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Abstract 

Two informational entropy measures which exploit the geometry of the instan­

taneous 500 mb vorticiy field either in geometrical (E(p1)) or energetic coordinates 

(E(p2)) are introduced. They are compared with a series of conceptually different 

parameters characterizing extratropical atmospheric flow fields which can be consid­

ered as stability measures for atmospheric states under certain conditions: 

• the enstrophy 1] and the mean squared wave number k2 , 

• the sum L of positive instantaneous local Lyapunov exponents, 

• the sum K of the positive eigenvalues of the operator in the equation for 

barotropic kinetic energy of disturbances, and 

• the instability index h introduced by Dymnikov et al. (1990). 

Theoretical simplifying arguments indicate that for quasibarotropic flows the mea­

sures E(p1), 17, L and K, defined on the hemisphere, as well as E(p2), k2 and h, 

defined for any regions on the hemisphere, are related to each other. 

We verified these hypotheses by examining a 30-year data set of daily 500 mb 

height fields of the entire extratropical Northern Hemisphere and of the North At­

lantic/Western Europe sector. The Lyapunov-type measures L and K were calcu­

lated from 10-day mean states. The theoretical results were found to fit very good 

for the set E(pi), 17, L, K, calculated for the Northern Hemisphere. The similarity of 

measures E(p2 ), k2 and J3 in the North Atlantic/Western Europe sector was found 

to be fair. Although the concept of informational entropy does not allow to classify 

uniquely atmospheric states in the synoptical sense ("grosswetterlagen"), the sys­

tema.tical differences between atmospheric flows with high, normal and low entropies 

a.re found. 
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1 Introduction 

The concept of atmospheric circulation regimes allows the introduction of a regime distribution 

function by means of which we can define different climatic functionals. These functionals can 

then be used in estimating regional and global climate changes which is one of the important 

aspects of climatological studies. Therefore the introduction of the distribution function of 

atmospheric regimes for given regions seems to be an approach with a promising outlook. 

The central problem in this direction is the definition of atmospheric circulation regimes. 

Dzerdzeevsky (1956) introduced, for example, about two dozen regimes. Blinova (1943) and 

Kats (1960) constructed circulation indices which characterize meridional and zonal types of 

circulation. In the last twenty years much attention has been paid to studies of "blocking-type" 

regimes, which are quasistationary regional atmospheric circulation regimes with quasibarotropic 

structure. Many classifications of atmospheric circulation regimes have been done by means 

of cluster analysis methods (a technique which suffers from its dependence on the particular 

measure used). For limited areas, like the North Atlantic/Western Europe region, the approach 

successfully allows for the discrimination of regimes such as blocking and zonal flow (Legras et 

al., 1989). For the whole hemisphere the number of regimes is much larger and it is difficult to 

define their relationship to the blocking process (Molteni et al., 1990). 

Comparing results of a cluster analysis with the stationary solutions of a barotropic model, 

Mo and Ghil (1987) showed that the centers of clusters were close to stationary points and that 

the lifetime of the trajectories in a cluster strongly depended on the distance from the center 

of the cluster. Since all the trajectories appeared to be unstable in the Lyapunov sense, such 

dependence is theoretically possible if the disturbance energy is equally probable distributed 

in orthogonal basis of unstable manifold of a stationary solution. This problem was discussed 

also in Dymnikov et al. (1990), Dymnikov (1990) and Dymnikov and Filatov (1990) where, 

on the base of observational data, an attempt was made to determine the relationship between 

the lifetime of quasistationary atmospheric circulation regimes like blockings and their stability 

characteristics. 

In the present paper we approach the classification problem by studying the "informational 

entropy" (for the sake of brevity we will omit the word "informational" in the following) of 
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the atmospheric circulation for a. geographically limited region a.nd for the whole Northern 

Hemisphere. The concept of entropy a.s a. description of atmospheric states is not new. Obukhov 

{1964) introduced a. density distribution function cha.ra.cterizing the distribution of atmospheric 

mass with respect to the volumes formed by surfaces of constant potential vorticity and constant 

potential temperature. This distribution function wa.s used by Kurga.nsky a.nd Tata.rskaya. (1987) 

for a. study of the annual cycle of the entropy for the FGGE da.ta. set. 

Our purpose is not only to compute the entropy of atmospheric states a.nd compare qua.­

siba.rotropic atmospheric regimes using this notion but a.lso to understand the relation of the 

entropy to stability cha.ra.cteristics of barotropic circulation, in particular, to loca.l Lyapunov 

exponents (Dymnikov a.nd Skiba., 1987; Frederiksen a.nd Bell, 1990; Abarba.nel et a.I. 1991). The 

first steps in this direction were undertaken by Dymnikov et a.I. (1992). The idea of classifying 

atmospheric regimes in terms of their informational entropy seems to be more productive in the 

analysis ofregiona.l types of atmospheric circulation, for instance, in the North Atlantic/Western 

Europe region. However in this case the a.na.lysis of the stability properties of regional circulation 

regimes seems to be more problematic tha.n of the global circulation (Dymnikov et a.1., 1990). 

The paper is organized a.s follows. In Section 2 different definitions of entropy are dis­

cussed a.nd the notion of "E-regimes" is introduced. Time series of entropy for the North 

Atlantic/Western Europe region and for the Northern Hemisphere a.re ca.lcula.ted a.nd discussed. 

Correlation relationships between the entropy, the enstrophy a.nd the squared mean wa.ve num­

ber of atmospheric states a.re a.lso demonstrated. In Section 3 loca.l Lya.punov exponents (for 

a barotropic atmosphere) a.nd the instability index h, proposed by Dymnikov et a.I. (1990), 

are defined. Instantaneous local Lya.punov exponents, the instability index a.nd the entropies 

are compared in Section 4. Conclusions a.nd discussions of results follow in the last Section 5. 

Technical aspects of our work are gathered in a. series of appendices. 

2 Informational Entropy 

We a.dopt the notion tha.t the la.rge-scale qua.siba.rotropic dynamics of the extra.tropical tropo­

sphere may be represented by just one variable, namely the relative vorticity ~. Consistent with 

this notion we will use throughout this pa.per the conventional ba.rotropic vorticity equation a.s 
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dynamical framework: 

(1) 

where e = V2 '1j; is the relative vorticity, 'ljJ is the streamfunction and f = 2f2sin<f> is the Coriolis 

parameter. a andµ are the linear drag and the horizontal diffusion coefficients, respectively. F 

stands for external forcing. 

We use three integral quantities to characterize the state of the barotropic flow given by 

e(t) = V2 '1j; at time tin the area D (with surface IDI): The enstrophy TJ, the total kinetic energy 

IKI and the "mean squared wavenumber" k2
: 

IKl(e(t)) 

k2(e(t)) 

(2) 

(3) 

(4) 

The dimension of the phase space represented by e is infinite since the partial differential 

equations (1) can be transformed into an infinite system of ordinary differential equations, for 

example, by expanding e into a Fourier series in terms of spherical harmonics. In reality, however, 

we deal usually with a phase space of finite dimension. This could be either the phase space of 

a numerical solution of (1) or the phase space of data observed at discrete times and locations. 

In particular, the coordinates of the phase space can be chosen in a natural way as values of the 

relative vorticity at each grid point of the two-dimensional array of observed data. 

For the computations throughout this paper we assume that 500 mb geopotential height 

represents sufficiently well the barotropic component, with the dynamics represented by (1). 

Height data is available on a 5° x 5° latitude x longitude grid (provided by NCAR). 

The conventional definition of the entropy of the atmospheric circulation operates with prob-

ability distribution values for each phase space coordinate (or at each grid point). For that 

purpose the whole time evolution of the solution at each grid point is considered. We take a 

different approach here by defining informational entropies as a characteristic parameter of indi-

vidual points in the phase space, i.e., individual atmospheric states represented by one relative 

vorticity field e( t) at some time t. One way to do that is to assume that at each time all phase 

coordinates (or grid points) are statistically equivalent and independent of each other. In this 
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case each concrete atmospheric state can be considered as an ensemble of independent realisa­

tions of relative vorticity in one-dimensional phase space. With the density of this ensemble 

labelled pe(r) we define the entropy of the field {as 

(5) 

The function pe is named an entropy density function. A natural definition of E-regimes of 

atmospheric states is then accomplished by introducing the regime density function PE through 

IT
1

1 
r dt = r PE(E)dE 

}g-1 (QE) }n,E 
(6) 

nE is any set of entropies, g(t) is the entropy at time t so that g-1(f!E) is the time during 

which the system's entropy E is in nlj;. The division by the total time ITI is introduced to 

ensure that the integral of the density over the whole real line of possible entropies is one. If 

nE = [E,E + b.E] is sufficiently small then PE(E) ~ rh~~tk with b.tk being the length of 

time intervals during which the entropy is in [E, E + b.E]. 

The E-regime density function can be used as climatological functionals, for instance, for 

testing the ability of atmospheric general circulation models to reproduce the regional climate. 

In the following we will introduce two definitions for the entropy density functions pe of a 

given atmospheric state f Both definitions apply, in principle, for any subarea of the extrat-

ropics. The entropy density function Pt is formulated in terms of portions of area (Subsection 

2.1), and P2 in terms of portions of kinetic energy (Subsection 2.2). 

2.1 The Definition of p1 

The density function p1e of one gridded {-field is the relative number of realizations, or in our 

case, just the relative number of grid points with relative vorticity in the interval (r, r + dr). 

Taking into account the area of grid boxes associated with each grid point the mathematical 

expression for the density P1 = P1 e(t) ( r) is given by 

'D
l I f dx = f P1e(r)dr 

lnn lv(On) 
(7) 

Here D is the full domain with the surface ID!, D.n is any subarea of D, v(x) is the vorticity 

at the location x so that the set v(On) encompasses all vorticities at locations within On. The 

normalization with WT has been introduced to ensure J~ p( r )dr = 1. 
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If p1e is Gaussian then its entropy E(p1) is proportional to the logarithm of the enstrophy 

17. For any two vorticity fields e and ce with the same structure but different "amplitude" 

sense the entropy E(p1 ) depends on the amplitude of the vorticity field. For the details, see 

Appendix A. 

The mathematical object we have defined here has the form of an entropy, and we have 

therefore added the adjective "informational". We cannot automatically use properties of the 

well-founded thermodynamic concept of entropy. In the light of this limitation our somewhat 

dubious assumption about the equivalence of all grid boxes independent of their geographical 

locations appears less grave. This assumption would imply that only the regions with homoge-

neous conditions where all points are indistinguishable in the sense of their statistical properties 

have to be considered. On the other hand, the number of grid points, and consequently, the 

region should not be too small to compute the distribution function with a sufficient accuracy. 

2.2 The Definition of p2 

The E(p1e(t))-definition of the informational entropy of the state e(t) given in the previous 

subsection is not fully satisfactory because of its sensitivity to disturbances with high vorticity 

but low energy, such as small scale analysis errors. This problem can be avoided by using a 

share of the kinetic energy instead of the area in the definition of the entropy density function 

and normalizing the relative vorticity field by the square root of the total k1netic energy of the 

atmospheric state, shifting in such a way all states to a single energy level. In this case we have 

a new definition of an entropy density function 

-
1
- f dK = f P2e(r*)dr* 

IKI JnK ln(flK) 
(8) 

Here IKI is the total kinetic energy of the state e(t), K(x) is the kinetic energy at the location 

X. f!K is any set of kinetic energy values of the state e, and n(flK) is the set of normalized 

relative vorticities r* = r/JIKT found at all locations x with K(x) E f!K. 

If the entropy density function p2e is Gaussian then E(p2) is a linear function of the logarithm 

of the mean squared wave number k2(e). The entropy E(p2 ) is independent of the amplitude of 

the pattern, i.e., E(p2d.) = E(p2e). (For the details see Appendix B.) 



2.3 Informational Entropy of Observed Circulation 

In the following section we will present entropies computed for the 30-year interval from 1958 

through 1987 for two areas. The first area, named "North Atlantic/Western Europe" and 

abbreviated "NAWE", covers 65°W - 25° Ex 30° N - 80° N. We have chosen this region because 

it is often influenced by North Atlantic blockings. The second area is the Northern Hemisphere, 

abbreviated by "NH", poleward of 20° N. We have calculated entropies for daily data and for 

10-day mean data (to exclude the high frequency variability associated with baroclinic activity). 

In the subsections 2.3.1 and 2.3.2 we deal with the two regions NAWE and NH, and in 

Subsection 2.3.3 we discuss the interannual variability of the entropies. 

2.3.l Results for the North Atlantic/Western Europe Region 

Figure 1 shows the time behavior of entropies E(p1) and E(p2) computed for 10-day means and 

for daily data in the year 1985 together with their annual cycles computed as the first two Fourier 

harmonics. The entropies computed for daily data are larger than those computed for 10-day 

means. The richer spatial structure of instantaneous maps, compared to time-averaged maps, 

is revealed as an enhanced entropy. The two 10-day mean curves share the same variability on 

time scales of 30 to 90 days. The major local extremes are also present in the daily values. But 

the two measures E(p1) and E(p2) are different with respect to details and with respect to the 

annual cycle. The mean annual correlations of E(p1) and E(p2) are 0.53 on a daily basis and 

0.60 on a 10-day basis (after subtraction of the annual cycles). 

E(p1) has a summer minimum whereas the minimum of E(p2) is attained in winter. This at 

first glance puzzling behaviour reflects the different sensitivity of the two entropy definitions to 

"amplitude" variations. In winter the "amplitude" in the time mean vorticity field is larger than 

in summer. Therefore E(p1 winter) > E(p1summer). E(p2), on the other hand, was found to 

be insensitive to changes of the "amplitude" and to represent the mean squared wave number, 

i.e., the inverse of a typical length scale. Therefore E(p2winter),..., k2(winter) < k2(summer),..., 

E(pi summer). 

Figure 2 shows a scatter diagram of the entropies E(p1 ) and E(p2 ) calculated for all 10-day 

mean NAWE 500 mb height fields in winter (DJF). This scatter diagram indicates that for large, 
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or small, entropies the two measures yield similar results. There is no case of simultaneous, say, 

very large E(pi)-entropy and very small E(p2)-entropy. 

From the scatter diagram in Figure 2 we have selected six 10-day mean 500 mb height fields 

as examples, three of them having large entropies and three having small entropies (Figure 3). 

In both definitions of the entropy density, p = Pi and p = P2, a circulation which deviates only 

weakly from a purely zonal flow has little entropy (Figure 3a-c), whereas isolated features, such 

as a cut-off low (Figure 3d), an elongated trough (Figure 3e) or a blocking (Figure 3f), go with 

high entropy. Similar results are obtained for summer (not shown). 

We calculated the correlations (ln(17), E(p1)) and (ln(k2), E(p2)) for each year for daily data 

and for 10-day means after having taken out the annual cycle by removing the first two annual 

harmonics. The multi-year averages of these correlations are: 

(ln(17), E(p1)) (ln(k2 ), E(p2)) 

daily 0.85 0.82 

10-day 

means 0.95 0.82 

These high correlations empirically verify our theoretically based hypotheses that the entropy 

E(p1 ) and the logarithm of the enstrophy 1J as well as the entropy E(p2 ) and the logarithm of 

the mean squared wave number k2 are well correlated. The correlations also indicate that the 

assumption of a Gaussian distribution of the densities is·valid. Indeed the 30-year averaged en­

tropy density functions are near-Gaussian, and only a few individual realizations differ markedly 

from Gaussian (not shown). 

In Figure 4 we show the p1-density functions for the six 10-day mean height fields shown in 

Figure 3. The low entropy cases have a compact uni-modal density and the high-entropy cases 

have a broad, in the middle almost flat density. 

Next we examine if high or low entropies are associated with typical configurations of the 

500 mb height field. For this purpose we constructed composite maps of atmospheric circula­

tions with high and low entropies. Since the entropies exhibit annual cycles we calculated the 

composites for January and July months separately. We defined the high (low) composites as 
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the average of 10% of all atmospheric states with the highest (lowest) entropy for 10-day mean 

data (9 states of a total of 90 samples). The composites are presented in the form of absolute 

maps as well as anomalies by subtracting a "normal" defined as the mean of the middle third 

of all cases (33%-66% range in terms of the E-regime distribution). 

For estimating the statistical stability of the composite anomaly map differences a ( univari­

ate) recurrence analysis (van Storch and Zwiers, 1988) was applied. This method compares 

two ensembles and establishes a measure of the strength of their discrimination. In our case 

one ensemble contains 9 atmospheric states with high (or low) entropy and the other ensemble 

contains 30 average-value entropy atmospheric states. At each grid point the distribution of the 

high ( orlow) entropy cases is compared with the distribution of the average-value entropy cases. 

The recurrence analysis results in the probability that a sample, which might belong to either 

the high (or low) entropy or the average-value entropy ensemble, will be classified correctly as 

a high (low) or average entropy case. A formal definition of this probability and the way it is 

estimated from the data is in Appendix C. An alternative, and more conventional statistical 

approach would have been to use at-test. A shortcoming of this hypothesis testing approach is, 

however, the dependency of the result (i.e, rejection of the null hypothesis or not) on the sample 

size. The recurrence analysis delivers only estimates and makes no certain statements (such as 

"reject null hypothesis with a risk of less than 53"). 

In the following we will deal mainly with composites of zonal (U9 ) and meridional (V9 ) 

components of the geostrophic wind derived from the 500 mb geopotential height field (Figs. 

5 and 6, 8 and 9). To have an idea a.bout the vertical structure of the high, or low entropy 

circulation we compare also composites of the 500 mb geopotential height and sea level pressure 

fields (Figure 7). 

Figures 5 and 6 show January composites and composite anomalies of U9 and vg calculated 

with entropy E(p1). Obviously the composite anomalies for both variables are not mirror images 

of each other. The "low - normal" difference of U9 (Figure 5a,d,e) is statistically weakly stable 

with moderate p-values ~ 30%, whereas the high anomaly composite (Figure 5b,c) reveals a 

statistically strong and dynamically interesting pattern. It features an intensification of the jet 

stream over the western North Atlantic at 40° N, with p ~ 80%. Westerlies north of 50° N and 
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south of 30° N are weakened so that the core of the jet stream is narrower and steeper than in 

the "normal" state (Figure Sa). Horizontal gradients of U9 which play an important role for the 

development of barotropic instability (particularly the longitudinal gradient of U9 ) are increased 

in the high entropy state. The low entropy :flow is characterized by weak gradients (Figs. 5d and 

6d): the anomalies of V9 (Figure 6e) tend to decrease the amplitude of V9 almost everywhere, 

with p-values $ 30%, and partly $ 20%, in the central North Atlantic. The high entropy 

anomaly composite of V9 (Figure 6c) has negative values, which are statistically stable with 

p $ 20%, over the northeast coast of North America and positive but less stable anomalies over 

eastern Europe. Thus the meridional circulation is weakened over these regions. Similarly to U9 , 

the high entropy composite of V9 possesses strong horizontal gradients which could contribute 

to barotropic instability of the :flow (Figure 6b ). 

The circulation anomalies associated with the high and low entropy E(p1 ) shown in Figures 5 

and 6 appear to be equivalent barotropic. As a confirmation Figure 7 displays anomaly composite 

maps of 500 mb geopotential height and sea level pressure for January. The positions of the 

anomalies approximately coincide in both fields. The same is valid for the entropy E(p2 ) and 

for July circulation, too (not shown). 

The composite maps of U9 and V9 for the entropy E(p2) in January are shown in Figures 8 

and 9. The low entropy anomaly composites are similar in many aspects to those calculated 

for the entropy E(p1). Particularly, the meridional circulation (Vy, Figure 9d,e) is less intensive 

than in the "average" entropy state, with p-values $ 20% west of 20° N and ~ 70% at the 

Greenwich Meridian. The U9 anomaly composite reveals qualitatively the same pattern as in 

the E(p1)-case, but is statistically more stable with p $ 10% for negative anomalies north of 

70° N and p ~ 80% in the belt at 50° N east of 30°W. The atmospheric circulation with high 

entropy E(p2) deviates markedly from a zonal :flow with two moderately stable (p $ 30%) U9 -

minima, southwest of the Iberian Peninsula and over Central Europe, and a. secondary maximum 

east of Ireland, which is however not stable (Figure 8b,c). The minimum southwest of Iberia is 

associated with a strong Vy-signal (Figure 9b,c). The mean northward circulation west of 30°W 

(Figure 9a) is intensified by more than 5 m/sec (p ~ 20%) and the southward circulation east 

of 20°W is similarly a.ccellerated. 
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Composite maps of U9 and Vy in July are similar for both entropies E(p1) and E(p2). 

Since low anomaly composites are not statistically stable we present in Figure 10 only high 

E(p1)-entropy composites of U9 and V9 together with "normal" composites. The westerlies are 

intensified in the belt at 60° N near Greenwich and are weakened at 45° N west of Greenwich 

(Figure lOa-c). The V9-anomalies (Figure lOe,f) are in phase with the mean meridional circula­

tion (Figure lOd) so that the mean circulation is intensified during high entropy episodes. Both 

U9 and V9 anomalies indicate again that the circulation with high entropy deviates strongly 

from the zonal flow. 

2.3.2 Results Obtained for the Northern Hemisphere 

Almost all results presented above for the North Atlantic region hold also for the whole Northern 

Hemisphere. The annual cycles of E(p1) and E(p2) are opposite in phase. E(p1) is well correlated 

with the logarithm of the Northern Hemisphere enstrophy, and the E(p2) is correlated with the 

logarithm of the mean squared wave number, as is evidenced by the following table: 

(ln(17), E(p1)} (ln(k2
), E(p2 )} 

daily 0.88 0.72 

10-day 

means 0.98 0.75 

The mean annual correlations of both entropies are 0.67 for 10-day means and 0.4 7 for daily 

data. 

Many features of the composite maps of U9 and V9 in the NAWE region reappear in the 

Northern Hemisphere analysis. Particularly, composite maps of zonal wind in January indicate 

an intensification of jet streams over the western parts of both oceans for high E(p1)-entropy 

states (Figure 11). The signal is stronger in the North Pacific sector, with p ~ 10% for negative 

anomalies and p ~ 80% for positive wind anomalies, than in the North Atlantic. Westerlies in 

the low E(p1)-entropy composite are slightly weaker and more uniformly distributed. However, 

the low anomaly composite of U9 is not stable in the North Pacific sector and has only moderate 

p-values in the North Atlantic. The high entropy composites have also a more wavy structure 
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as revealed by V9-composites (Figure 12). Particularly, over the East Pacific/North American 

region the amplitude of meridional circulation exceedes values of 10 m/ sec whereas V9 in the low 

entropy composite (Figure 12d) differs little from tha.t in the "a.vera.ge" composite (Figure 12a). 

2.3.3 Interannual Variability and E-regimes 

To have some idea. a.bout the interannual va.ria.bility of the informational entropy we plotted 

in Figure 13 the time beha.vior of the entropy E(p1) computed for daily da.ta for all 30 years 

in 1958-1987 for the NAWE region (Figure 13a.) and for the whole Northern Hemisphere (Fig­

ure 13b). The climatological annual cycle (the first two annual harmonics) was subtracted from 

the entropy. The first apparent feature is the abrupt increase of the entropy in 1960-1962 which 

might be related to the changes in the analysis procedure. After that period a slight decreasing 

trend of the entropy is noticeable. The interannual variability is not strong and is much weaker 

than daily variability, especially in the NAWE region (Figure 13a.). 

Finally we present E-regime distribution functions J!
00 

PE(e)de for the NAWE region. Fig­

ure 14 shows E-distribution functions computed for daily E = E(p1 ) and E = E(p2) in January 

and July, together with fitted standard normal distributions. For the entropy E(p1 ) (Figure 14a) 

the curve corresponding to January is situated to the right of the July curve since the entropy 

E(p1) is generally smaller in summer than in winter (Figure 1). For the entropy E(p2) (Fig­

ure 14b) the opposite is true. Both curves for July daily data are slightly steeper than the 

January curves. It would imply that the corresponding density functions are narrower in sum­

mer and wider in winter. This means that in winter the structure of atmospheric circulation 

states characterized by its entropy can differ from its mean state more strongly than in summer. 

Only the E(p1)-distribution function derived from the ensemble of daily January vortic­

ity fields is inconsistent with the assumption of normality; there are more low extremes than 

expected, and fewer high extremes. 

2.4 Discussion 

A major purpose of the informational entropy analysis is the classification of circulation regimes 

associated with different entropy extremes. In the previous section we ha.ve shown tha.t there 
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are statistically stable differences between atmospheric states with high and low entropies in the 

North Atlantic / Western Europe regions and in the Northern Hemisphere. However, it is not 

possible to classify synoptical atmospheric states uniquely in terms of informational entropy. 

Particularly, the theoretical absolute minimum of entropy is attained for a zonal :flow with 

constant ~ = fo. The density function p(r) is in this case a 6-function with zero values for 

all r except r = fo. Zonal :flows of different kinetic energy and with different enstrophy are 

indistinguishable from the point of view of informational entropy (in terms of E(p2 )). Obviously, 

the same can be valid for other types of circulation regimes. 

Depending on our point of view we may see this disabilty as an advantage or as a disad­

vantage. If we think of our entropy measures as a tool to reproduce the synoptically defined 

classification in the sense of "grosswetterlagen" then we have not met our goal. However, in 

the following section we will show that the entropy measures E(p1 ) and E(p2) are related to 

some stability parameters of the quasibarotropic circulation. So that if we think of our en­

tropy measures as a tool to map the stability properties of the phase space, then we might 

find synoptically very different states to be similar in their stability properties. In that sense, 

our instrument "entropy" is successful in identifying the synoptically invisible but dynamically 

relevant similarity in stability. 

3 Stability Characteristics of N onstationary Solutions of the 

Barotropic Equation 

In this section we consider the stability of nonstationary solutions of the barotropic vorticity 

equation on a sphere (1). In Subsection 3.1 we introduce the notion of a Local Instantaneous 

Lyapunov Exponent, which is identical to the Schmidt number introduced by Navarra (1993) 

and Betti and Navarra (1993). In Subsection 3.2 we derive these exponents for solutions of the 

barotropic vorticity equation (1) under a condition that the forcing term on the right side does 

not depend on time. Another approach to the stability of stationary solutions for one particular 

case is presented in Subsection 3.3. 
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3.1 Definition of Local Instantaneous Lyapunov Exponents 

Consider an autonomous dynamic system with an evolution operator or, in Navarra's terminol-

ogy, the propagator Bti.t: 

(9) 

Linearization of (9) yields an equation for a small disturbance e from the solution of the equation 

(9) on time interval (t, t + ~t) 

((t + ~t) = [B~t(t)] ~'(t) (10) 

with a linear operator B~t(t) = agf'"' I . ... e=W> 
According to the Multiplicative Ergodic Theorem of Oseledets (1968) Lyapunov exponents 

can be evaluated as eigenvalues of a limit matrix, the existence of which can be proven under 

the condition of the existence of an invariant measure. To do so, we introduce the notation 

n 

Mn= II B~t(t + k~t). (11) 
k=-n 

Lyapunov exponents are given by 

(12) 

with the symbol *representing the adjoint operator. The symbolµ [A] represents an eigenvalue 

of the operator A. The sum of positive Lyapunov exponents L:: A+ is equal to the Kolmogoroff-

entropy (Pesin, 1977) so that the inverse of the sum of all positive A's characterizes the mean 

predictability time of trajectories of the system (9). However, our main interest is not in an 

average measure of predictability. Instead we look for a measure of the stability of a given 

trajectory in a finite time interval (t- n~t, t + (n + l)~t). Oseledet's theorem supplies us with 

a good basis for the definition of local Lyapunov exponents 

(13) 

The instantaneous local Lyapunov exponents are obtained with n = 0 

A[O, ~] = ~t ln(µ [BXt( t)* BXt( t)] ). (14) 
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Analogously to the concept of the mean predictability time, introduced above, we can define 

a characteristic time of divergence of two trajectories, which are at time t close to each other, 

as the inverse of the sum of positive instantaneous local Lyapunov exponents 

L(.X +, €(t)) = I: .X[O, €(t)]. (15) 
-X>O 

3.2 Lyapunov Exponents and the Barotropic Vorticity Equation 

Now we formulate the problem of computing local Lyapunov exponents for the barotropic vor-

ticity equation (1). We assume that the forcing term on the right side of (1) does not depend 

on time so that we deal with an autonomous system. After discretization of the time derivative 

and after linearizing the equation (1) on time interval (t, t + ~t) around a solution e = V'2 ij;, a 

linear equation of the form (10) is obtained: 

€'(t + ~t)= [1- ~tA(t) + O(~t2)) €'(t) (16) 

with the linear operator [A(t)]€' = J(ifi,e) + J(V'-2€',{ + !) + ae + µV'4f. Since the forcing 

term under our assumptions is canceled in the linearized form of (1), the equation (16) describes 

the evolution of e only due to internal dynamics and not due to external forcing. 

For sufficiently small time steps ~t the instantaneous Lyapunov exponents are closely related 

to the eigenvalues of the operator -(A+ A*): 

µ [BXt( t)* BXt( t)] = 

= µ [(1- ~tA*)(l - ~tA) + O(~t2 )] 

~ 1- ~tµ [A+ A*]+ O(~t2). (17) 

For sufficiently short times the instantaneous Lyapunov exponents (14) are approximately the 

eigenvalues of the symmetrical part of the operator -A. Multiplying scalar (16) by itself we 

obtain 

rJ'(t + ~t) = 11'(t) - ~t((A + A*)f(t),€'(t)) 

+O(~t2 ). (18) 

Therefore, we can consider the eigenfunctions of the operator -(A + A*) with positive 

eigenvalues (i.e., positive Lyapunov exponents) as the directions along which the enstrophy 11' 
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grows. The sum of positive Lyapunov exponents, L(). +, ~), is the instantaneous growth rate of 

enstrophy for uniformly distributed disturbances of vorticity along all unstable directions (see 

also Navarra (1993) and Betti and Navarra (1993)). We failed to relate theoretically the sum of 

the positive Lyapunov exponents to an overall measure such as enstrophy or mean squared wave 

number, even under very simplified circumstances. We will however see, in the next Section 4, 

that the observations allude to a relationship L().+,~)"' E(p1 ). 

The sum of positive instantaneous Lyapunov exponents L(). +, ~) should only with reserva­

tions be interpreted as an instability measure of barotropic flow in terms of enstrophy growth. 

The assumption of uniformly distributed vorticity disturbances along all unstable directions 

and a zero amplitude of disturbances along stable directions at the initial time needed for such 

interpretation is rather dubious. A hope is that after a certain time the unstable modes will 

dominate the evolution of vorticity disturbances and, consequently, will define the growth of 

enstrophy. However, problems still remain with the requirement of equal amplitudes of vorticity 

projections onto unstable modes. Instead of the sum of all positive Lyapunov exponents we can 

use the largest instantaneous Lyapunov exponent for the most unstable direction as a measure 

of instability. In any case, either the sum of positive Lyapunov exponents or the largest Lya­

punov exponent can provide at best a very crude measure of instability of the atmospheric flow. 

Moreover, they take into account only barotropic effects and do not provide the possibility of 

baroclinic instability. 

The stability of a barotropic flow can also be measured by the rate of growth of kinetic 

energy. To do so we apply the operator v-2 to both sides of (16) and multiply it scalar by (16) 

itself getting 

IKl'(t + ~t) = IKl'(t) + O(~t2 ) + 

~t((AV2 + V2 A*)'l/J', '1/J') 

(19) 

where IKl'(t) = (V'l/J'(t), V'l/J'(t)) is the kinetic energy of disturbance '1/J' at time t. Therefore the 

sum K(). +, ~) of positive eigenvalues of the operator (AV2 + V2 A*) is the mean instantaneous 

growth rate of the kinetic energy for uniformly distributed disturbances of streamfuncti'on and can 

also be interpreted as a measure of instability. The problems with such interpretation are the 
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same as for L(.A+,e), the only differences being that the requirement for uniformly distributed 

vorticity disturbances along unstable directions is replaced by a requirement for streamfunction 

disturbances, and that the unstable directions for kinetic energy differ from these for enstrophy. 

In the next section the analysis of observed fields will disclose that the two measures of sta-

bility, L(.A+,O and K(.A+,e), are practically identical. The last one is, under certain simplifying 

circumstances, theoretically related to the enstrophy 17. The mathematics of this exercise are 

presented in Appendix D. First, it is shown that the operator A'\72 + V'2A* has a symmetric 

spedrum of eigenvalues so that the sum of positive eigenvalues of this operator is monotonically 

related to the sum of all squared eigenvalues. Finally, it is proven that the sum of all squared 

eigenvalues of the operator A'\72 + '\72 A* is related to the enstrophy of the flow. 

3.3 k2 as a Measure of Stability 

Earlier we found, in an analysis of observed data as well as in a simplified dynamical framework 

that the entropy E(p2) is strongly related to the squared wavenumber k2 • On the other hand, 

the E(p2) was found to be related only moderately to E(p1) which in turn is strongly related to 

the Lyapunov-type stability measures. So, E(p2) cannot stand for the Lyapunov-type stability 

but must, at least in part, represent another dynamical aspect of the instantaneous flow :field e. 
Here, we offer two candidates: 

• If the Jacobian term in (1) is much smaller than all other terms, then quasi-stationarity of 

the flow :field requires an approximate compensation of diffusion and forcing. (There are 

some observational indications (Holopainen and Fortelius, 1986) that such a compensation 

can occur during blocking events which have equivalent barotropic structure and can be 

considered in the first approximation as quasistationary solutions of (1)). In that particular 

case Dymnikov's et al (1990) !3-index 

(20) 

is a stability measure (for the details, see Appendix E). The :first term in (20) is by 

definition k2
• The second one is proportional to the ratio of mean angular momentum 

!Ml to kinetic energy !Kl. The physical meaning of the index (20) is: stationary solutions 

17 



of (1), under the aforementioned conditions, are more stable if they are, under otherwise 

identical conditions, of larger scale (smaller k2 ) and possess a smaller angular momentum. 

In the following section we will see that k2 is the main contributer to the variation of the 

instability index 13 so that we can use k2 as a stability measure of such regimes instead of 

!3. 

• The squared wavenumber k2 can be considered in some sense to be a measure of persistence, 

on the assumption that :fluctuations of smaller space scales will have generally shorter 

lifetimes: baroclinic waves have time scales of less than a week compared to planetary 

quasi-barotropic waves with time scales of several weeks. To quantify this idea we fitted 

first-order autoregressive processes to the spectral coefficients of 10-day means of 500 mb 

geopotential height. If the autoregressive coefficient is labelled a then ~!: is a measure of 

persistence. The results of these calculations indicate that, for :fluctuations with smaller 

wave numbers (k = 1 to 3) or of larger space scale, the autoregressive coefficient a is 

slightly less than unity (higher persistence); for higher wavenumbers, though, a becomes 

smaller. Admittedly, this is just a rough and ready check hut it supports our notion that 

k2 can be interpreted as a stability measure, in the sense of persistence of atmospheric 

regimes. 

4 Correlation between Informational Entropy and the Stabil­

ity Measure 

In this section we examine the relationship between our various measures of (barotropic) stabil­

ity: 

• the informational entropy E(p1 ) (which was shown to be strongly related to the enstrophy), 

and the informational entropy E(p2) (which was found to be correlated with the squared 

wave number), 

• the largest instantaneous local Lyapunov exponent, 
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• the sum of positive Lyapunov exponents L( A+, e) (i.e., the sum of all positive eigenvalues 

of the operator -(A+ A*)) (which was shown in the preceeding section to describe the 

growth of enstrophy), 

• the sum K(A+, e) of all positive eigenvalues of the operator A\72 + \72 A* (which was shown 

in the previous section to describe the growth of kinetic energy), 

• the instability index h (20). 

For this purpose, we approximated for each 10-day mean of the 30 year data set the operator 

A in the "T21"-space of spherical harmonics with a triangular truncation at wave number 21. 

The linear drag coefficient a is set to 7d!ys and the horizontal diffusion coefficient µ is equivalent 

to an e-folding time of 1.12 days for spherical harmonics with the highest wave number. The 

basic state of relative vorticity was derived from the Northern Hemisphere geopotential height 

field. The instability index / 3 was evaluated for both the Northern Hemisphere and the NAWE 

region. 

We calculated for each of the 30 years 1958 through 1987 the correlations for various pairs 

of stability measures. 

• L(A+,o and K(A+,e) have mean correlation> 0.995. 

• The sum L( A+, e) of positive instantaneous Lyapunov exponents is well related to the 

informational entropy E(p1) with a mean annual correlation of 0.84 (minimum of about 

0.55, maximum of 0.95). 

• The largest positive instantaneous local Lyapunov exponent and E(p1) are less well related 

than L(A+,e) and E(p1): The mean correlation is 0.63, with a minimum of 0.23 and a 

maximum of 0.80. That the correlation for the sum of Lyapunov exponents is higher 

than the correlation for the maximum Lyapunov exponent implies that the growth of the 

enstrophy in all unstable directions is better related to the structure of the flow measured 

in terms of entropy E(p1). 

• The correlation between L(A+,e) and E(p2) is lower (0.46 for 10-day means). 
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• The instability index Is and the mean squared wave number k 2 calculated for the NAWE 

region are well correlated with a mean annual correlation of 0.83. Consequently, k2 is the 

ma.in term in the variability of [3. The mean annual correlation between J3 and E(p2) 

computed for the same region is 0.77. 

For the Northern Hemisphere the mean annual correlations between J3 and k2 as well as 

between la and E(pz) are smaller (0.67 and 0.43). 

We may conclude: Both Lyapunov-type measures L( >. +, e) and K( >. +, e) represent the same 

information, and are well related to the entropy E(pi). This result is reasonable in the light of 

our theoretical :findings, E(p1)"' 1J and K(>.+,e)"' 1J (which required some simplifications in the 

Appendices A and D). The next point we can make is: The entropy measure E(p2 ) calculated 

for the NAWE region is well related to the instability index index 13 . However, E(p2 ) computed 

for the Northern Hemisphere is not a useful approximation of any of the dynamically defined 

measures. 

The notion of entropy can be applied for a classification of atmospheric circulation regimes in 

any geographical region. However, a correct formulation of the problem of computing Lyapunov­

type stability measures for ba.rotropic circulation is easier for the global region. Dymnikov et 

al. (1990) proposed to define regional instability indices taking into account only those unstable 

eigenvectors which are localized in the region of study. This procedure seems to be suitable for 

instantaneous Lyapunov exponents since eigenvectors of the corresponding operator are strongly 

localized (not shown). One might hope that the localized eigenvectors and the corresponding 

eigenvalues depend mainly locally on the basic state. 

The entropy E(p1 ) calculated for the NAWE region is only weakly related to the global 

L(>.+,fl with a mean annual correlation of 0.34. If we, however, use for computing L(>.+,O 

only the eigenvectors whose norm over the NAWE region is larger than 35% of their norm 

over the whole Northern Hemisphere then the mean annual correlation becomes 0.46. We see 

that even for "localized" eigenvectors the relationship is still not strong. Nevertheless, the 

systematic increase of correlations was detected for each individual year, indicating that such 

an improvement of results is not just by chance. 
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5 Summary and Conclusions 

The present paper makes an attempt to classify regimes of barotropic atmospheric circulation 

by means of the "informational entropy" of a given atmospheric state. Two different entropy 

densities are introduced. One density, P1(r), is formulated in terms of the size of sets of r such 

that r = ~(t) of the given vorticity field ~(t) at time t. The other definition p2 is based on 

the relative vorticity normalized by the kinetic energy of the flow; this reduces all atmospheric 

states to an equal energy level and uses the portions of kinetic energy instead of the area. 

Both entropy definitions possess usefull properties. Particularly, the entropy E(p2 ) charac­

terizes only the spatial structure of the atmospheric state and is independent of its amplitude. It 

can be reasonable if we want to have the definition of the entropy which is a measure of system 

organization. Moreover, the entropy E(p2 ) in some situations can serve as a stability index, 

for example, for quasibarotropic atmospheric regimes with a strong compensation between the 

external forcing and the dissipation as occurs in certain types of blocking events. On the other 

hand, the entropy E(p1) contains information not only about the spatial structure of the atmo­

spheric circulation but also about its strength. It was shown that for the barotropic motions 

the entropy E(p1 ) is related to the instantaneous. local Lyapunov exponents which characterize 

in some sense the stability of the atmospheric circulation. 

The complexity of the atmospheric state in the North Atlantic/Western Europe region was 

found to depend on the entropy: regimes with low entropy exhibit only weak patterns whereas 

high entropy states go with complex structures. 

By means of entropy we introduced the notion of E-regimes, and we defined a probabilistic 

measure for atmospheric regimes as being the time that the atmospheric system spends in states 

with the entropy within the interval (E, E+dE). Defined in such a way, the distribution function 

of E-regimes can be used for the verification of climatic models. 

A major finding of this paper is the close relationship between entropy and stability char­

acteristics of atmospheric quasibarotropic circulation. The entropy E(p1) relates very well to 

both the sum of positive instantaneous Lyapunov exponents which characterizes the growth 

rate of disturbance enstrophy, as well as to the sum of positive eigenvalues of the operator in 

the equation for disturbances of barotropic kinetic energy which describes the growth rate of 
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disturbance kinetic energy. The last characteristic of stability was shown theoretically to be 

related to the enstrophy of the basic state. Therefore we can consider the E-regime distribution 

function in some sense as a distribution of regimes in terms of their dynamical stability. Similar 

interpretation is possible for the entropy E(p2). But in this case the stability is measured by 

the instability index /3 which can be applied to certain types of stationary regimes. Note that 

the aim of the present paper was not to discuss in details the proporties of stability indices 

considered in this study. N umerious studies (e.g. Frederiksen and Frederiksen, 1993 and refer­

ences therin) indicate that such gross measures of instability are not substitute for doing the 

instability calculations. 

The calculation of the dynamical stability measures, in particular the Lyapunov-type mea­

sures Land K, requires some mathematical and computational investment of effort. For limited 

areas within the extratropics these dynamical measures are not well defined. Therefore, the 

entropy measures may serve as a cheap alternative to the more sophisticated approaches. 
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Appendices 

A Entropy E(p1) and the Logarithm of the Enstrophy 

A Gaussian entropy density function p1e(t) of a vorticity field e(t) at a time t may be written as 

e - 1 [ (r - µ)2] 
P1 ( r) - ~exp - 2 2 • 211"0'2 O' 

(21) 

Here r is any possible value of relative vorticity in the real domain, µ and 0'2 are the mean value 

and the standard deviation respectively of the density p1 e. Because of the way the density is 

defined, µ and 0' 2 are also the spatial mean and the spatial variance of the considered vorticity 

field e(t) . 

For enstrophy we have by definition 

1} = ,~, l e(x)dx = 1(D) r2
p1(r)dr 

1: r2p1(r)dr = 0'2 + µ2. 

The entropy, on the other hand, is 

E(p1) = - [j1(r)ln(p1(r))dr 

= J:!i(r) (znv'27r0"2 + (r ;0'~)
2

) dr 

= ln~ + 2~2 /er -µ) 2P1(r)dr 

1 = 2ln(TJ - µ2
) +constant. 

(22) 

(23) 

In the course of calculations we have used (21) and (22). (23) shows that ifµ = O, which is 

true for the global region and with a good approximation for the NAWE region, the entropy 

E(p1e(t)) is a linear function of the logarithm of enstrophy TJ(e(t)). _ 

How does the entropy change if the vorticity field is multiplied by a constant c? With (23) 

we may write 

1 
= 2ln ( TJ( ce) - µ( ce)) +constant 

= ~ln (c2(TJ(e) - µ(e))) +constant 

= E(p1e) + ln(c). 
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The last term, ln(c), is positive for c > 1 and negative for c < 1 so that E(p1 ) varies monotoni-

cally with the "amplitude" c. 

B Entropy E(p2) and the Mean Squared Wave Number 

In this Appendix we again assume the entropy density function p2e(r*) to be Gaussian (21). 

Applications of the definition (8), of (22) and of r* = r / v'fKT (with any possible vorticity value 

r which might be contained by the field ~ or not) lead to 

(24) 

where µ* 2 = µ2 /IKI. R is the ratio of the squared relative vorticity integrated over the kinetic 

energy to the squared relative vorticity integrated over the region area. In the 30-year data set 

of daily vorticity field ~we have found a correlation of 0.98 between k2 and k2 R so that we may 

identify Rk2 ,._, k 2 . 

For the entropy E(p2) we find: 

l oo (r* *)2 
E(p2) = P2(r*)(lnV27ra2 + - ~ )dr* 

-oo 2a 
1 

= 2zn(k2 
- µ* 2

) +constant. (25) 

Ifµ* = 0, which is true with a good approximation, then (25) is the desired linear relationship 

between entropy E(p2 ) and the logarithm of the squared wave number k2 (~(t)). 

Finally we show that two fields with the same pattern but different amplitudes have the 

same entropy E(p2): 

1 17( c~) - µ2
( c~) 

= 2zn IKl(c~) +constant 

~ln c2
( 17(e) - µ

2
(e)) +constant 

2 c2 IKl(e) 
E(p2e). 
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C Recurrence Analysis 

In the "Recurrence Analysis" (von Storch and Zwiers, 1988) two random variables X and Y, 

with expectations µx and µy, are compared by calculating the probability 

prob(Y > µx) = 1- prob(Y < µx) = p (26) 

If p = 50% then the random variables are not separated from each other. A large value such 

as p = 953 or a small value such as p = 53 indicates that the two random variables overlap 

only little. If p = 95% then any random realization of Y will very likely be larger than the 

mean of X, and only 5% of all Y-realizations will be smaller than this threshold. The opposite 

interpretation applies for p = 5%. 

If both random variables are Gaussian distributed with the same variance (}' 2 then the prob-

ability p is given by 

= p-1 (µx - µy) 
P s a2 (27) 

with the standard normal (cumulative) distribution function Fs. In practical situations, as in 

the present study, the estimated means and the estimated standard deviation are used for the 

computation of (27). 

It should be noted that the level of recurrence, p, does not imply any statement on a statistical 

significance (like the rejection of the null hypothesis of equal means with a controlled certainty). 

Instead p is an estimated measure of statistical stability. 

D Proof of K(;\+, ~)"' rJ(~) 

In this appendix we show, under significantly simplifying assumptions, that the eigenvalues of 

the operator 

(28) 

are symmetrically distributed around zero. A is the numerical representation of the linearized 

barotropic operator used in (16). The simplifying asumptions are 

• The linear drag and the diffusion are set to zero (a=µ= 0 in (1)). 
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• The stationary solution (is zonally symmetric (( = ((y)). 

Then S is of the form 

(29) 

with Cartesian coordinates x and y and u = ~· To derive (29) we have used the fact that 

the expression A\72 '1/J may be split up into two Jacobians, one being symmetric and the other 

antisymmetric with respect to 'l/J'. When forming the sum (28) the antisymmetric term is 

cancelled. 

After simple manipulations the operator S can be rewritten in the form 

(30) 

The eigenfunctions </> and eigenvalues A of the operator S satisfy 

(31) 

Since the mean flow (is independent of x we may search for solutions of the form </>(x, y) = 

Em ~m(y)eimx. The equation for ~m takes the form 

(32) 

Thus ~m is an eigenfunction of the operator on the left side of (32). This operator is skew-

Hermitian and has purely imaginary, conjugate complex eigenvalues v. Because A = imv, all 

eigenvalues of the operator S are real and symmetric relative to zero, i.e., they are of the form 

.A= ±Imag(mv). 

This symmetry property of the eigenvalues of the operator S allows us to study the spectrum 

of the operator SS* = S 2 instead of S. Indeed, we have in this case 

K(.A+,() - :Lµ+[s],..., :Lµ+2[S] (33) 

1 1 
2 Lµ2[S] = 2Trace(S2). 

all 

The sign,..., in (33) stands for monotonic dependence. Let S be a matrix which approximates the 

operator S. Then Trace(S2) can be estimated by l:ij Sij 2 with Sij the elements of the matrix 
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S. If we discretize the operator S like 

1 -
(S</>)ii = -h h ((i+i,i+l</>i+i,i+i 

:r; y 2 

- (i+l,j-t<l>i+i,j-1 - (i-1,j+t<l>i-l,j+l 

+ ~i-1 J·-l</>i-1,j-i) 
' 2 

(34) 

then Lij Sij 2
"' Lij aj,..., TJ((). Thus we proved for this particular case that K(>.+,~),..., TJ((). 

E k2 as a Measure of Stability 

Let us consider stationary quasibarotropic atmospheric regimes with a full compensation be-

tween external forcing and internal dissipation (a more general case of regimes with a near 

full compensation between forcing and dissipation was considered by Dymnikov et al., 1990). 

Because of (1) the compensation is formally equivalent to 

(35) 

and stationary solutions 'l/J (for the sake of brevity we omit the overbar which we have used in 

the main part of this paper to indicate a stationary solution) satisfy 

(36) 

or, with some well-behaving function if!: 

(37) 

Arnold's (1965) sufficient stability condition requires for all values of 'l/J in the region of study 

l)ip 

81/J > 0, (38) 

or, 
1 l)if! 

µmin[V-2] < 81/J < O (39) 

where µmin[v-21 is the minimal eigenvalue of the operator v-2 defined on a function space 

orthogonal to a constant. From (38) and (39) one can derive the necessary conditions for 

instability: either * = 0 for at least one value of 'l/J, or * < 1/ µmin(v- 2
]. Thus we might 

27 



use the values of ~: for defining whether such atmospheric regimes would be stable or could be 

unstable. However, in most cases the analytical expression of <P is unknown so that ~: cannot be 

calculated for a given observed field (which would satisfy the assumptions of compensation and 

stationarity only approximately in the best case). As a more practical alternative we introduce 

another measure which is much easier to compute while still closely related to ~:. Multiplying 

scalar (37) by \/2'1/J we get 

On the other hand 

-(V'(<P('l/J)), \/'lj;) 

= -(~:\/'l/J, \/'lj;) 
1 J [)cpl 12 -IDT 81/J \!'l/J dx 

(40) 

(41) 

Dividing ( 40) by the kinetic energy IKI = rbJ f j\!2'1/Jl 2dx and taking into account ( 41) we have 

rbJ I ~IV'l/Jl 2dx _ 

rbJ J IV'l/Jl 2dx -

(\/2'1/J, \/2'1/J) 

IKI 
TJ 2njMI 

-TKT- Of IKI (42) 

The first term on the right side of ( 42) is k2 and the second one is proportional to the mean 

angular momentum IMI. The left side of (42), on the other hand, is the area mean of ~: 

weighted at each point by the kinetic energy of the basic state 'I/; and may be seen as a typical 

value of~· 

Dymnikov et al. (1990) called this value, with an opposite sign, an instability index l3. They 

established a dependence between 13 and the lifetime of North Atlantic blockings for which the 

hypotheses about quasistationarity and compensation were aproximately valid (Holopainen and 

Fortelius, 1986). They showed that the lifetime of blockings depends almost linearly on -1/ 13 . 

Therefore this value may be a measure of stability of stationary solutions of (36). 
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Figure Captions 

Figure 1. The time behavior of the entropies E(p1) (top) and E(p2) (bottom) for the North 

Atlantic/Western Europe region in 1985 computed for daily data (upper solid line) and for 

10-day means (lower solid line) together with the 1958-1987 mean annual cycles (dash lines) 

computed as the first two Fourier harmonics. 

Figure 2. Scatter diagram of entropies E(p1) and E(p2) computed for all 10-day mean vorticity 

fields in the NAWE sector during winter (DJF). For the marked dots, the underlying 10-day 

mean geopotential height fields are shown in Figure 3. 

Figure 3. Six 10-day mean geopotential height fields in the North Atlantic/Western Europe 

region. Each panel is labelled with the first day of its 10-day averaging interval. Also, the 

entropies E(p1) and E(p2) are added. The cases have been chosen with the help of Figure 2. 

Left column: Low entropy cases. 

a) 21 Dec. 1977, with minimum E(p1) and minimum E(p2). 

b) 21 Jan. 1977, with third smallest E(p1) and second smallest E(p2). 

c) 21 Feb. 1983, with low entropies E(p1) and E(p2). 

llight column: High entropy cases. 

d) 21 Dec. 1987, with maximum E(p1) and high E(p2). 

e) 21 Feb. 1981, with high E(pi) and maximum E(p2 ). 

f) 21 Dec. 1970, with high entropies E(p1) and E(p2). 

Figure 4. The p1 -density functions of the three low-entropy cases (left) and high-entropy cases 

(right) shown in Figure 3. 

Figure 5. Composites of geostrophic zonal wind U9 calculated from 10-day mean 500 mb 

geopotential height fields in January based on the entropy E(p1). 

a) The mean of 30 "average" cases (the 33% - 66 %-range of E-regimes). Contour interval: 

5 m/sec. 
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b,d) Average of the 9 cases with maximum (b, left column) and minimum ( d, right) entropy 

E(p1) (or, mean of the upper (b) or lower (d) 10% of the E-regime distribution function). 

Contour interval: 5 m/ sec. 

c,e) Difference of the mean of 9 cases with maximum ( c, left column) or minimum ( e, right) 

entropy E(p1 ) and the mean of 30 "average" cases (a). Contour interval: 2m/ sec. Stippling 

represents areas with estimated local level of recurrence p $ 30% or p ~ 70% (light), p $ 20% 

or p ~ 80% (moderate) and p $ 10% or p ~ 90% (heavy). 

Figure 6. Composites of geostrophic meridional wind V9 calculated from 10-day mean 500 mb 

geopotential height fields in January based on the entropy E(p1). 

a) The mean of 30 "average" cases. Contour interval: 2 m/ sec. 

b,d) Average of the 9 cases with maximum (b) and minimum (d) entropy E(p1 ). Contour 

interval: 2 m/ sec. 

c,e) Difference of the mean of 9 cases with maximum (b) or minimum (d) entropy E(p1) and 

the mean of 30 "average" cases (a). Contour interval: 1 m/sec. Stippling represents areas with 

estimated local level ofrecurrence p $ 30% or p ~ 70% (light), p $ 20% or p ~ 80% (moderate) 

and p $ 10% or p ~ 903 (heavy). 

Figure 7. Differences of composite for 500 mb height (a,c; contour interval: 20 gpm) and 

sea-level pressure (b,d; contour interval: 1 mb) calculated with the entropy E(p1 ). Stippling 

represents areas with estimated local level of recurrence p $ 30% or p ~ 70% (light), p $ 20% 

or p ~ 80% (moderate) and p $ 103 or p ~ 903 (heavy). 

a,b) Differences of the mean of the 10 day means with largest entropy E(p1 ) and the mean of 

30 "average" cases (the 33% - 66 %-range of E-regimes). 

b,d) Same as (a,c) but for minimum E(p1). 

Figure 8. Same as Figure 5 but for entropy E(p2): Composites of geostrophic zonal wind U9 

calculated from 10-day mean 500 mb geopotential height fields in January. 

a) The mean of 30 "average" cases. Contour interval: 5 m /sec. 

b,d) Average of the 9 cases with maximum (b) and minimum (d) entropy E(p2 ). Contour 
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interval: 5 m/ sec. 

c,e) Difference of the mean of 9 cases with maximum (c) or minimum (e) entropy E(p2) and 

the mean of 30 "average" cases (a). Contour interval: 2 m/sec. Stippling represents areas with 

estimated local level of recurrence p $ 303 or p 2 703 (light), p $ 203 or p ? 803 (moderate) 

and p $ 103 or p 2 90% (heavy). 

Figure 9. Same as Figure 6 but for entropy E(p2): Composites of geostrophic zonal wind U9 

calculated from 10-day mean 500 mb geopotential height fields in January. 

a) The mean of 30 "average" cases. Contour interval: 2 m/ sec. 

b,d) Average of the 9 cases with maximum (b) and minimum (d) entropy E(p2 ). Contour 

interval: 2 m/ sec. 

c,e) Difference of the mean of 9 cases with maximum (c) or minimum (e) entropy E(p2 ) and 

the mean of 30 "average" cases (a). Contour interval: 1 m/sec. Stippling represents areas with 

estimated local level ofrecurrence p $ 303 or p 2 703 (light), p $ 203 or p 2 80% (moderate) 

and p $ 10% or p 2 90% (heavy). 

Figure 10. "Average" and high E(p1)-entropy composites of geostrophic zonal U9 (a-c; left 

column) and meridional wind Vy (d-f, right column) calculated from 10-day mean 500 mb geopo­

tential height fields in July. 

a,d) The mean of 30 "average" cases for U9 (a; contour interval: 5 m/sec) and for V9 {d; contour 

interval: 2 m/sec). 

b,e) Average of the 9 cases with maximum entropy E(p1 ) for U9 (b; contour interval: 5 m/sec) 

and for Vy (e; contour interval: 2 m/sec). 

c,f) Difference of the mean of 9 cases with maximum entropy E(p1 ) (b ore) and the mean of 

30 "average" cases (a or d) for U9 (c; contour interval: 2 m/sec) and for Vy (f; contour interval: 

1 m/ sec). Stippling represents areas with estimated local level of recurrence p $ 30% or p 2 70% 

(light), p $ 20% or p 2 80% (moderate) and p $ 10% or p 2 90% (heavy). 

Figure 11. Same as Figure 5 but for the Northern Hemisphere: Composites of geostrophic 

zonal wind U9 calculated from 10-day mean 500 mb geopotential height fields in January based 
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on the entropy E(p1). 

a) The mean of 30 "average" cases. Contour interval: 5 m/ sec. 

b,d) Average of the 9 cases with maximum (b, left column) and minimum (d, right) entropy 

E(p1 ). Contour interval: 5 m/ sec. 

c,e) Difference of the mean of 9 cases with maximum ( c, left column) or minimum ( e, right) 

entropy E(p1 ) and the mean of 30 "average" cases (a). Contour interval: 2 m/sec. Stippling 

represents areas with estimated local level of recurrence p::; 30% or p ~ 70% (light), p::; 20% 

or p ~ 80% (moderate) and p::; 103 or p ~ 90% (heavy). 

Figure 12. Same as Figure 5 but for the Northern Hemisphere: Composites of geostrophic 

meridional wind V9 calculated from 10-day mean 500 mb geopotential height fields in January 

based on the entropy E(p1). 

a) The mean of 30 "average" cases. Contour interval: 2 m/ sec. 

b,d) Average of the 9 cases with maximum (b) and minimum (d) entropy E(p1). Contour 

interval: 2 m/ sec. 

c,e) Difference of the mean of 9 cases with maximum (b) or minimum ( d) entropy E(p1) and 

the mean of 30 "average" cases (a). Contour interval: 1 m/sec. Stippling represents areas with 

estimated local level of recurrence p::; 30% or p ~ 70% (light), p::; 20% or p ~ 80% (moderate) 

and p::; 10% or p ~ 90% (heavy). 

Figure 13. The time behavior of the entropy E(pi) computed for daily data for all 30 years 

in 1958-1987 for the NAWE region (a) and for the Northern Hemisphere (b). The first two 

climatological annual harmonics were subtracted from the entropy. 

Figure 14. Daily E-regime distribution functions for E = E(p1) (top) and E = E(p2) (bot­

tom) for January and July. Fitted standard normal distributions are added to the empirically 

derived distribution functions. 
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a) 21 Dec. 1977 d) 21 Dec. 1987 
E(p1)= 1.71 E(p2)= 1.55 E(p1 )= 2.58 E(p2)= 2.29 
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