1986 and have been averaged on a 10° X 10° la­
titude/longitude grid centered along the equator extend­
ing over the Indic and Pacific oceans, i.e., from 45° E 
to 85° W. 

The purpose of the analysis was to identify patterns 
characteristic of the El Nino/Southern Oscillation 
phenomenon. To focus on that process the seasonal cycle 
is removed and the data are time-filtered prior to the 
analysis: all variations on time scales shorter than 12 
months and longer than 80 months were suppressed. 
To provide a simultaneous analysis of SST, u and v, the 
three variables were scaled to have equal spatially a verag­
ed variance. 

To reduce the noise the POP analysis was made in the 
subspace spanned by the first eight EOFs which explain 
72 °io of the variance. 

3.2. Results 

One complex pattern with the characteristic times: 
oscillation period T = 32 months, e-folding time T = 64 
months could be identified by POP analysis. The damp­
ing time should be considered with care, because it is 
certainly contaminated by the time filtering. The cross­
correlation function of the POP coefficients zl and z2 has 
its maximum value, 0.72, at a lag of 6 months which 
indicates that a quarter of the oscillation period is 6 
months. This number is consistent with T/4= 8 months 
derived from the POP analysis. 

The patterns pl (solid line) and p2 (dashed line) are 
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Fig. 2. Simultaneous analysis of SST anomalies, and the zonal 
and meridional component of equatorial surface wind anomalies 
along the equator (45° E to 85° W). Upper diagram: SST, 
middle diagram: zonal wind; bottom diagram: meridional 
wind. Dimensionless units. 
a) POPs. Characteristic times: oscillation period T = 32 months, 

e-folding time T = 64 months. The characteristic POP cycle is: 
pL+ -p2-+ -p1-+p2. 

b) PIPs according to (5.1.2). Characteristic times: oscillation 
period T=40 months, u0= -0.02, Ua=0.04, tp=5.3 months. 
The characteristic PIP cycle is: P1-+ -P2-+ -P1 -P2· 

Abb. 2. Ergebnisse einer simultanen Analyse von Anomalien 
dreier mit der ,,Southern Oscillation" verkniipfter physikalischer 
Parameter Iangs des Aquators (45° E-85° W): Ozeanoberflachen­
temperatur (,,SST") sowie Zona!- und Meridionalkomponente 
des oberfliichennahen Windes (,,u-" und ,,v-Wind"). Die drei 
Parameter sind normiert, so daB die raumlich gemittelten 
Varianzen von SST, u- und v-Wind identisch sind. Oben: SST; 
Mitte: u-Wind; unten: v-Wind. 
a) Principal Oscillation Patterns - die charakteristischen Zeiten 

sind: Rotationszeit T=32 Monate, Dampfungszeit: r=64 
Monate. Der charakteristische POP-Zyklus ist: pi-+-p2__. 
--p1-p2 

b) Principal Interaction Patterns nach (5.1.2) - die charakteri­
stischen Zahlen sind: T = 40 Monate, u0 = -0,02, "a= 0,04, 
tp=5,3 Monate. Der charakteristische PIP-Zyklus ist: p1-+ 
- -P2 __. -P1 -+P2 

shown in Fig. 2 a. In pl there are positive SST anomalies 
over the Central and Eastern Equatorial Pacific and the 
Indian Ocean, and negative SST anomalies over Indo­
nesia. These anomalous SSTs are associated with 
westerly (easterly) wind anomalies in the Central Pacific 
(Indian Ocean). The maximum of the warming lies to 
the east of the maximum westerly wind. The meridional 
wind component shows weak northerly (southerly) ano­
malies in the Central (Eastern and Western) Pacific. The 
pattern p2 describes south-westerly wind anomalies in 
the Australian sector, but hardly any SST anomalies 
except for some weak negative ones in the Indian Ocean. 

The interpretation (2.7) applies to each observed 
variable (SST and both components of surface wind). 
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If at some time the pattern pl is observed-with wester­
lies at the date-line, southerlies in the eastern equato­
rial Pacific and above normal SST in most of the Pacific­
it is likely that it will be replaced by -p2 after T/4= S 
months with almost no SST anomalies, but north-easter­
lies i:orth of Australia. After another 8 months, -pl 
d�scribes the 

.
state of �tmosphere and ocean: the easterly 

wmd anomalies are shifted eastward to the date-line and 
the ocean is cooler than normal. 8 months later, pattern 
p2 �merges which eventually will be replaced by pl 
agam. 

The anomalies described by this cycle suggest that the 
zonal wind signal propagates eastward, whereas the SST 
anomalies are a standing oscillation. The characteristics 
of p1 are typical for the "peak phase" of ENSO: see, e.g., 
the August-October composite of Rasmusson and Car­
penter ( 1982; see Fig. 20). Pattern p2 describes an inter­
mittent stage of the ENSO cycle: it can be compared 
with the "onset phase" anomaly composed by RasmussGn 
and Carpenter (1982; see Fig. 18). 

That the patterns pl and p2 describe the ENSO signal 
can be supported by a cross-correlation analysis of the 
POP coefficients and the SST Southern Oscillation 
Index, SOI (Wright, 1984). The maxima of the cross­
correlation functions are Corr,=0(SOI, zl)=0.64 and 
Corr,=6(SOI, z2)=0.53. 

4. PIPs 

4.1. State Space lUodels 

Many complex dynamical systems, XE!f;r, may con­
veniently be approximated as being driven by a simpler 
dynamical system, zEIRm, with a reduced number of 
degrees of freedom, m�n. Mathematically, this may be 
described by a state space model which consists of a sys­
tem equation 

z (t + 1)=8F[z(t) , a, t] +noise , (4.1) 

for the dynamical variables z= (z1, .. ., Zm) and an obser­
vation equation 

x( t) = Pz( t) +noise= }} zi( t) Pi + noise (4.2) 
j 

for the observed variables x. &F[z(t), a, t] belongs to a 
class of models which can be non-linear in the dynamical 
variables z and which depends additionally on a set of 
free parameters a= (a1, oc2, ... ). Both equations are 
disturbed by an additive noise. 

Clearly, the columns of the matrix P= (pi, .. ., Pm) 
may be interpreted as patterns in the full x-space. Since 
m�n, the time coefficient zi(t) of a pattern Pi at a time 
t are not uniquely determined by the x(t). Instead, it 
may be obtained by a least-square fit, i.e. 

(4.3) 

The intriguing aspect of state space models is that the 
dynamical behaviour of complex systems often appears 
to be dominated by the interaction of only a few charac­
teristic patterns Pi· That is, even if the dynamics of 
the full system are restricted to the subspace spanned by 
the columns of P, its principal dynamical properties are 
represented. 
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4.2. Fitting State Space lUodclls: 
Principal Interaction Patterns 

When fitting the state space model (4.1.2) to a time 
series, the following entities have to be specified: the 
class of models 8.f, the patterns P, the free parameters a 
and the dimension of the reduced system m. The class 
of models 8F has to be selected a priori on the basis of 
physical reasoning. Also, the number m might be speci­
fied a priori. The parameters a and the patterns P are 
fitted simultaneously to a time series by requesting them 
to minimize 

which describes a damped oscillation at a period of T = 

2n/ w. Since ENSO is known to be more persistent in 
summer and autumn than in winter and spring the 
damping factor u is set to oscillate seasonally: 

x(t) = xo + Xa · COS wo (t - tp) ( 5.2) 

with wo=2n/(1 year). The set of free parameters is now 
a=(w, Ko, Ka, tp)· 

With these settings, the deterministic solution of ( 4.1) 
is given by equation (2.5), but now with e=e"(tl. If at a 
certain time to the strength of the signal is liz(toJll, it is at 
a later time t 

i-:[ P; a]= (llx (t + 1) -x(t) -P {8F[z(t), a, t] -z(t) }112) • ( 4.4) liz(t)ll = e"U-1l llz (t-1)11 = eK(t ,to) llz(to)ll (5.3) 
c[ P; a] is the mean square error of the approximation of 
the (discretized) time derivative of the observations x 
by the state space model. The patterns P, which mini­
mize (4.4) are called Principal Interaction Patterns. If 
only a finite time series of observations x is available, 
the expectation (·) is replaced by a summation over 
time. 

In general, the solution of (4.4) is not unique. In par­
ticular, the set of patterns P' =P · L with any non-singu­
lar matrix L will minimize (4.4), if P does, as long as the 
corresponding model 81'' = L-lgf belongs to the model 
class specified a priori. This problem may be solved by 
requesting the solution to fulfill some constraints, e.g. 
that the linear term in the Taylor expansion of 8F is a 
diagonal matrix. 

The minimization problem can be solved by minim­
izing iteratively with respect to the patterns P and the 
parameters a, where the z(t) (4.3) are given by the P of 
the last iterative step. Then the minimization with re­
spect to P is reduced to a set of linear equations, and the 
minimization with respect to a can be solved by an 
quasi-Newton algorithm available in standard libraries, 
since the number of parameters a is small. 

4.3. POPs as Particular Case of PIPs 

The Principal Oscillation Patterns can be understood as 
a kind of simplified Principal Interaction Patterns. 
For that let us assume m=n. Then, the patterns p span 
the full x-space, and their choice does not affect c[ P; a]. 
Also, let 8F be a linear model 8F[z(t), a]=A • z(t), where 
the parameters a are the entries of A. Equation (2.9) is 
obtained by minimization of c:[P; a] (4.4), so that the 
dynamical equation (4.1) is identical to (2.8). The con­
straint mentioned above leads to the eigenvectors of A 
as being the PIPs of the particular, admittedly simpli­
fied, state space model. 

5. Example of PIP Analysis 

5.1. Model Design 

In this section we present results of a PIP analysis of the 
equatorial sea surface temperature and the zonal and 
meridional component of equatorial surface wind. The 
same data set was examined by means of POP analysis 
in section 2. After having found one relevant oscillatory 
POP in section 3, we choose as dimension of the reduced 
system m= 2. As model class 8f we take 

8F[z(t) a]=e" ( c:is (w) sin (w)) . z(t) (5.1) ' - sm ( w) cos ( w) 

with 

t-1 t-1 (5.4) 
K(t,to)= I} x(<)=uo (t-t·o)+ita I} coswo(•-tp)· 

T=lo T=to 

In order to keep the model stable, K(t, t0) has to be 
negative for large times (t-to), i.e. x0 < 0. The seasonal 
dependence of equation ( 5.2), however, allows the system 
to be unstable during some time of the year, namely if 
xa is sufficiently large compared with Jxol, so that x(t) is 
positive in part of the year. 

5.2. Results 

The PIPs P1 and p2 (Fig. 2b) show the same features as 
the patterns p1 and p2 of the POP analysis (Fig. 2a). 
The oscillation period T=40 months and the long-term 
damping rate xo= -0.02 are almost the same, too (see 
sec. 3). Furthermore, the maximum cross correlation 
Corrr=6 (z1, z2) = 0.66 of the PIP coefficients is comparable 
to that one of the POP analyses. The PIP model, how­
ever, is somewhat more skillful in describing the ENSO 
signal: the maximum values of the cross-correlation 
functions of the PIP coefficients and the SST Southern 
Oscillation Index, SOI (Wright, 1984), Corrr=o(SOI, z1) = 
0.96, Corrr=6(SOI, z2) = 0.60 are higher than those of 
the POP analysis. Whether this reflects the different 
number of dynamical parameters or a true improvement 
is unknown. 

The major difference to the POP analysis is the fitting 
of the amplitude xa and the phase tP of the seasonally 
oscillating damping rate x(t) (5.2): xa=0.04, tP=5.3 
months. The seasonal march of x(t) is illustrated in Fig. 3. 
Hence, the process, described by p1 and p2, responds 
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Fig. 3. Seasonally varying damping rate it(t) = x0 +i.:a · cos w0 • 

(t - tp) with x0 = -0.02, Xa = 0.04, tp = 5.3 months. x(t) >O 
indicates amplification and i.:(t) <0 damping. 
Abb. 3. Jahreszeitlich schwankende Dampfungsrate u(t) =i.:o+ 
+ua cos w0 (t -tp}. u(t} >O zeigt Verstarkung von Storung an und 

i.:(t)<O deren Dampfung. 



with variable sensitivity to disturbances. From April to 
July, the damping rate is positive, i.e. the system is 
unstable, disturbances will be amplified. Throughout the 
rest of the year the system is stable with maximum 
damping at the end of November. 
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