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1. Introduction: Needles in Haystacks 

In 1983 a campaign was launched to monitor the circulation in the coastal waters off 
the Californian coast in the Santa Barbara Channel (Brink and Muench, 1986). For 
that purpose various observing platforms were installed (see Fig. 16.1): two surface 
moorings, labeled Cl and C2, which reported horizontal velocity and temperature at 
six and five different depths every 7 .5 minutes; and 13 subsurface moorings, labeled 
PI to P13, which measured horizontal velocity and temperature at 60 m and below-a 
total of 32 locations and depths every 30 minutes. Furthermore, surface winds were 
recorded by two floating buoys, named NS and NC, at hourly intervals. 

In the end, a data set covering about 60 days in April to June 1983 was available. 
For some parameters longer time series were available. As an example of the raw 
data, "stick diagrams" of vector time series of wind stress, currents and times series 
of subsurface temperature are shown in Fig. 16.2. 

This is obviously a large amount of data, which exhibit a wide mixture of "sig­
nals" and "noise." The purpose of statistical analysis is to disentangle this mixture 
to find the needle (signal) in the haystack (noise). (The allegory with the needle in the 
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Fig. 16.1. Location of observational platforms in the Santa Barbara Channel off the Californian coast. 
(From Brink and Muench, 1986.) 
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Fig. 16.2. Plots of vector wind stress (top three panels; for NC, NS and P8), vector currents (middle 
five panels; Cl; at 5, 10, 20, 30 and 45 m) and temperatures (bottom panel; Cl; same depth as for the 
currents; warmest water is at shallowest depth). (From Brink and Muench, 1986.) 
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haystack has two sides: First, it is difficult to find the needle in the haystack, and 
second, after it has been found, it is easily recognizable as a needle simply by looking 
at it. To identify a climatic signal, advanced techniques may be required, but after 
its identification the signal usually may be described by means of simple techniques 
such as composites, correlations, and the like.) 

The definitions of signal and noise are somewhat arbitrary and depend on the 
interest of the researcher. In most general terms, a signal is a pattern in space, or 
time, or space and time, which is determined by the system dynamics. Noise, on the 
other hand, can be physical or instrumental and can often be considered to be, to 
first approximation, unrelated to the main signal. More liberally defined, noise, or 
random contributions, comprise all those features that are considered irrelevant for 
the chosen signal. 

A straightforward choice of a signal is the time mean state (e.g., the mean cur­
rents for Cl displayed in Fig. 16.7), so that none of the time variations (trends, 
deterministic and random fluctuations) are considered interesting. Often, however, the 
space/time variability is thought to reveal something about the underlying dynamics, 
and regular features in the space/time variability are considered to be the "signal". 

The concept of the separation of the full data field into a "signal" and a "noise" 
can be formalized. Assume that the full data field at any time t is given by the vector 

--; 

X(t). Then the separation may be written as 

(1) 

with the two contributions on the right side representing the signal and the noise. 
About the noise nothing specific is known, but it is assumed that it is characterized 
by certain well-behaving statistics, such as spatial and temporal correlation scales 
which are distinct from that of the signal. The signal, on the other hand, is assumed 
to have only a few degrees of freedom; otherwise, the signal would be as untractable 
as the full data set and little would have been gained by the separation ( 1 ). More 
specifically, it is often assumed that the signal may be expressed as a sum of only a 
few characteristic patterns p k: 

K 

xsu) = L ak(t)pk (2) 
k=l 

The K patterns pk and time coefficients ak(t) are supposed to be determined by the 
dynamics of the signal. The time coefficients are defined uniquely by the scalar prod­
uct 

(3) 

of the vector of state X and the "adjoint patterns" p~, which are formally given by 
the columns of the matrix 

(4) 



422 HANS VON STORCH AND CLAUDE FRANKIGNOUL 

with the matrix P = ((jlk,ffi)hi· A more robust and, in practice, simpler approach is 
to determine the time coefficients by a least-squares fit such that the difference 

(5) 

is minimum. [For a more complete explanation, see, e.g., von Storch (1995b).] 
The patterns can be constructed in many different ways. The conceptually most 

appealing approach is to define the pattern dynamically by manipulating the equa­
tions of motion (Section 2). However, such a dynamical approach is impossible when 
the dynamics are too complex to derive the appropriate patterns or when the non­
homogeneity and the anisotropy are too large, as in many coastal problems. In that 
case, statistically defined patterns are often a useful and wholesale alternative. One 
approach is to prescribe the type of dynamics of the system and then to derive the 
patterns and the free parameters which describe their time evolution from the data 
available. A dynamical model with certain prescribed functional elements is thus fit­
ted to the observations. In most cases the dynamics are supposed to be linear. A well­
established prototype of this approach are the principal oscillation patterns (POPs), 
which we also discuss in Section 2. 

The characteristic patterns can also be derived without making any dynamical 
assumption about the signal, by maximizing instead a certain functional of the obser­
vations. Principal component analysis, often referred to as empirical orthogonal func­
tion (EOF) analysis, is one such technique which identifies patterns that maximize the 
variance in a field, while canonical correlation analysis (CCA) determines patterns 
that maximize the correlation between two fields. These kinds of techniques, which 
disregard the temporal order of the events, are discussed in Sections 3 and 4. We also 
discuss two extensions of EOF analysis that identify the dominant space/time pat­
terns in a field without making any assumptions on the time behavior. One technique 
is the extended EOF analysis (EEOF), which is also known as multichannel singu­
lar system analysis (MSSA); the other is the EOF analysis in the frequency domain 
(FDEOF). 

In Sections 2 to 4 we deal mainly with what one could call exploratory analy­
sis: how to summarize certain dominant properties of a field, such as its dominant 
space/space patterns, and how to discriminate between a signal of interest and unre­
lated processes. We are not discussing the uncertainty of the derived properties which 
one should expect from the limited sampling of the field data. To be more complete, 
we should distinguish between the true dominant space/time patterns and their esti­
mates from the available sample, and we should discuss the expected errors of the lat­
ter, as in classical textbooks such as Anderson (1984) or Seber (1984). We would then 
discuss confirmatory analysis: how to test whether a signal that has been identified 
is consistent with the true signal at a given level of confidence, taking into account 
the randomness of a limited set of observations. As reviewed by Frankignoul ( 1995), 
the problem of hypothesis testing in multidimensional fields has received increasing 
attention since the work of Hasselmann (1979) on sensitivity studies with atmospheric 
general circulation models, and its generalization to space/space behaviors has been 
used for ocean model testing and intercomparisons (Frankignoul et al., 1989, 1996), 
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as well as for climate change detection (Hasselmann, 1993). These concepts are and 
should be used in coastal oceanography, but lack of time and space prevents us from 
discussing what one could call in the present context pattern uncertainty and testing. 

Nonetheless, we want to touch upon two aspects that are commonly encountered 
in the analysis of coastal data set. The first is that of serial correlation, which occurs 
when a variable has a longer correlation time than the interval between samples, so 
that the latter are not independent. Since the independence assumption is required 
to use the Student t distribution in describing the distribution of univariate statistics 
such as the mean and the correlation coefficient, one must either subsample the time 
series to get independent observations, or take into account their finite correlation 
time. This is commonly done by defining an equivalent sample size based on lag 
correlations or parametric modeling of the time series (e.g., Thiebeaux and Zwiers, 
1984) or derived from spectral analysis (e.g., Jones, 1976). As discussed in Zwiers 
and von Storch (1995), this is applicable only when the equivalent sample size ne is 
large enough ne > 30) for the t variable to become approximately normal. Otherwise, 
tests based on ne perform poorly and establishing statistical significance may require 
Monte Carlo simulations. 

The second problem is that of interpreting an ensemble of univariate tests, which 
requires taking into account the multiplicity of local tests. Even in the simple case 
where all the univariate tests are independent, the overall rate of rejection of the null 
hypothesis at the a % level is often larger than a (global rejection of the null hy­
pothesis) if the number of local tests is finite. The critical rejection rate can be inferred 
from the binomial distribution (von Storch, 1982; Livezey and Chen, 1983), and for 
a small number of tests, the threshold for field significance can be large. In the more 
common case where the observations, hence the local tests, are not independent but 
spatially correlated, one observes that the tests tends to be rejected in "pools" of 
points, rather than at randomly distributed points, and one expects the critical rejec­
tion rate to be larger since the equivalent number of independent tests is smaller. This 
number is difficult to estimate, however, because the tests have poorly known spatial 
correlations. Livezey and Chen (1983) have suggested establishing field significance 
by using permutation techniques. An alternative is to use the methods of multivariate 
statistical analysis, although they also have limitations in the (usual) small sample 
case (see Frankignoul, 1995). 

2. Modal Decomposition as an Eigenproblem 

The general form of the equations of motion in the ocean is 

ax 
dt 

- L(X) + F (6) 

where X is a field variable (velocity, pressure and density), t the time, La (nonlinear) 
operator, and F the forcing field. In many cases, one can study the system dynamics 
by linearizing ( 6) and then expressing the solution of the forced linear problem in 
term of the solutions of the homogeneous one. This is often facilitated by assuming 
a separation of variables 
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X(x, t) = g(t)h(x) 

so that the time evolution is described by the differential equation 

dg - A. 
dt - g 

and the spatial variations by the eigenvalue problem 

51h = A.h 

(7) 

(8) 

(9) 

where A. is the separation constant and 51 a linear operator. The solutions of (9) 
that satisfy the boundary conditions are the eigenfunctions or normal modes hk (x) 
corresponding to the eigenvalues Ak. For each Ak equation 7 is solved by !?k(t) = 
ak exp(A.kt), where the constant ak is determined by the initial conditions. The nature 
of these solutions depends on the eigenvalue Ak. If it is real and positive, the solution 
grows unboundedly; if it is real and negative, the solution decays exponentially. If 
the eigenvalue is complex, the eigenfunction is also complex, but as the system is 
real valued, the complex conjugate (denoted by an askerisk) Ak is an eigenvalue cor­
responding to hk*, with coefficient ak(t). Thus the overall contribution of this mode 
to X is given by 

with Ak = l/Tk+iwk. The real numbers Tk and Wk represent the growth or decay time, 
depending on the sign, and the frequency of the mode, respectively. 

The eigenfunctions form a complete set, hence the solution of the linear forced 
problem (6) can be obtained by superposition of the solution of separable equations 
for each eigenfunction, 

X(x) - :L., bk(t)hk(x) 
k 

(11) 

where bk(t) is the solution of the forced version of equation 8. This has the form 
(2). Note that when the problem is discretized in space, the operator 51 becomes a 
matrix, the function X a time-dependent vector X(t), and the eigenfunctions hk(x) 
the eigenvectors of 51, say jJk. 

In some coastal problems, (9) can be reduced by separating the alongshore 
y-dependence, yielding an eigenvalue problem for the across-shore and vertical x­
and z-dependence only, which is usually solved numerically, as reviewed by Brink 
(1991). Under strongly simplifying assumptions, the x- and z-dependence can also be 
separated, as illustrated in Section 2.1. However, there are complex settings where the 
theoretical-analytical approach is not tractable unless oversimplifications are made, 
in which case the chosen theoretical framework may not cover the most relevant part 
of the phase space and the modes may become irrelevant. 

If the modes cannot be derived from the equations of motion, a purely empirical 
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approach to estimating the modal solutions can still be used in the discrete case (Sec-_, 
tion 2.2): One simply assumes that the vector X(t) is controlled by a linear equation 
of the form (6), which has separable solutions of the form (11). If it is, furthermore, 
assumed that the forcing can be represented as a white noise, the system can be 
written 

_, _, 

X(t + 1) = >IX(t) + noise (12) 

which describes a discrete multivariate first-order autogressive (Markov) process. As 
described below, the X-times series can then be used to estimate the system matrix 
5l and its eigenvectors. These empirical modes are called the principal oscillation 
patterns (POPs) (Hasselmann, 1988; von Storch et al., 1988, 1995). It should be 
remarked that this approach makes sense only if the system has, at least approxi­
mately, a Markovian behavior. This is often the case, however, in particular for wind­
driven coastal currents, which have been described successfully by stochastic models 
[see the review in Brink (1991)]. 

The relation between empirical and dynamical modes has been investigated by 
Schnur et al. (1993), who calculated from quasi-geostrophic theory the dynamical 
modes describing the extratropical atmospheric variability and also used the POP 
approach on a long sequence of analyzed geopotential height data. The spatial and 
temporal characteristics of the most significant POPs were very similar to the most 
unstable waves in the stability analysis, but the POPs also identified modes represen­
tative of the evolution of finite-amplitude waves. Thus the POPs appear to be useful 
descriptors of the variability in cases where the dynamics were complex. A general­
ization of the POP concept to nonlinear dynamics, the principal interaction patterns, 
has been proposed by Hasselmann (1988); first partial implementations are offered 
by Selten (1995), Kwasniok (1996), Achatz et al. (1995) and others. 

2 .1. Dynamically Defined Eigenproblems 

In this section we illustrate the use of dynamical modes by means of a simple example 
provided by Kundu et al. (1975). They considered the problem of the time-variable 
flow along a coast forced by an alongshore wind stress. Under a number of simpli­
fying assumptions, such as that the Coriolis parameter f is constant, the time scale 
is longer than the inertial time scale (/ - I), and the spatial scale parallel to the coast 
(y-direction) is much longer than that perpendicular to the coast (x = 0), the linearized 
system (6) can be reduced to the two-dimensional potential vorticity equation 

a a2p a a [ f 2 ap ] . at dx 2 + at dz N(z)2 dz = forcmg (13) 

where N(z) is the Brunt-Vaisala frequency, plus the boundary conditions. When the 
bottom slope is small, an approximate solution of (13) may be obtained by a sepa­
ration of variables 
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p(x, z, t) = L f3k(t)Fk(x)Ek(z) 
k 

where F k (x) is given by exp( 'Y kX) and Ek (z) satisfies 

(14) 

(15) 

with dE/()z = 0 at z = 0 (rigid lid) and z = -h(xm), where h(xm) is the depth at 
the mooring distance Xm from the coast, and 'Y~ the separation constant. An analyti­
cal solution of the eigenproblem (15) cannot be given for the observed N(z)-profile, 
so Kundu et al. (1975) solved it numerically. The first two modes with the small­
est eigenvalues 'Yk are shown in Figure 16.3. The mode associated with the smallest 

0 

,Jt 
/ 

\/ 
/ 

/ 

I 
I 

* I 
I 
I 
\ 
\ 
I 

60 • I I 
/ I 
I I 
I 

#2 #1 

80 

E' ........ 
J: 
I-a.. 
UJ 
0 

100 

Fig. 16.3. Vertical eigenfunctions Ek(z) of the eigenproblem (15) for the two smallest eigenvalues 
(continuous lines; see Section 2.1 ). First two EOFs derived from observations of the alongshore current 
20, 40, 60 and 80 m. The points are connected by dashed lines to improve the clarity of the pattern (see 
Section 3.1). (Adapted from Kundu et al., 1975.) 
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eigenvalue ('YI = 0) is barotropic and has no horizontal nor vertical structure. The 
next mode is the lowest "baroclinic" mode, with a sign reversal at a depth of about 
30 m. Because of geostrophy, the modes also represent the structure of the alongshore 
horizontal current. 

Kundu et al. (1975) used these two orthogonal modes to analyze time series of 
horizontal currents measured at a mooring off the coast of Oregon (Fig. 16.4a). For 

u 
CU 
en 

' E 
u 

~ 
Ill 

....... 
E 
u 

30 

20 

10 

-50 

40 

20 

0 

-20 

-60 

(b) 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

5 10 15 20 25 30 I 5 10 15 20 25 
JULY 

1973 
(c) 

AUGUST 

Fig. 16.4. (a) Time series of the alongshore current at different depths of a mooring; (b) time series of 
the fitted time series ai (t) and a1(t) of the barotropic and first baroclinic mode shown in Fig. 16.3 (see 
Section 3.1); (c) time series of the first two EOF coefficients ai (t) and a 2(t). The EOFs are displayed 
with dashed lines in Fig. 16.3. [The EOF analysis has been done with anomalies so that the time mean 
coefficients are zero in this case. In (b) the analysis was done without a priori subtraction of the mean. 
see Section 3.1.] (From Kundu et al., 1975.) 
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that purpose the continuous functions E 1(z) and E 2(z) were discretized to form 
new vectors ji 1 and ji 2 representative of the currents at the four current meter 
depths 20, 40, 60 and 80 m. Then, using the least-squares fit (5) since the dis­
cretized modes are no longer orthogonal, the coefficients a 1 (t) ::::: {31 (t) · F 1 Cxm) and 
a 2(t)::::: {32(t) · F 2(xm) were determined. In that way, the full data field X(t), consist­
ing of the time series at the four monitored depths (Fig. 16.4a), is decomposed into 
a two-dimensional signal, made up of a barotropic and a baroclinic component, and 
nmse: 

(16) 

The fitted time series account for 85% of the variance (Fig. 16.4b). A major part of 
the overall variability is controlled by barotropic variations, whereas the baroclinic 
variations are smaller by a factor of 2. 

As discussed by Kundu et al. (1975), however, the requirement for the existence 
of a separable solution (that the slope is small) is not really satisfied, illustrating a 
common drawback of the theoretical-dynamical approach, namely the need of sim­
plification. 

A simplification is sometimes an oversimplification and may have a significant 
effect on the eventual outcome of the dynamical argument. Jn principle it can always 
be that the chosen theoretical framework does not cover the relevant part of the phase 
space, so that the resulting modes are irrelevant for the data under investigation. 
Thus in many cases the theoretical-dynamical approach cannot be pursued, and purely 
empirical approaches, unrelated to specific dynamical arguments, are often the only 
avaiable diagnostic tools. They may also be valuable additional tools to evaluate the 
significance of theoretically derived structures. 

2 .2. Empirically Defined Eigenproblems: Principal Oscillation Pattern Analysis 

In the principal oscillation pattern analysis (POP) [for a review, see von Storch et al. 
(1995)] equation 12 is assumed to hold and the system matrix 5l is estimated from 
data and given by 

(17) 

-+ 

where E and E 1 denote the lag 0 and lag 1 covariance matrices of X, which are easily 
calculated from the data. All the eigenvalues of (17) have a negative real component. 
[In the standard literature on POPs, such as in von Storch et al. (1995), the time-

_, -+ 

dependent problem is expressed as a time-difference problem [i.e., by X(t)-X(t-1) = 
__, -+ -+ 

'BXr- i]. This is equivalent to X(t) = YLXr- 1 with 5l = 'B - I (I is the unity matrix). 
The matrices 5l and 'B have the same eigenvectors, and the eigenvalues Ak of 5l and 
rJ k of 'B are related by Ak = rJ k - 1. Therefore, the statement Re(A.k) < 0 is equivalent 
to Re(rJ k) < 1.] Missing values should not create any problem as long as there are 
not too many of them. 

The interpretation of the eigenvectors and eigenvalues in this empirically defined 
eigenproblem is the same as in the dynamical one above. In particular, pairs of com­
plex eigenvalues correspond to damped oscillatory modes if the corresponding time 
series (the POP coefficients) are coherent and approximately 90° out of phase. 
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Since POP analysis has not yet been applied to coastal problems, it is illustrated by an 
oceanic application to equatorial variability (von Storch, 1993). The goal was to inves­
tigate the modes of intraseasonal variability in 7 years of moored measurement in the 
upper tropical Pacific Ocean (Hayes et al., 1991). Oscillatory modes were searched for 
by using a POP analysis of daily averages of horizontal current and temperature at three 
equatorial locations, 165°E, 140°W and 110°W, for various depths; their three-dimen­
sional structure was then estimated by regression analysis of a much larger data set onto 
the POP time series. Here we discuss only the first stage of the analysis. 

The data were first filtered by an EOF analysis to suppress small-scale noise and 
the EOF coefficients filtered in the time domain to eliminate the variability on periods 
larger than about half a year. The POP analysis then yielded two oscillatory modes 
(complex pairs of eigenvectors with the foregoing properties). The normalized ampli­
tude time series are displayed in Fig. 16.5. [In the notation of (11) the eigenmodes are 
given by hk and the amplitude time series by lbk(t)I. Normalization of the amplitude 
time series means that V ar( bk ( t)) = 1.] 

One oscillatory mode has a period of T = 27r / w = 65 days and a damping time of 
r = 73 days [compare with (10)]. The amplitude time series reveals a annual cycle 
with a semiannual component. The intraseasonal mode activity is strongest during 
solstice conditions and weakest during equinoctial conditions, and it is enhanced dur­
ing warm ENSO conditions (1986-1987 and 1990). 

The other oscillatory mode, operating at a perid of about 120 days and a damping 
time of about 105 days, is affected by the state of the southern oscillation as well 
with enhanced activity during warm episodes and reduced activity during the cold 
1988 event. The spatial amplitudes and phases of the two modes, in terms of zonal 
currents, are displayed in Fig. 16.6. Both modes represent eastward-traveling signals. 

The 120-day mode has its largest amplitude, with typical maximum values of about 
16 cm s- 1

, at 50 m depth at 65°E and 160 m depth at 140°W. In contrast, the 65-day 
mode has maximum zonal current anomalies at upper levels (50 m and above) in the 
eastern part of the basin, with a typical maximum of 12 cm s- 1 at140°W and 19 cm s- 1 

at 110°W. The zonal current 120-day signal propagates in about 60 days from 165°E to 
110°W, so that the phase speed is about 1. 8 m s- 1. The phase lines are vertically tilted, 
with the upper levels lagging the lower levels by about 15 days. The phase speed for the 
65-day mode is estimated to be 2.1 m s- 1• At the two eastern positions, the phase lines 
are tilted, with the lower levels leading the upper levels by about 8 days. 

Both modes feature a temperature signal of the order of 1 ° along the thermocline 
(not shown). The temperature signal of the 120-day mode is stronger than that of 
the 65-day mode. The phase speed of the 120-day temperature signal is faster than 
that for the zonal current signal, namely about 2.7 m s-1. The propagation of the 65-
day temperature signal parallels that of the current signal, but with a lag of about 10 
days. The two modes are not correlated; their time coefficients share a correlation of 
about -0.25. The two modes have, however, a similar pattern and are not orthogonal. 
Indeed, the POP analysis does not require that the modes be orthogonal. 

3. Modal Decomposition I: EOF Analysis and Generalizations 

In this and the following section, we deal with two analyses that are designed to 
identify the simultaneous occurrence of characteristic patterns in one or several vec­
tor (field) time series. These techniques, empirical orthogonal function analysis (Sec-
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Fig. 16.5. Amplitude time series of two POP modes identified in the daily intraseasonal variability 
monitored by three equatorial moorings at 165°E, 140°W and 110°W. The top curve refers to the 120-
day mode, and the bottom one to the 65-day mode. The continuous line represents the coefficients of 
the filtered data, after retaining all variability on time scales shorter than half a year; the dashed line is 
a smoothed version of the continuous line. The amplitudes are normalized to standard deviation 1. The 
years are given as May to April intervals (thus "1984" represents the time from May 1984 until April 
1985). (From von Storch, 1993.) 
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Fig. 16.6. Amplitude and phase distributions of the two eastward-propagating oscillatory POPs of the 
zonal currents at three equatorial moorings at 165°E, 140°W and 110°W. The coefficient time series 
are normalized to unity so that the amplitude pattern represents typical distributions in 10-4 m s- 1. The 
phases are given in days relative to the base period of 120 and 65 days. (From von Storch, 1993.) 

tions 3.1 to 3.3) and canonical correlation analysis (Section 4), do not exploit the 
temporal sequence of the events; instead, any inference about temporal statistics must 
be done a posteriori by an analysis of the expansion coefficient time series <Xk(t) in 
(2). However, generalizations of empirical orthogonal functions that describe both 
the spatial and temporal behavior are discussed in Section 3.4. 

3.1. Conventional Empirical Orthogonal Functions 

Empirical orthogonal functions (EOFs) are a widely used tool in meteorology, 
oceanography and climatology. This technique, first proposed by Pearson (1902) and 
extended by Hotelling (1936), has long been used in other disciplines under the 
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name of principal component analysis. It was introduced to earth sciences by Lorenz 
(1956), who seems to be responsible for the name Empirical Orthogonal Functions. 
[For an extensive description, see Jollife (1986) or von Storch (1995a). The algebraic 
and geometric aspects are presented in great detail by Preisendorfer (1988).] 

The basic idea of principal component analysis is to identify a series of orthogonal 
patterns ek, called in our discipline EOFs, which for any number K minimize the 
mean-squared error 

(18) 

The index t usually counts time, but it could also be any index counting statistically 
--; 

equivalent realizations of the m-dimensional random vector X. In many cases the 
components of the random vector will be the same variable at different locations, 
such as the alongshore current at different depths. However, in other applications 

--; 

the dimension of the vector X(t) can be increased to include different variables, for 
instance by considering simultaneously alongshore and across-shore currents, wind 
stress and temperature. In such cases some normalization may be needed for dimen­
sional consistency. 

In most cases the time mean is subtracted from the data, so that (18) represents a 
variance. An EOF analysis can also be done for uncentered data; then the expression 
variance has to be replaced by second moment. In the following we tacitly assume 
that the time mean has been subtracted. 

Because of the orthogonality of the EOFs the optimal coefficients ot.k(t) are given 
as the scalar product of the state vector X with the EOF ek: 

(19) 

These coefficients are called EOF coefficients, or principal components in the statis­
tical literature. They are pairwise uncorrelated. 

It can be shown that the EOFS are the eigenvectors of the sample covariance 
matrix 

1 " __, __, T E = T £..J X(t)X(t) 
t 

(20) 

(with T denoting the total number of observations and the superscript T denot­
ing transposition) and that the EOF coefficients are statistically independent if the 
involved distributions are Gaussian. 

If the EOFs are normalized, the total variance of the vector time series X may be 
decomposed into independent contributions from the EOFs: 

L I X(t)l2 
- L Dt.k(t)2 (21) 

t,k 
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Thus if no truncation is made, the EOFs reproduce the original fields. 
The theoretically more consistent way to introduce the EOFs is to use the expec­

tation operator in (18, 20) instead of sample moments. The general philosophy in 
statistical analysis is first to define certain parameters of a random variable to derive 
their properties and their informational value and to understand their significance for 
the problem at hand. (A parameter of a random variable is any characteristic of it; it 
may be a number, such as the variance, a series, such as the covariance function, a 
matrix, such as the covariance matrix, or a continuous function, such as the spectrum.) 
At that stage there is no uncertainty from limited sampling. In practical applications, 
however, only a limited amount of evidence is available. Then the "true" parameter 
(e.g., the covariance matrix) is replaced by its estimate [e.g., the sample covariance 
matrix (20)], and it is hoped that the estimate has the same informational value as 
the true parameter. Statistical theory tells us under which circumstances this hope 
is warranted. Confirmatory analysis is the tool to assess the probabilities of deriv­
ing correctly the true ensemble properties from the randomly drawn sample. In the 
present context, this need not be discussed, as EOFs are used primarily as descriptors 
of a given set of observations. For more details, see, for example, von Storch (1995a) 
and von Storch and Zwiers (in press). 

An important aspect of this sampling uncertainty refers to what is called signifi­
cance in EOF analysis. This aspect is a standard ritual in our discipline and is often 
confused and merely used as a black box, without real understanding of the statis­
tical problem. Again, we do not go into detail. We outline briefly the problem, the 
standard approach and its limitation. For further reading we again recommend von 
Storch (1995a) and von Storch and Zwiers (in press). 

The basic question is to what extent the estimated EOFs (i.e., the eigenvectors of 
the sample covariance matrix) resemble the true EOFs (i.e., the eigenvectors of the 
true covariance matrix). The true and sample EOFs differ for two reasons. 

The first reason is the standard problem in statistical inference: namely, the uncer­
tainty due to the limited sampling. A basic empirical rule is that the low-indexed 
EOFs, with the largest eigenvalues, are best estimated, while the high-index EOFs 
are poorly determined. The signals associated with low-index EOFs have large ampli­
tudes and are in most cases sampled several times in the data set analyzed. However, 
the EOFs derived from a sample represent the total sample variance. Therefore, the 
events in the sample, which are not typical for the random variable as a whole but 
specific to the sample, are also represented by some, usually high-indexed, sample 
EOFs. On the other hand, the structures of small-amplitude and rare true signals, 
which are not well sampled by the available data set, are hardly captured by the high­
index sample EOFs. Therefore, the high-indexed EOFs are prone to severe sampling 
errors. Unfortunately, there is no objective way to assess how severe the sampling 
uncertainty is. 

The second reason has to do with the buzzword degeneracy. When an eigenvalue is 
multiple, or degenerate, its eigenvector directions are no longer uniquely determined. 
If, for instance, an eigenvalue is double, any linear combination of its two eigenvec­
tors is an eigenvector as well. Obviously, the spatial structure of these linearly com­
bined vectors may vary widely. The problem also occurs with sample covariance 
matrices: There is an indeterminacy due to degeneracy if the (sample) eigenvalues 
are close to each other. North et al. (1982) have proposed a rule of thumb to diag­
nose when such an indeterminacy prevails and the EOFs patterns are not uniquely 
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determined, using the slope of the (estimated) eigenvalue spectrum. Preisendorfer et 
al. (1981) (see also Preisendorfer, 1988) have produced many rules of the sort aim­
ing at identifying significant EOFs [i.e., those that can be distinguished from those of 
white noise (a white noise process has identical true eigenvalues, hence is an extreme 
case of degeneracy)]. Many practitioners misunderstand the meaning of these tests 
by assuming that the selected patterns represent a reliably estimated signal. In fact, 
the eigenvalues can be different from those of white noise but the patterns poorly 
estimated. Note that the degeneracy of the eigenvectors needs not be an artifact of 
the limited sampling. Indeed, a single EOF can only represent a spatially standing 
pattern, and two EOFs or more are needed to represent a propagating pattern. When a 
spatially propagating oscillatory mode is in the data, this mode is represented by two 
EOFs with similar eigenvalues. They are thus degenerate, but physically significant, 
and their principal components are correlated for lags different from zero (see also 
Section 3.4). 

In Section 2.1 we have discussed the analysis by Kundu et al. (1975) of along­
shore currents monitored at four depths in terms of dynamical normal modes. These 
authors also made an EOF analysis of this data. The first two EOFs are shown in Fig. 
16.3 (dashed line). They represent 91 % and 6% of the total variance, hence explain 
almost the entire variability of the data set (note that four EOFs suffice to represent 
the entire variance). The first EOF is almost constant and has no sign reversal. It 
is similar in pattern to the theoretically derived barotropic mode (solid line). As the 
first barolinic mode, the second EOF has one sign reversal. However, the zero-cross­
ing depths are rather dissimilar, with 30 m for the baroclinic mode and somewhere 
between 40 and 60 m for the second EOF. The time series ak(t) fitted to the theoretical 
modes and to the EOFs shows very high correlations (Fig. 16.4c): 0.98 for the baro­
tropic mode and the first EOF, and 0.97 for the first baroclinic mode and the second 
EOF. 

There are several reasons why the empirical modes account for a considerably 
larger amount of variance than the dynamical ones. The EOF are constructed to rep­
resent a maximum of variance at the four depths, while the normal mode describe the 
simplified dynamics in the whole water column. Moreover, the EOFs are optimal for 
the representation of the variability within the available sample. If a larger sample 
had been considered, the EOFs would have been fitted to an environment with more 
diverse variability, with the probable result that the main EOFs would account for less 
variance. Indeed, it can be shown that the variance attributed to the first few EOFs 
is always overestimated, in particular when the sample size is small (von Storch and 
Hannoschock, 1986). 

In this example, the empirically derived modes compared favorably with the nor­
mal modes so that the dynamical argument and the simplifying assumptions leading 
to (13)-(15) were confirmed. This shows that empirical modes can also be valuable 
tools to evaluate the significance of theoretically derived structures. 

3.2. Complex EOFs 

The conventional EOF analysis is designed to expand scalar fields. To deal with two­
dimensional vectors such as horizontal currents, say (u, v), one can, as noted before, __, 

form an extended vector X which contains in the first half of its components the 
contributions from u and in the second half that of v, and then use standard EOF 
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analysis, the dimension of the space being larger. This is easy to do and can be 
generalized to more dimensions. 

An alternative in the two-dimensional case is to combine the two components into 
one complex vector, as done by Kundu and Allen (1976): 

X(t) = u(t) + iv(t) (22) 

Then the approach outlined above may be retained, except that the metric is changed. 
The covariance matrix is given by the cross products of state X / at location l with 
the complex conjugate state x; at location j: 

(23) 

(the asterisk indicates complex conjugation). The eigenvectors of a Hermitian matrix 
are orthogonal, so that 

( 
-->j __,,> e ,e = L ej;e~ = oj, (24) 

r 

and its eigenvalues are real. The EOF coefficients cxk(t) are complex numbers deter­
mined by (19). 

The interpretation of these complex vectors is eased when they are expressed in 
polar coordinates: 

(25) 

so that a complex EOF is characterized by two patterns: an amplitude pattern Ak(r) 
and a directional pattern Bk(r). Therefore, a complex EOF may be displayed by a 
vector field, with vectors of length Ak(r) and direction Bk(r). 

In the formulation (2) the full signal is expressed as a sum of products of a (com­
plex) coefficients O'.k(t) times a (complex) patterns ek. When we use the notation 
(25) and also write the amplitude in polar coordinates, cxk(t) = r]k(t) exp[i1h(t)], we 
see that the product 17 k(t) exp[i~ k(t)]Ak(r)eiBk(r) = 17 k(t)Ak(r) exp[i(Bk(r) + ~k(t)] has 
everywhere the same amplitude distribution as the EOF, apart from the common time­
varying factor 17 k(t) and the same directional distribution, apart from the common 
rotation exp[Nk(t)]. The latter points to the superiority of the complex EOF repre­
sentation over the combined traditional one when the motions are polarized, as in 
near-inertial waves. Note that the complex EOFs are invariant to rotation. 

Brink and Muench (1986) have applied complex EOF analysis extensively to the 
data set in Fig. 16.1. We show the first complex EOF for the current, at the mooring 
Cl at 5, 10, 20, 30 and 45 m, and for the wind-stress factor at the two buoys NS and 
NC (Fig. 16.7). The most important pattern of current variability is characterized by 
a maximum at the surface and by an anticlockwise veering with increasing depth. 
Whatever the anomalous (i.e., the deviation from the time mean) current is near the 
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Fig. 16.7. Mean and first complex EOF of currents (solid arrows; depth in meters given by numbers) 
at mooring Cl (see Fig. 16.1) and wind stress at buoys NS and NC (labelled Sand C).The mean state is 
the time average of the currents and the wind stress, and the first complex EOF was calculated separately 
for the wind stress and for the currents. (Adapted from Brink and Muench, 1986.) 

surf ace, that at larger depths is smaller and more to the left. On the other hand, the 
first EOF of the wind stress indicates that it varies similarly at the two locations. 

The first two complex EOFs of the wind stress and of the currents are well con­
nected with a complex correlation of 0.62 between the EOF coefficients. The direc­
tional sense of this correlation is shown in Fig. 16.7 by the relative orientation of the 
two sets of vectors. Close to the surface, the current changes are slightly to the right 
of the wind-stress changes; at greater depths the veering is to the left. 

Finally, there are two things to be noted: (1) Complex EOFs give no informa­
tion about preferred directions of the vectors; this information can only be obtained 
by an a posteriori statistical analysis of the complex EOF-coefficient time series. 
(2) The complex EOF analysis as defined in this section must not be confused with 
the frequency-dependent EOF analysis, which is also called complex EOF analysis 
(CEOF). We discuss the latter briefly in Section 3.4. 

3.3. Computational Aspects of EOF Analysis 

The EOFs are the eigenvectors of the (sample) covariance matrix (20). There are two 
main approaches to the computation. In the direct approach the sample covariance 
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matrix is determined and the eigenproblem solved directly. In the other approach, a 
singular value decomposition (SVD) is made (e.g., Rasmussen et al., 1981; Seber, 
1984; Kelly, 1985). The final product is the same in both cases, but the SVD approach 
is in general computationally cheaper (Kelly, 1988) and under certain circumstances 
numerically more robust. 

In the direct approach the sample covariance matrix is expressed as the product 
E = (1/T)xxT, with the data matrix 

x = 

X1(T) 
X2(T) 

Xrn(T) 

(26) 

The T columns of the Tx m data matrix X are the vectors of observations taken at the 
time t = 1, · · · , T; the rows mark the r = 1 · · · m locations or variables. The matrix 
product X xT is a quadratic m x m matrix even if X itself is not quadratic. Then the 
eigenproblem X xT jk = Akek is solved. Sometimes the numerical problem can be 
considerably eased by the following algebraic trick (von Storch and Hannoschock, 
1984): If 'Y is an x m matrix, then 5l = yyT and 51T = yTy are n x n and m x m 
matrices which share the same nonzero eigenvalues. If 'Y q (or i) is an eigenvector of 
5l to the eigenvalue A. 4- 0, then q (or yT f) is an eigenvector of 51T to the same eigen­
value A.. Thus one should calculate the eigenvalues and eigenvectors of the smaller 
of the two matrices xT X and x xT. In practical situations the number of samples T 
is often much smaller than the dimension m of the fields, whence only estimates of 
the first T EOFs can be derived from the data set. 

The alternative approach uses the singular value decomposition (SVD) of X, 

CXT(l) 
CXT(2) 

(27) 

CXT(T) 

where 'D is a rectangular T x m matrix with zero elements outside the diagonal and 
positive elements on the diagonal: dij = sJ>ij ~ 0. The quadratic T x T and m x m 
matrices to the right and left of 'D are orthogonal and contain the EOF coeffiients 
and the EOFs, respectively. Note that if T > m, the last EOF coefficients CX.j,} = 
m + 1, · · · , T, are zero. Similarly, when m < T, the last EOFs i!k, k = m + 1, · · · , T, 
are zero. The eigenvalues of the covariance matrix E are s T. 

Sometimes the data field is not complete (i.e., observations for some times and 
locations are lacking). One solution is to fill the gaps (i.e., to "repair" the data field 
by spatial and temporal interpolation). The drawback of this frequently used approach 
is that it introduces additional artificial information into the analysis, which gives the 
same weight to the real and interpolated data. A simple and methodically sound alter­
native is to estimate the elements ajt of the covariance matrix directly by forming 
sums only over those T' times t' when simultaneous observations exist at the loca­
tions j and l: 
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<ljJ = ;, L Xj(t')X1(t') 
t' 

(28) 

However, this estimated covariance matrix is no longer positive definite, so that some 
eigenvalues may be negative, and the eigenvectors are no longer strictly orthogonal. 
Thus the EOF coefficients should be fitted by least squares: 

L Xr' (t)e/, 

Cl-j (t) r' (29) -- L(e:!, )2 

r' 

where the indices r' represent those components of X for which observations exist 
at time t. 

3.4. Generalizations of the EOF Technique 

In the zoo of pattern-related techniques a number of other animals may be found with 
the family name EOFs. Two of them, the frequency-domain EOFs and the extended 
EOFs are indeed related to the conventional EOF approach, and they are designed to 
identify spatially propagating oscillatory behavior. The third technique, the rotated 
EOFs, represent a different sort of species, which is intended to identify robust, and 
often compact, patterns. In the following we briefly outline the basic concepts and 
let the reader get the details from the cited literature. 

Extended EOFs and Singular Systems Analysis 
A straightforward way to identify systematic space/time variations in a vector field 
Y(t) is to link together the field at m consecutive times into a larger vector, say X(t) = 
(Y(t), Y(t+ 1), · · ·, Y(t+m- l)f, and apply the EOF algorithm to this concatenated 
vector. Since the field is considered simultaneously at m successive times by slid­
ing a "window" of width m down the time series, the temporal evolution during m 
time steps becomes part of the eigenvectors ek called extended EOFs (EEOFs) pat­
tern by Weare and Nasstrom (1982), who first introduced the method. The principal 
components of EOF coefficients are given by 

m-1 

ak(t) = (X(t),ek> = L -Yet+ j)reJ+ 1 

j=O 

(30) 

where e_J is the eigenvector pattern for time j' with j = 1, .. :.. ' m, so they represent 
a space/time filtered version of the original vector time series Y(t). [A time filter is the 
operator X(t) ~ X(t) with time series X(t) andX(t) such thatX(t) = .EJ1=-=--~+ 1 ajX(t+j) 
with a set of numbers, or "weights" {cx-m=l• ··· ,a_1,ao,a1, ··· ,am-1}. In case of 
(30), one has aj = 0 for j < 0 and aj = ej + 1 for j :2: O.] In contrast to time filters that 
are designed to emphasize certain frequency bands, or to POP anlysis, both of which 
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constrain the time evolution of the spatial patterns, the EEOF analysis is an adaptive 
filtering technique (i.e., its filtering characteristics are determined by the data). The 
original vector time series may be reconstructed (except for the endpoints) by any of 
the following j = 1, · · · , m representations: 

m 

Y(t) - 2, cxkCt - 1 + 1)eJ+1 
k=l 

(31) 

for j = 1, · · · , m. Thus the original vector time series is decomposed into m series, 
each of which is a space/time-filtered version of the original series. 

Just as EOFs identify the main patterns of variability that are coherent in space, 
EEOFs identify those that are coherent in space and time. The EEOF analysis empha-_, 
sizes cyclical behaviors in the evolution. If the data field Y(t) features a propagating 
wavelike structure, then this signal will appear as a pair of EEOFs explaining a simi­
lar amount of variance, having the same frequency, and dephased by a quarter period. 
In this case the EEOFs need to be considered as a pair. However, the presence of 
such an EEOF pair does not warrant that it corresponds to an oscillatory mode, as 
discussed below. The value of the window width m is a function of the expected 
time scales in the problem: It should be large enough to encompass all the stages of 
the expected oscillating structures, and small enough to retain sufficient independent 
degrees of freedom in the time series. As discussed in Vautard and Ghil (1989) and 
Allen and Smith (1994), the EEOF pairs are very effective narrow-bandpass filters, 
and increasing m increases the spectral resolution. 

The EEOF analysis was introduced more theoretically in the context of dynamical 
systems by Broomhead and King ( 1986), who used it to visualize qualitative dynam­
ics in noisy data and developed the method for the one-dimensional case under the 
name of singular system analysis (SSA), which is technically a univariate EEOF. In 
this case, X(t) is composed of m values of the scalar time series Y(t), · · · , Y(t+m-1), 
and the EEOF patterns are temporal sequences of length m, so in (30) the ej are 
adaptively determined filter weights. The method was expanded and thoroughly dis­
cussed by Vautard and Ghil (1989), who renamed it singular spectrum analysis and, 
in particular, emphasized its power for searching for physical oscillations and to ana­
lyze, filter and predict time series. However, a recent in-depth analysis by Allen and 
Smith (1996), who have made extensive Monte Carlo simulations, suggests that much 
care is needed when using SSA (or EEOF analysis) to detect quasi-periodicities in 
time series. Indeed, when applied to limited time series generated by a univariate 
AR(l) process that features no oscillatory modes, SSA often identifies pairs of the 
orthogonal patterns with similar eigenvalues, which may then be misinterpreted as 
oscillatory modes. [A univariate AR(l) process is the discretization of a first-order 
linear differential equation driven by white noise: X(t + 1) = aX(t) + noise with 
some constant lal < 1. The multivariate version has been given in (12).] Tests with 
Monte Carlo simulations are thus needed to distinguish such spurious signals from 
a genuine oscillatory mode. 

Forecast exercises relating cx(t) to cx(t + L) usually give high forecast skills if 
L < m, which is part due to the fact that the numbers 
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m-1 

Cik(t) = L Y(t ') k + J ej+ I 
)=0 

m+L-1 

ak(t + L) = L y ( t + j )ej _ L + 1 

)=L 

are in part derived from the same observations, namely { Y(t + L) · · · Y(t + m -
1) }. [For measuring forecast skill, refer to Livezey (1995).] Mathematically, the high 
forecast skills are correct, but the informational value of a correctly forecasted ak(t+ 
L) is considerably less than the informational value of a correctly forecasted Y(t+L ). 
The questionable value of such "forecasts" is further demonstrated by the sudden drop 
of skill when the lead time L becomes longer than the window length m. 

The generalization of SSA to multivariate time series (e.g., Plaut and Vautard, 
1994), often referred to as multichannel SSA (MSSA), is identical to EEOF analy­
sis, notwithstanding the claim (Vautard, 1995) that MSSA applies to the case where 
the temporal dimension is greater than the spatial one, since in practice the latter is 
usually artificially reduced by EOF truncation. In any case, a careful reading of the 
SSA literature is recommended to EEOF /MSSA users, for its attention to the power 
and pitfalls of the method. 

Since we know of no application to coastal problems, we illustrate the EEOF 
analysis by an application to the North Atlantic decadal variability in a coupled 
ocean-atmosphere model (Zorita and Frankignoul, 1997). The method was applied 
to a 325-year model integration, using yearly averages of three EOF-truncated North 
Atlantic fields: sea level air pressure, sea-surface temperature and temperature at 450 
m depth, which were considered simultaneously after suitable normalization. Using 
a window width m = 20 (the results are not very sensitive to m), they detected two 
eigenvector pairs among the combined EEOFs that stand out above the noise level 
(note that the three dominant EEOFs have long, unresolved time scales that corre­
spond primarily to the initial model adjustment). Here we discuss the first EEOF 
pair, which suggests the presence of a quasi-oscillatory mode. Figure 16.8 shows the 
principal component of one of the eigenvectors (top) together with its autocorrelation 
function (that of the other is similar) (bottom, solid line) and the cross-correlation 
function between the principal component pair (bottom, dashed line). The correla­
tions suggests that the combined eigenvector pair represents a damped oscillatory 
mode with a period of about 20 years. Its decay time is less than the period, but 
it cannot be estimated from the correlations if it is smaller than the window width, 
because of the bandpass filtering inherent to the technique. As independent but spa­
tially correlated AR(l) processes may also lead to EEOF pairs in finite samples, 
although they do not correspond to oscillations (see Allen and Smith, 1996), Monte 
Carlo simulations were used as in Robertson ( 1996) to test this hypothesis, which 
was rejected. Thus the mode differs from (nonoscillating) POPs with real eigenval­
ues. Whether it represents a true oscillation (e.g., POPs with complex eigenvalues, 
see Section 2.2) or a propagating mode cannot be established in this way, however. 
Thus an interpretation of a pair of EEOFs as an oscillation must be based on physical 
grounds and/ or other evidence. 

Figure 16.9 represents the reconstructed anomaly patterns at 3-year intervals dur-
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Fig. 16.8. Simultaneous EEOF analysis of air pressure, sea-surface temperature and subsurface temper­
ature at 450 m simulated in a 325-year simulation with a coupled ocean-atmosphere GCM. Top: time 
series of the EEOF coefficient of one of the eigenvectors of the 20-year EEOF pair; bottom: autocorrela­
tion function of this time series (solid) and cross-correlation function between the principal components 
of the EEOF pair (dashed). (From Zorita and Frankignoul, 1997.) 
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Fig. 16.9. As in Fig. 16.8. Reconstructed pattern associated with the 20-year mode at, from top to 
bottom, year 1, 4, 7 and 10 for, from left to right, sea level (mb), sea-surface temperature (K) and 
potential temperature at 450 m depth. The amplitudes represent rms values, and only half of the cycle 
has been represented. (From Zorita and Frankignoul, 1997.) 

ing one-half of the oscillation. The starting year was chosen arbitrarily, and the other 
half cycle is similar but with the reversed sign. The air-pressure pattern starts as a 
positive anomaly centered around 50°N, flanked by small negative anomalies north­
ward and southward. The positive anomaly migrates northward and is replaced by 
an anomaly of the reversed sign coming from the south. The mid-Atlantic anoma­
lies reach their strongest amplitudes at years 1 (positive) and 10 (negative) and their 
minimum amplitude at year 5. 

The sea-surface temperature is characterized by positive anomalies centered near 
40°N, which slowly wander northward while decaying and being replaced by similar 
anomalies of the reversed sign; there are also weaker anomalies of the opposite sign 
in the eastern side of the basin. The modulation of the amplitude of the sea-surface 
temperature variations is in phase with that of air pressure, and its space/time struc­
ture is consistent with an upper ocean response to the atmospheric forcing (e.g., the 
temperature is colder than normal in areas where the anomalous wind comes from 
colder regions in winter and vertical mixing is enhanced). 
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The 450-m temperature is dominated by a dipole structure that remains stable until 
year 4, then weakens while rotating clockwise. By year 10, the dipole has reversed 
sign. The amplitude modulation at 450 m follows that of air pressure and sea-surface 
temperature by a few years, and the pattern is consistent with a gyre adjustment to 
the changes in the wind-stress curl that are associated with the SLP pattern. 

The mode is strongest for 450-m temperature (it is detected in SST alone only if 
the data are low-passed to increase the signal-to-noise ratio), so it is difficult from 
this analysis alone to differentiate between a true oscillatory mode sustained by some 
positive air-sea feedback and a propagating or advected ocean interior response to 
the atmospheric forcing, which also forces the surface mixed layer [see the discussion 
in Zorita and Frankignoul (1997)]. 

Frequency-Domain EOFs 
A single EOF can represent variations in time that are in phase or out of phase along 
a data array (i.e., standing oscillations), but not features that have variable phase rela­
tionships, such as propagating waves or moving structures. However, a single EOF 
can represent propagating features if one works either with the lagged covariance 
matrix, as in EEOF analysis, or with the cross-spectrum matrix, as in EOF analysis 
in the frequency domain, in place of the (unlagged) covariance matrix as in standard 
EOF analysis. 

The idea of using as EOFs the eigenvectors of the cross-spectrum matrix was 
introduced in the ocean-atmosphere context by Wallace and Dickinson (1972). It 
was extended by Rasmusson et al. (1981 ), who used the Hilbert transform to present 
the method, and by Barnett (1983), who related the two approaches and thoroughly 
discussed their properties. See Brillinger (1975) for earlier references and a more 
theoretical presentation in terms of multivariate time-series filtering. 

--> 

Infrequency-domain EOF (FDEOF) analysis, the data vector Xr is augmented by 
its Hilbert transform X f X(t) to form a complex vector Y(t): 

Y(t) = X(t) + iX H (t) (32) 

The Hilbert transform is the raw time series phase shifted in the frequency domain 
by 90° for each of its Fourier components, so it is characteristic of the time derivative 
of the series. For example, a cosine time series is transformed into a sine one, and 
(32) into a cosine series. 

--> 

The covariance matrix of the complex series Y(t) is estimated as in (20) by 

E = ~ L Y(t)*Y(tf (33) 
t 

and it follows from spectral analysis theory that it represents the cross-spectrum 
matrix averaged over some (wide) frequency band. The frequency bandwidth can _, 
be controlled by suitable filtering operation, however. When X(t) is filtered so that 
only a narrow band around a frequency w has been retained, the covariance matrix 
approaches the cross-spectrum matrix in this frequency band. In practice, E can thus 
be estimated using the Hilbert transform [see Barnett (1983) for details], or taken as 
the cross-spectrum matrix averaged over a specified frequency band. 
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The matrix E is Hermitian, hence its eigenvalues are real and its eigenvectors ek 
complex, so the latter are best represented by the spatial distribution of their ampli­
tude and phase. The eigenvectors are not determined with respect to rotation, so only 
the phase differences between different locations is determined. The principal compo­
nents are also complex, providing useful measures of the stationarity of the dominant 
features. 

The FDEOFs allow to decompose a field into its largest spatially coherent modes 
in a specific frequency band, thus retaining the phase relationships between the dif­
ferent locations in a data array. In the simple case where only one or two dominant 
propagating modes are present, the method is powerful and leads to easy interpre­
tation. However, problems may arise if the propagating signal is nondispersive, as 
in some coastal wave problems and a large frequency bandwidth (with respect to 
array length) has to be used to reduce the statistical uncertainty in E (see Merrifield 
and Guza, 1990; Johnson and McPhaden, 1993). The interpretation in more complex 
fields is much more difficult, and the results very sensitive to the bandwidth. 

Although FDEOF analysis has been used in coastal oceanography to search for 
long coastal waves (Wang and Mooers, 1977), we prefer to describe briefly the 
analysis of equatorial Pacific temperature and current measurements of Johnson and 
McPhaden (1993), which correspond to the (more extensive) data set analyzed by von 
Storch with the POP method (Section 2.2). Moored data from 1984 to 1987 were con­
sidered at 110° and 140°W along the equator, and the FDEOF analysis based on the 
cross-spectrum matrix using the frequency band 0.008-0.017 cycles day- 1 (13 fre­
quencies). All variables and depths were considered simultaneously (28 time series 
normalized to have the same variance in the frequency band selected). The variance­
weighted average in the frequency band corresponds to a period of 83 days. The 
analysis yielded a first FDEOF representing 68% of the variance. For comparison 
with Fig. 16.6, we give only the amplitude and phase of the zonal velocity, as well 
as the percentage of explained variance at each depth (Fig. 16.10, top) and the normal­
ized principal component for a hypothetical location having zero phase (Fig. 16.10, 
bottom). Although the data set is smaller than that in von Storch (1993), the mode 
strongly resemble the 65-day POP, especially at 140°W, where the amplitude and 
vertical distribution are pretty similar, and also for the temperature distribution (not 
shown). Note in particular that in both analyses, the upper levels lag the lower ones in 
a similar way and there is enhanced activity during the 1986-1987 ENSO. See John­
son and McPhaden (1993) for an interpretation in terms of equatorial Kelvin waves 
modulated by their interaction with the equatorial undercurrent system. It should be 
noted that the 120-day POP mode was not found in the FDEOF analysis. Presum­
ably, this is due to the substantial similarities in the spatial structure of the two POP 
modes, which conflicts with the orthogonality constraint (in both space and time) 
inherent to EOF analysis. 

Although the basic assumptions behind the FDEOF analysis and the POP method 
are different, the results are similar in cases where one propagating mode is dominant, 
and either method can be chosen. One advantage of the FDEOF analysis is that it 
optimizes the explained variance, but the orthogonality of the EEOFs may be too 
constraining when there are two or more similar modes at neighboring frequencies 
(see, however, the section "Rotated EOFs"). The relationship between FDEOFs and 
POPs is discussed further in Hasselmann (1988) and von Storch (1995b). Presumably, 
both methods will be less successful when the signal-to-noise ratio is smaller, and in 
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Fig. 16.10. Top: amplitude (left), phase (middle) and percentage of represented variance (right) for the 
first FDEOF of zonal velocity at 140° (solid line) and 110°W (dashed line) during 1984-1987. Error 
bars represent an estimate of the standard error. The amplitudes are rms amplitude for the mode. Bot­
tom: principal component time series for a hypothetical location having zero phase. (From Johnson and 
McPhaden, 1993.) 

such cases an EEOF analysis may prove more efficient. The idea of adding to a real 
vector an imaginary part representative of its rate of change has also been applied to 
the POP analysis, resulting in a complex POP analysis (Burger, 1993). 

Rotated EOFs 
Although EOFs are the most efficient descriptors of the variability of a data set, they 
may not always be those that lead to the clearest physical interpretation since different 
modes of variability need not be orthogonal in both space and time, as required in the 
EOF analysis. Thus one sometimes relaxes some of these constraints by performing 
a _rotation that replaces the EOF patterns jP in the expansion (2) by nicer patterns 
P
->} • 

R· 

K 

= L af p~ 
j= 1 

with a matrix relationship 

( _,1,_,2, ,_,K) (p_,1,p_,2, ... ,p_,K)"' 
PRPR"'PR = --'\. 

(34) 

(35) 
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with some K x K matrix '1(. This matrix is chosen from a class of n:iatrices (e.g., 
orthonormal matrices), with the constraint that the resulting patterns ff~ maximize a 
certain (nonlinear) functional of simplicity FR· Richman (1986) lists five vague crite­
ria for patterns being simple and there are many proposals of simplicity functionals. 
If the matrices are orthonormal, the rotation is named orthogonal; otherwise, the 
adjective oblique is used. Thus, rotated EOFs have none of the properties of EOFs, 
as they are not the most efficient at explaining the variance, the EOF coefficients are 
no longer orthogonal, and if the rotation is oblique, the patterns themselves are not 
orthogonal. 

A widely used method is the varimax, which features orthonormal matrices '1( and 
the simplicity measure 

K 

F ( _,1 __,K) 
R p R ..• p R = L f R(P~) (36) 

j=1 

with the function f R defined for a vector q = (qd: 

(37) 

Si is a specified number: Si = 1 in the raw varimax method; sf = Ef= 1 (ff{ )2 in the 

normal varimax or being the variance of the ith component of X (K), which is the _, 
projection of the original full random vector X in the signal subspace spanned by the 
K vectors { p1 

• · · ffK }. 
The minimization of a functional like (36) is in general nontrivial since the func­

tionals are nonlinear. Numerical algorithms to approximate the solutions robustly are 
readily available for truncations up to K = 80. However, the use of large K's is usually 
not meaningful since the noise will normally dominate the results. 

Definition (37) has the form of a variance: In the raw varimax setup it is the 
(spatial) variance of the squares of the components of the patternffj, and in the normal 
varimax it is the same variance of a normalized. version ff' = (pi/ Si). Minimizing (36) 
implies therefore finding a set of K patterns p~ such that their squared patterns have 
(absolute or relative) maximum spatial variance. The results of a rotation exercise 
depends on the number K, the lengths of the vectors ff j and on the choice of the 
measure of simplicity. 

The opinion in the community is divided on the subject of rotation. Part of the com­
munity advocates the use of rotation fervently as a means to define physically meaning­
ful, statistically stable patterns, and indeed Cheng et al. (1995) found rotated EOFs to 
be statistically more stable (less sensitive to sampling fluctuations) than conventional 
EOFs. However, others are less convinced because of the handwaving in specifying 
the simplicity functions and the implications of this specification and its implication 
for interpretation of the result. Successful application of the rotation techniques needs 
some experience, and it might be a good idea for the novice to have a look into Rich­
man 's (1986) review paper on that topic. Interesting examples are offered by, among 
many others, Barnston and Livezey (1987) and Chelliah and Arkin (1992). 
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4. Modal Decomposition II: Canonical 
Correlation Analysis and Related Techniques 

In certain problems it is useful to identify pairs of patterns in two fields observed 
simultaneously. When these pairs appear at the same time, the spatial characteristics 
of the two patterns may permit assessment of the dynamical link between the two 
fields. Canonical correlation analysis is one such technique that is based on optimiz­
ing the correlation between patterns (Hotelling, 1936). An alternative is to optimize 
the covariance, which is accomplished by SVD [therefore, the approach as a whole 
is named SVD, which is misleading since it blends together an algebraic solution 
of a problem (the SVD) with the problem itself [maximization of the covariance; 
(Bretherton et al., 1992)] and could be called maximum covariance analysis [for an 
oceanic application, see Frankignoul et al. (1996)]. 

The concept of canonical correlation analysis has been introduced by Hotelling 
(1936). In the following we present the idea behind the CCA [for more details, see 
Anderson (1984) or von Storch (1995a) and further references therein]. Two simul­
taneously observed fields X(t) and Y(t) are decomposed into K patterns: 

K K 

X(t) = L af (t)p~ and Y(t) = L ar(t)p} (38) 
k=l k=I 

where the considered fields are anomalies (i.e., the time means have been subtracted 
prior to the analysis). The dimensions mx and my of the fields X(t) and Y(t) and 
thus of the "canonical correlation patterns" Pi and p} are in general different. The 
expansion is done in such a manner that: 

1. The coefficients af (t) and a f (t) in (38) are optimal in a least-squares sense 

[i.e., for given patterns Pi and p} the squared differences Et (X(t) - Ef == 1 

af(t)pi )2 and Et (Y(t)- Ef= 1 af (t)p} )2 are minimized]. Therefore, 

(39) 

with certain adjoin! patterns (pi )A and (p} )A. 
2. The correlations between af and af, between af and af, and between af 

and a r are zero for all k -4- l. 
3. The correlation between af and a f is maximum. 
4. The correlation between a~ and a I is the maximum under the constraints of 

items 2 and 3. The correlations for the higher indexed pairs of coefficients sat­
isfy similar constraints (namely, of being maximum while being independent 
of all previously determined coefficients). 

It can be shown that the adjoint patterns are the eigenvectors of somewhat 
complicated-looking matrices, namely: 

~-1~ ~-l~T J2lx = ~x ~xr~r ~xr (40) 
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where Ex and .Ey are the covariance matrices of X and Y . .Exy is the cross-covariance 
matrix of X and Y. The two matrices 5lx and 5ly have the same nonzero eigenval­
ues. The kth adjoint pattern (fii )A is given by the eigenvector with the kth largest 
eigenvalue of 5lx and the kth ad joint pattern of Y is the kth eigenvector of 5ly. The 
correlation between af and a r is given by the kth largest nonzero eigenvalue of 5Ix 

or 5ly. 

The sovariance between the canonical correlation coefficients af and the original 
vector X is given by 

I, af(t)X(t) = I, af(t) I, af(t)p~ = fii (41) 

-+k ~ (->k) p X = i.JX p X A (42) 

Thus, to determine the canonical correlation patterns and the canonical correlation 
coefficients, one has first to calculate the covariance matrices and cross-covariance 
matrices. From products of these matrices (40) the adjoint patterns are derived as 
eigenvectors. With the adjoint patterns the canonical correlation patterns are calcu­
lated via (42) and the coefficients through (39). 

For the actual computation, it should be noted that: 

1. The matrix 5Ix is a m x x m x matrix and 5ty is a my x my matrix. The two 
matrices 5Ix and 5ly may be written as products 131 'Bi and 'Bi 131 of two matrices 131 

and 'B2,. Therefore, the two matrices share the same nonzero eigenvalues, and if fii 
is an eigenvector of fllx with an eigenvalue A. -:f. 0, then E }} E i'r fii is an eigenvector 
of 5ly with the same eigenvalue. Because of the specific form of the matrices, it is 
advisable to solve the eigenvector problem for the smaller matrix. 

2. Numerical experiments have shown that it is highly advisable to compress 
the data prior to a CCA (Barnett and Preisendorfer, 1987; Bretherton et al., 1992). 
Convenient tools for that purpose are conventional EOFs. The rationale for this need 
is the following: When executing a CCA we are looking for true pairs of patterns 
that reflect the real underlying dynamical structure of the problem under considera­
tion. In practice, however, only a limited sample is available and we have to guard 
ourselves against the danger of misinterpreting the random details of the common 
variability within the sample as indications of true correlations. In particular, when 
the dimension of the random vectors X and Y is large and the number of samples is 
small, it is likely that in the many badly sampled noise contributions spuriously high 
sample correlations appear. Then the CCA emphasizes these sample correlations. 

An important caveat to keep in mind is the method's intrinsic tendency to return 
overestimated correlation coefficients from a finite sample of observed fields (Glynn 
and Muirhead, 1978). Also, the results may depend on the a priori EOF truncation of 
the data, so their sensitivity should be investigated. Note that maximum covariance 
analysis does not require a priori data compression. 
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Fig. 16.11. First two pairs of CCA linking the winter mean air-pressure field over the North Atlantic 
with the winter mean sea level at various gauges in the Baltic Sea. The left pair of patterns is linked 
with a correlation coefficient of 0.80, and the right pair with a coefficient of 0.52. (From Heyen et al., 
1996.) 

Heyen et al. ( 1996) have examined the simultaneous variability of winter (DJF) 
air pressure in the North Atlantic/European region and _,an array of local sea level 
measurements in the Baltic Sea, using CCA. The vector X(t) is formed from the grid­
ded (5° x 5° !attitude x longitude) air pressure field in the North Atlantic, whereas 
the other vector Y(t) is composed of the sea level at 23 stations along the coast of 
the Baltic Sea (for the area and locations, see Fig. 16.11). From all time series the 
long-term linear trend has been subtracted since the isostatic rebound of Scandinavia 
causes a long-term trend that is unrelated to climate variability. Also, an EOF trun­
cation was done. 

The two pairs of patterns with the largest correlations between the coefficients 
are shown in Fig. 16.11. The patterns are normalized such that the coefficients have 
unit standard deviation, so the patterns represent typical anomalies in hPa and cm, 
respectively. 

The first sea level pattern (Fig. 16.11, left) represents 88% of the total winter­
to-winter variability at the gauges; it describes an overall rise, or fall, of sea level 
everywhere in the Baltic. Typically, anomalies are of the order of 10-15 cm, with 
slightly larges values in the north and somewhat smaller anomalies in the southwest. 
The canonical correlation analysis matches this overall rise or fall of the Baltic with 
a characteristic pattern of winter-mean circulation with an anomalous high-pressure 
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center off the Bay of Biscay and a low-pressure center located over northern Finland. 
The time coefficients for the two patterns have a correlation coefficient of 0.80. The 
two patterns represent a physically plausible forcing/response relation. Anomalous 
westerly winds in the sea north of Denmark decelerate the outflow of waters from 
the Baltic, with the effect that the Baltic Sea holds more water. 

The second sea level pattern (Fig. 16.11, right) represents 5% of the variance and is 
almost orthogonal to the first pattern. It is characterized by a zero line in the southern 
Bottenwyk. Maximum anomalies in the northern and southern parts are on the order 
of 5 cm. This pattern is connected, with a correlation coefficient of 0.52, to an air­
pressure pattern with two centers of action in the central North Atlantic. These two 
centers of action represent an important climatological mode of atmospheric variabil­
ity, the North Atlantic Oscillation. They are connected with anomalous southwester­
lywind along the major axis of the Baltic Sea. 

An application of a paired pattern analysis such as CCA is the downscaling prob­
lem in climate (change) research (von Storch et al., 1993). Most significant questions 
asked about the impact of expected climate changes concern changes of the abiotic 
environment, and their effects on the biosphere and society, on a regional or local 
scale. The primary tools for describing details of the expected climate change are 
general circulation models (GCMs) of the ocean and the atmosphere. Such models 
are powerful in reproducing the large-scale features of the ocean and the atmosphere, 
but they are inadequate to simulate facets with spatial scales at the lower end of the 
spatial resolution (Hewitson and Crane, 1992). For present-day models this means 
that regional and local aspects are not realistically reproduced. Therefore, it is some­
times required to build empirical models for relating large-scale features, which have 
long been observed and are reproduced reliably by GCMs, to the small-scale features 
that are of relevance for the assessment of climate change. In that case it is convenient 
to use the observations to relate the large-scale forcing field to the regional or local 
scale response. This is conveniently done by using CCA to define a few patterns, 
whose coefficients are pairwise highly correlated. 

The two patterns in Fig. 16.11 are obviously capable of representing the bulk of 
winter-to-winter variations of (detrended) sea level variations in the Baltic. Therefore, 
the link between the large-scale air-pressure fields in Fig. 16.11 and the two sea level 
patterns may be used to build a linear regression model to downscale the large-scale 
information, encoded in the air-pressure field, to the local sea level information. The 
success of this downscaling model is displayed in Fig. 16.12 by the percentage of 
explained variance at all stations (upper left), the reconstruction of the (detrended) sea 
level averaged over all stations and for two individual stations (Y stad and Helsinki). 
By processing exclusively information about the state of the air-pressure field over the 
North Atlantic (dashed line), the empirical model reproduces between 40 and 75% 
of the winter-to-winter variance of the observed detrended coastal sea level (solid 
line). However, the extremes are not well reproduced, as might be expected from a 
regression technique. 

5. Summary 

Apart from the few cautionary remarks on statistical testing given in the introduction, 
this chapter has focused on various methods that can be used to summarize or detect 
the dominant space/time patterns in the complex data sets that are often collected 
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Fig. 16.12. Winter mean sea level variations in the Baltic Sea: observations versus reconstructions. The 
statistical downscaling model, which relates the air-pressure field in the North Atlantic with the local sea 
level, has been built with data from 1951 to 1979 (see stippling), so that all data after 1970 and prior to 
1950 represent independent evidence. Top left: percentage of winter-to-winter variance explained by the 
empirical model. Top right: reconstructed (solid) and observed (dashed) detrended sea level variations 
averaged over all stations. A 3-year running mean filter has been applied. Bottom two panels: as the 
upper right panel, but for the two gauges Ystad and Helsinki. (From Heyen et al., 1996.) 

for coastal studies. When the dynamics are simple and normal modes can be derived 
from the equations of motions, the most informative technique will rely on analytical 
modes, but the conditions are often too complex, or not well enough documented, 
to derive them without unacceptable assumptions. In such cases, one can estimate 
empirical modes using POP analysis, which is a powerful tool to identify oscillatory 
behaviors. However, the POPs require that the mode dynamics can be approximately 
represented by a multivariate first-order autoregressive process, so POPs are not well 
adapted to more complex dynamics, as when nonlinearities are important. Also, the 
conventional POPs can only describe propagating oscillations, not standing ones, but 
the latter may be detectable in the conventional EOF analysis which is generally 
performed prior to calculating the POPs. 



452 HANS VON STORCH AND CLAUDE FRANKIGNOUL 

Alternative techniques that are useful in detecting propagating patterns and oscil­
latory behaviors have also been discussed. Frequency-dependent EOFs can be used 
either by doing an EOF analysis in the frequency domain or by using the Hilbert 
transform, with the same advantages and, possibly, drawbacks as the standard EOFs 
(maximum explained variance, orthogonality). Contrarily to POPs, the frequency­
dependent EOFs impose no dynamical constraint of the time dependence, but then 
the latter needs to be estimated a posteriori from the EOF coefficients. Although the 
two methods provide very comparable results in many cases, the POPs are more effi­
cient in detecting oscillations in noisy environments and are easier to interpret if the 
conditions for their applicability are reasonably satisfied. 

Another powerful tool to identify oscillatory modes is provided by EEOF analysis, 
which searches for the dominant space/time patterns without any constraint on the 
mode behaviors and is thus well adapted to complex dynamics. EEOF pairs are very 
efficient adaptive narrowband filters, but their interpretation is sometimes difficult 
and there is a risk that spurious pairs appear in limited-length records. Thus, as in 
spectral analysis, the most powerful methods are the most difficult to use wisely, 
and it is recommended that several different approaches be attempted when possible. 
More important, the interpretation should be validated by physical reasoning, and 
due caution used. 

Most of these methods require some prior data compression, which is usually done 
by an EOF analysis where only the main patterns are considered, even though the 
selection criteria are not always obvious, as discussed briefly. Some users favor using 
rotated EOFs, which tend to give more localized and sometimes more robust patterns, 
but caution is needed in performing the rotation. 

We have also discussed techniques that were designed to identify pairs of patterns 
appearing in two or more fields observed simultaneously. CCA is a powerful and 
commonly used technique that optimizes the correlations between fields, but it gen­
erally requires, and is sensitive to, an initial EOF truncation of the data. A variant 
that is easier to use, as no prior truncation is needed, is SVD or maximum covariance 
analysis, although only two fields can be considered simultaneously. Pairs of pat­
terns can also be identified by considering the combined fields directly: EOF, POPs 
or EEOF analysis will then also extract the coupled patterns, with various degrees 
of efficiency. An interesting comparison between some of these techniques is given 
in Bretherton et al. (1992), but the most useful one depends on the problem at hand, 
and no general recipe should be offered. 
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