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Abstract 

Most persistent atrnospheric circulation patterns in terms of air pressure distributions are derived for the 
N Atlantic I NW European region. They are identified through Principal Prediction Pattern Analysis and 
through Principal OscillationPattern Analysis. With the help of these patterns the "degree of persistence" 
in a given pressure map can be determined. Tue larger the initial degree ofpersistence, the better is the 
skill of the persistence forecast. 

1 Background 

When we began this study, we wanted to construct 
an empirical simple and efficient 'forecast scheme, 
which should be superior to persistence. Tue ba­
sic idea, originally proposed by K. Hasselmann in 
the mid 1980s in an unpublished manuscript, was to 
identify predictand/predictor patterns (namely Prin­
cipal Prediction Patterns, PPP) with maximum cor­
relation. In this way we were after the "most pre­
dictable" patterns. Tue same approach has been used 
by Barnston (1994) in his efforts predicting monthly 
and seasonal means. 

In the present case daily data were considered, and it 
turned out that the predictand patterns are very simi­
lar to the predictor patterns, indicating that the "most 
predictable" patterns represent a persistent situation 
- and, indeed, the forecast based on the scheme is not 
better than (damped) persistence. So, instead of ex­
perimenting with a simple forecast superior to persis­
tence, we actually tested a scheme for the determina­
tion of the degree of persistence of a given regional 
circulation pattern. 

After we found out that we had not dealt with a fore­
cast technique superior to persistence but rather a 
technique for the determination of persistent states, 
we asked ourselves how we could determine per­
sistent patterns in other ways. Following an advice 

by Grant Branstator, we used real Principal Oscilla­
tion Patterns (POPs) to this end, and found that the 
"most predictable" PPPs are indeed very similar to 
the longest-memory real POPs. 

Tue analytical tools, PPPs and POPs, are linear tech­
niques so that the degree of persistence depends only 
on the prevailing patterns and the amplitude of the 
patterns, but not on the sign of the patterns. Thus, 
they are not ·tools for the identifi.cation of blockings 
as these features are always high-pressure systems. 

Tue paper is organized as follows. Tue empirical 
techniques, PPP and POPs, are briefly described in 
Section 2, the data (approximately hundred years of 
daily North Atlantic/NW Europe air-pressure maps) 
are introduced in Section 3, where also the Princi­
pal Prediction Patterns are presented and compared 
to POPs. In Subsection 3.3 the predictive skill, in an 
overall sense as weil as sorted after the "initial degree 
of persistence", is presented. Tue paper is concluded 
with a discussion in Section 4. 

2 Diagnostic Tools 

Tue diagnostic tools employed in this study are linear 
pattern-oriented techniques, i.e., a fi.eld such as the air 
pressure map St at a given time t in a given region is 
expanded into a short series with some pattems pk: 
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K 

St= I, ak(t)ßk+residual (2.1) 
k=l 

with K being considerably smaller than the dimen­
sion of S (which is the number of grid points if S is a 
gridded f:ield). One advantage of (2.1) is thatthe often 
high-dimensional vector S is reduced to a short vec­
tor Ci= ( a1 ... cx;K). Typically, the low-index patterns 
are of larger scale and the residual of small scale. Tue 
low-indexed patterns are most efficient in represent­
ing the variance of S and, in our set-up, their coeffi­
cients should bebest predicted. Tue residual accounts 
for little variance of S and is hardly predictable. If 
~(t + ~) is a prediction of the coefficient ak(t +~) 
of Sw,, then 

A K 

st+-r = I. ak(t+~).Pk (2.2) 
k=l 

is a forecast of the f:ield St+-r· 

Statistical analysis offers algorithm for the determi­
nation of sets of patterns which satisfy certain favor­
able conditions (for an overview, see von Storch and 
Zwiers, 1998). Tue following two subsection briefiy 
introduce two of these techniques, namely PPP and 
POPs. 

2.1 Principal Prediction Patterns (PPPs) 

Principal Prediction Patterns are pairs of patterns for 
expanding the predictor (i.e, the f:ield S at timet) and 
the predictand (the same f:ield S but at ~ days in ad­
vance): 

K 

St I, aZ(t)ß§ +residual 
k=l 

(2.3) 
K 

St+-r I, aI(t) p~ +residual 
k=l 

where the additional index 0 marks an expansion of 
the predictor and the index ~ the expansion of the 
predictand. Tue patterns are determined such that the 
correlation Pk between ak and a'k are maximum for 
k = 1, second maximum for k = 2 and so forth. Also, 
the coefficients are orthogonal. This set of conditions 
is satisf:ied by Canonical Correlation Analysis. Tue 
patterns ß§ and p~ are normalized so that VAR ( ag) 
= 1 and 

(2.4) 
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With this normalisation, the optimal prediction 
(marked by a hat) of a'k is simply 

(2.5) 

Tue pattern ß§ and p~ occur typically together. When 
-+ k -+ 
St= Po then, on average, St+-r = p~. Tue argument 
is linear, so that the more general statement is valid 

as well: ~ days after St = ß .P§ we have on average 

St+-r = ßp~ for any ß, including ß = -1. 

Thus, .P§ is a predictor for p~. By construction it is 
even the best linear predictor - therefore the name 
Principal Prediction Patterns (PPP) was coined by 
K. Hasselmann for the pairs of patterns (ß§, p~) 

A-priori nothing is known about the combinations of 
patterns which may emerge. For instance, p~ may be 
like .P§ but shifted by some degrees to the east - ·in 
that case the pair of pattern would describe an east­
ward propagation feature. However, such combina­
tions hardly emerge from our analysis. Instead, p~ is 
mostly similar to the predictor pattern but reduced in 
magnitude: p~"' Pk(~)ß§ (see below). Thus, in the 
present application of CCA, the correlation coeffi­
cient may be understood as a kind of "memory rate" 
µ (i.e., the ratio of an anomaly after ~ days to an initial 
anomaly one; -1/log(µ) is a damping time). 

Tue complete PPP forecast is given by 

A K 
-+ ~ 0-+k 
St+-r = Li akP-r (2.6) 

k=l 

In the present study, the CCA is done with an a-priori 
EOF truncation which enhances the robustness of the 
estimated quantities because of a reduction of de­
grees of freedom. Tue mathematics are worked out 
by Barnett and Preisendorfer (1987) and von Storch 
and Zwiers (1999). 

2.2 Principal Oscillation Patterns (POPs) 

Tue Principal Oscillation Patterns (POPS; for an 
overview, see von Storch et al., 1995) are eigen so­
lutions of the linear dynamical equation 

St+ 1 = ßl.St + noise (2.7) 

with the matrix ..9l. :fitted to the data: ..9l. = L1L01, 
where L1 is the covariance matrix of St and St+ 1. Tue 
noise is assumed to be independent of St. As in the 
case of PPP, the fit of the POP model (2.7) is made in 
a phase space, spanned by the most important EOFs. 
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The matrix .9L may be seen as the operator which 
maps the circulation St at time t on the circulation 

St+l one day later. 

The matrix .9L is not Hermitian and may have real and 
complex eigenvectors and eigenvalues. Tue modulus 
of the eigenvalues is less than 1. Tue complex pat­
terns are most useful for the identification and de­
scription of spatially propagating features, whereas 
the real patterns describe standing features. If ej is a 
real eigenvector with the real eigenvalue A, · then by 

. . J 
definition .9LV = 'A/ll. 

Th:us, if St = e k then the best forecast is §w, = 
JL1:s JL't-k 'l '1:-k "" .... S Th thi · t = e = f\,ke = f\,k t· us, s pattern is a 
persistent pattern, with a memory rate of X!c in 't days. 

3 Results 

3.1 Data 

Tue statistical analyses are done for daily air pres­
sure in the N Atlantic and NW Europe (25°W - 20° E, 
40° - 60° N). Gridded analysis have been collected 
by NCAR from 1899 until today. Even though there 
may be some inhomogeneities the data are consid­
ered mostly "clean" in the selected region (Trenberth 
and Paolino, 1980). Only winter (DJF) cases are con­
sidered, with lags up to 5 days. All data are "cen­
tered", i.e., a long-term mean of 30 years is sub­
tracted at each point. 

Tue CCA required for the determination of the PPPs 
was done with data from 1958-1988, and the skill 
was determined from all data 1899-1991. All analy­
ses were done for 't = 1 ... 5, but only results for 't = 3 
are shown as these appear as representative. Tue air 
pressure field S is truncated by the first eight EOFs, 
explaining 96% of the total variance. 

ThePOPmodel (2.7) was fitted with datafrom 1958-
1988 as weil. 

As reference forecast, damped persistence is used, 
i.e., 

-+p -+ 

St+"(x) = d(x;-t)St(x) (3.1) 

at each grid point x. Tue spatially varying number 
d(x,-t) is the average memory rate at the grid point x 
calculated for a time lag of 't, which is 

(3.2) 

Table 1: Correlations Pk( 't) for the first four PPPs and lags 't = 
1...5. 

k Pk('t) 
't:= 1 2 3 4 5 

1 0.91 0.77 0.66 0.59 0.52 
2 0.91 0.73 0.58 0.45 0.36 
3 0.85 0.62 0.46 0.36 0.27 
4 0.77 0.51 0.37 0.29 0.21 

3.2 Persistent Patterns 

The first four PPPs for 't = 3 days are shown in Fig­
ure 1, and the correlations p k ( 't) for all lags 't = 1 ... 5 
in Table 1. The patterns are almost the same for dif­
ferent lags, but the predictand patterns are smaller for 
l~nger lead times (cf. (2.4)). Tue predictor and pre­
d1ctand patterns are rather similar (but not identical). 
A comparison of the patterns yields indeed the ap­
proximate relationship p~ rv Pk(-t)p§. 
Examples for predictions prepared for two signifi­
cantly different regimes are given in Figure 2, dis­
playing both the predictor and the predictand. 

Tue POPs are similar to the PPPs (see Figure 3). 
However, the memory rates are considerably smaller 
than those obtained in the PPP analysis. Tue differ­
ence between the PPPs and the POPs is that the POPs 
are strictly persistent patterns, whereas the PPPs al­
~ow for minor modifications in time; strictly speak­
mg, the PPPs are no~ really persistent patterns but 
quasi-persistent patterns. We conclude that the PPPs 
shown in Figure 1 are not only the most predictable 
but also the most (quasi.:.) persistent patterns. 

For the evaluation of the skill of the PPP forecast 
(2.2), we calculated from the nearly hundred year 
record of regional weather maps the anomaly corre­
lation coefficients for the PPP forecasts and, as a ref­
erence, of the damped persistence for lead times up to 
5 days (Figure 4). lt turns out that the anomaly cor­
relation coefficient is almost identical to that found 
for damped persistence. For 't = 1 day its mean value 
is about 0.75, and it decreases to about 0.3 for 't = 5 
days. 

3.3 Preclicting Skill 

As "degree of persistence" we use the proportion of 
variance of the predictor field St represented by the 
first four PPPs, i.e., 

(
-+ 4 0-+k) VAR St - L,.k=l akpO 

c= 1- (3.3) 
VAR(st) 
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Figure 1: First four pairs of Principal Prediction Patterns p§ (left) and p~ (right) for 't = 3 days. Tue correlations amount to 
0.66, 0.58, 0.46, 0.37. 
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Figure 2: Two examples of successful 3-day forecasts prepared by the PPP method (2.6) initiated at two widely different states (Jan. 

04th, 1947, left, and Feb. 14th, 1947, right). 

a) initial state St. 
b) truncated initial state I,b1 agpg 

.::; 4 O-k 
c) forecast st+3 = I,k=l akp3 

d) observed state Bt+3 
All maps represent anomalies, i.e. deviations from the long-term mean. Units: hPa. 
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Figure 3: First (langest memory) four POPs with eigenvalues A.1 = 0.45,~ = 0.43,A.3 = 0.38,A.4 = 0.37 (corresponcling to a 3-day 

memory rates of 0.09, 0.07, 0.05, 0.05). 

In principle, c E [-co,+l], but practically E E [0,1[. 
Seven intervals of degree of persistence were formed, 
the relative number of cases per interval is also listed 
in the following table: 

class (i) interval frequency ( % ) 

1 [0.0, 0.4[ 7.0 
2 [0.4, 0.5[ 6.8 
3 [0.5, 0.6[ 11.0 
4 [0.6, 0.7[ 16.8 
5 [0.7, 0.8[ 25.1 
6 [0.8, 0.9[ 25.6 
7 [0.9, 1.0] 7.7 

In ab out 8 % of all winter days, the regional circula­
tion has a degree of persistence of more than 0.9, and 
in almost 60% of the time, the degree of persistence 
is larger than 0.7. 

Tue anomaly correlations and root mean square er­
rors, together with 25%-75% confidence intervals, 
calculated separately for the seven classes are shown 
for the lag"!;= 3 days in Figure 5. Again, the damped 
persistence and the PPP forecast exhibit about the 
same scores. Tue significant aspect is, however, that 
the skill is becoming considerably larger when the 

degree of persistence is larger. For the 8% of cases 
with minimum degree of persistence c::; 0.4) the av­
erage correlation anomaly correlation coefficient is 
only about 0.2. For class i = 4, the score is about 0.4, 
but for 8 % of cases in the top class i = 7 the skill is al­
most 0.6 (as compared to 0.4 averaged over all cases, 
see Figure 4.) --

4 Conclusions and Comments 

We have tested a simple forecast scheme based on 
Canonical Correlation Analysis. Tue basic idea is to 
determine pairs of predictor/predictand patterns of 
the same variable, whoses coefficients are max.im.um 
correlated in time. These patterns are named Princi­
pal Prediction Patterns. 

It turned out that the Principal Prediction Patterns 
represent mostly persistent patterns, and it is there­
fore not surprising to find that their forecast skill 
compares to that of straight forward damped persis­
tence. Therefore, the PPP technique can not be con­
sidered a useful forecast scheme per se, but its mer­
its comes from its ability to determine the persistent 
pattems. Tue knowledge of these persistent patterns 
allows for a skillful assessment whether a given at­
mospheric state likely will be persistent or not. 
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1.0 2.0 3.0 4.0 5.0 

Figure 4: Means of anomal.y correlation coefficients of the PPP 

forecast (cliamonds; equation (2.6)) and of the damped persis­

tence forecast (squares; equation (3.1)) for time lags -r = 1 to 5. 
Tue vertical. bars represent 25%-75% confidence limits, derived 

from forecasts of all winter maps from 1899 until 1991. 

When a new advanced forecast scheme is tested then 
it is usually compared with the performance of a sim­
pler scheme, for instance with damped persistence 
(Livezey, 1995). It is suggested to refine such a com­
parison by sorting the initial states according to their 
degrees of persistence and thereby by the expected 
skill of damped persistence. 

We have repeated our analysis for other (larger) areas 
and found the results mostly insensitive to the choice 
of the area. 
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Figure 5: Means of anomal.y correlation coefficients of the 

PPP forecast for 3 days (cliamonds; equation (2.6)) and of the 

damped persistence forecast (squares; equation (3.1)) for the 

seven classes with different degrees of persistence. Tue vertical. 

bars represent 25%-75% confidence limits, derived from fore­
casts of all winter maps from 1899 until 1991. 
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