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Limits of reproducibility and hydrodynamic
noise in atmospheric regional modelling

Beate Geyer® !, Thomas Ludwig?3 & Hans von Storch@® 13

Reproducibility of research results is a fundamental quality criterion in science; thus, com-
puter architecture effects on simulation results must be determined. Here, we investigate
whether an ensemble of runs of a regional climate model with the same code on different
computer platforms generates the same sequences of similar and dissimilar weather streams
when noise is seeded using different initial states of the atmosphere. Both ensembles were
produced using a regional climate model named COSMO-CLM5.0 model with ERA-Interim
forcing. Divergent phase timing was dependent on the dynamic state of the atmosphere and
was not affected by noise seeded by changing computers or initial model state variations.
Bitwise reproducibility of numerical results is possible with such models only if everything is
fixed (i.e., computer, compiler, chosen options, boundary values, and initial conditions) and
the order of mathematical operations is unchanged between program runs; otherwise, at
best, statistically identical simulation results can be expected.
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odels are executed as software packages on computers,
M which are considered deterministic systems. Notably, if

you rerun a program with identical inputs, it will give
an identical result, which represents a considerable benefit during
model development, which is essentially software development
because errors in the code can be detected easily; specifically, the
exact reproduction of a program run enables us to track the
source of a program error. In this sense, computer experiments
are more precise than real-world experiments, where a single
experiment can never be exactly reproduced. However, the
deterministic quality of a computer is difficult to guarantee
because it requires a special style of programming and is poten-
tially disrupted as soon as you change one component of the
system or the system itselfl. Consequently, the results of
numerical simulations may differ.

Hydrodynamical systems such as the atmosphere and the
ocean exhibit unprovoked variability in models if the spatial
resolution allows for turbulent dynamics. Two simulations that
are identical in setup but with slightly different initial values or
other physically insignificant differences can quickly lead to sta-
tistically identical results but different trajectories. This finding
has been observed in global atmospheric general circulation
models since the 1970s>. When the resolution of global ocean
models is at the scale of eddy formation, the same finding can
occur for ocean models (e.g.3). In the case of limited-area models,
the issue was long disregarded because it was falsely assumed that
the boundary values would suppress such divergence; however,
this is not the case for regional dynamical models of the atmo-
sphere? or the ocean”. In this case, models can display divergence
in phase space in certain periods, while in other time periods, all
trajectories may remain close to each other.

We refer to such unprovoked differences as “noise”. This term
is ambiguous, as it is commonly used in different fields of science
and spans very different concepts in different disciplines. Ori-
ginally from acoustics and electrical engineering, the term “noise”
has found its way into many disciplines, including climate science
and computer sciences.

e In climate science, the term refers to unprovoked variability —
that is, variations that cannot be traced back to variable
external factors. The famous Lorenz system, which considers
the butterfly effect, only requires a miniscule disturbance to
lead the system into very different states. When a regional
atmospheric or oceanic model is initiated with observed states
that are a day or more apart, the trajectory of the system will
show at a later and potentially much later time, periods of
divergence (“intermittent divergence in the phase space™). In
this case, the stochasticity is rooted in the very high
dimension of the problem and the numerous nonlinear
terms. The presence of internal variability is a property of the
system.

e In computer science, numbers are stored with a finite number
of digits. When using these numbers in codes, rounding
errors occur and lead to small deviations from a mathema-
tically accurate solution. This is independent of the chosen
number of bits for the representation of numbers. With more
bits and thus higher numerical precision, the differences
occur later and have a smaller effect on the simulated climate.
Note that more bits require more hardware resources and
more energy for performing the simulation. Thus, the actual
chosen precision is always a compromise between potential
error and costs. Additionally, when the sequence of opera-
tions is modified, which is often the case with code or
operation optimizations for parallel computing systems, or
any minor other changes are implemented, different numbers
will be generated (see, e.g.’).

Our hypothesis is that two ensembles generated by the same
model that have the same boundary values for the same time and
region but have different initial values or are run on different
platforms but otherwise kept unmodified will be statistically
identical. We expect that the episodes of divergent trajectories will
occur at the same time in both cases and will have the same
intensity - irrespective of the characteristics of the noise seeding
process. We address this issue by comparing the performance of
the same regional atmospheric model with two approaches: one
that uses slightly shifted initial states and another that uses dif-
ferent computing platforms. Both methods lead to “noise”, and
we will see that, through dynamic processes, this noise will lead to
noteworthy variability in the results. It is important to note that
noise induced by changing the computer platform cannot be
quantified or controlled. Such noise is the effect of small varia-
tions in the execution order of mathematical operations in the
processor hardware and the basic software libraries, which are
opaque to the model developer. Precision issues of internal
number representations will potentially have an impact but are
beyond the control of the programmer.

The presence of unprovoked variability is significant, as it
makes numerical experiments with models subject to stochastic
variations associated with separating any signal of interest from
the unavoidable internal variability, i.e., noise. Before claiming
that an intervention, such as a change in boundary values or the
parameterization scheme, has an effect, an ensemble of simula-
tions must be performed, followed by an analysis of the signal-to-
noise ratio of the impact on the simulation results>%%9. The
signal to noise problem has been a well-known problem in global
systems since the 1970s and in regional since the 1990s. A variety
of statistical methods for identifying this issue was introduced
into meteorology many years ago (c.f.19).

In inter-institutional cooperation the same code is occasionally
executed on different computer platforms. Additionally, identical
codes may be run at the same institutions on different platforms,
such as when a new system is installed and the previously used
platform is decommissioned. When performing numerical
simulations and experiments on different platforms, the results of
a simulation should not be affected by such a change. This
condition is usually considered synonymous with having bit-
identical results. However, as previously mentioned, this condi-
tion can only be guaranteed on a given parallel computer with a
fixed software stack (including a selected fixed precision for all
variables). Changing one of these components will potentially
lead to different numbers. This approach is not necessarily
identical to obtaining a different scientific result. However, if
numbers vary, the results must be validated by different means.
This task is identical to comparing the results of various real-
world experiments.

How can we obtain the maximum bitwise reproducibility in
computer experiments? Since different platforms, or different
compilers, may also have miniscule differences, for instance,
executing sums in different sequences!!, a change in the com-
puter platform will also introduce small variations that can be
physically insignificant but ubiquitous. Note that the technical
details are unknown to the programmer and thus cannot be
compensated for. Based on the “stochastic climate model”!2, we
suggest that the hydrodynamics of the system will generate an
ensemble of different trajectories, as in the case of a change in the
initial state.

We emphasize the bi-disciplinary aspect of our work. The fact
that miniscule changes in the code or in the process of executing a
code lead to differences in the outcome is well known (e.g.!3:14);
moreover, the fact that limited area models for atmospheric
dynamics can generate macroscopic variations as a response to
microscopic disturbances is equally known (e.g.>®!l). The
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significance of this paper is the demonstration that disturbances
do not depend on the initial disturbance or on the change of the
employed computer; rather, any presence of a “noise seed” is
sufficient to generate similar variations in terms of time and
intensity over the course of the simulation independent of the
time since initialization. We show that certain unstable atmo-
spheric states cause the model to create noteworthy but inter-
mittent variations. These variations do not represent “errors” but
possible and consistent states, and the simulated time develop-
ment must be considered a random variable.

In this paper, we consider seeded noise by minuscule changes
in the initials states and by employing the same code on different
platforms and are not considering changes of parameter settings,
parametrizations or number precision, which may lead to sys-
tematically different simulations. To test deviations caused by
such changes in the source code from an existing ensemble, one
could use appropriate test tools, e.g., pyCECT!>.

Results

Simulations with the regional climate model COSMO-CLM
(COSMO model in CLimate Mode)!® with ERA-Interim-
forcing!” for the period of 1979-2000 were performed for Eur-
ope. In all cases, the same model setup, i.e., model version,
compiler options, boundary conditions and external parameters
was used on all the High Performance Computing (HPC) plat-
forms. The executed codes were identical, and the codes were
programmed to produce bitwise-reproducible results for fixed
execution environments.

The first ensemble of six simulations with the same initial
conditions was run on different platforms, namely, two platforms
at Deutsches Klimarechenzentrum (DKRZ) and one platform at
Swiss National Supercomputing Centre (CSCS), Leibniz-
Rechenzentrum (LRZ), Zentralanstalt fiir Meteorologie und
Geodynamik (ZAMG), and Deutscher Wetterdienst (DWD). The
second ensemble of six simulations was run on the same CSCS
platform but with different initial states.

To demonstrate the range of variations that emerge in the two
ensembles, we show an ensemble of half-year time series of air
temperatures (minus ensemble mean) at a height of 2 m at the
randomly chosen Oslo-location. Figure 1 shows six different
trajectories of the ensembles with different initial value, and the
six trajectories of the ensemble results run on different platforms.
A visual inspection leads to the conclusion that the two ensembles
show the same sequence of divergent and convergent phases,
which is confirmed by the time-dependent intra-ensemble stan-
dard deviations shown for each day across the trajectories of the
two ensembles.

The characteristics of the time series are the same throughout
all 20 years. Qualitatively identical results were found for other
locations (not shown).

When the standard deviation is large, we can speak of large
intra-ensemble variability and an episode of divergence. When
the standard deviation is small, we refer to a convergent phase.

A t-test fails to assess the difference of the standard deviations
in Fig. 1c as statistically significant. Further, we compared the two
ensembles in terms of binned histograms of the standard devia-
tions (Fig. 2). Both histograms of the two ensembles are
remarkably similar. This analysis does not explain why the causal
effects are identical in both cases. From a computer science
perspective, it would be desirable to investigate the effect of
changes of infrastructure components on the numerical results.
However, such work would require comprehensive statistical
analyses, which is beyond the scope of our work here.

At certain times, the unprovoked variability strongly increases,
which is the case when the meridional (north-south) gradient of

air pressure (SLP) between 65° N and 45° N averaged from 20° W
to 5°W is weak. Such growth is rare when the gradient is strong
(not shown). Figure 3 illustrates the difference of the state asso-
ciated with convergence and with divergence, with values shown
as averages across the lowest and highest 5% of standard devia-
tions. How and when the system is disturbed is not important;
rather, the presence of the seed or the “numerical noise” is
important, and the growth of this disturbance will be initiated if
the dynamical state permits.

The emergence of such patterns that favor ensemble divergence
has a strong annual cycle. Such divergent phases, such as those
measured by local divergence at Oslo, are highest in DJF and
smallest in summer JJA (not shown). Further studies of the
synoptic states associated with these phases should be performed;
however, such work is beyond the scope of this study.

Discussion

First, our experiments confirmed earlier findings, namely, that an
ensemble of different trajectories is generated by running the
same high-resolution model with slightly different initial condi-
tions. These trajectories are almost identical at certain times but
very different at other times®. The timing of the episodes of
divergence does not depend on the type of disturbance but on
the availability of seed noise and on favorable dynamical condi-
tions. Earlier, it was found that if a region is sufficiently small,
divergence will rarely occur!®, but with large regions, the fre-
quency and intensity of divergence increases!®!°. This finding
makes it necessary to frame numerical experiments as stochastic
problems.

The additional and new finding here is that the same effect,
quantitatively, is obtained by running the same model with
identical boundary and initial conditions but on different plat-
forms. The bitwise reproducibility of numerical results can be
guaranteed for parallel programs as long as they are executed on
the same platform using the same software tools. This reprodu-
cibility depends on preserving the order of all mathematical
operations and keeping all other components unchanged. In a
physical system with limited precision in number representation,
the associative property does not hold (for details on number
representation, see, e.g.,l3). For example, (a+Db)+c is not
necessarily bitwise identical to a + (b 4 ¢). The programmer can
enforce a reproducible order of execution for all mathematical
operations. Even this approach is not trivial?®?!. Changing the
platform, however, induces hidden changes in the infrastructure
that are beyond the control of the programmer. Hence, a different
execution order for mathematical operations due to, e.g., different
compiler optimizations or library implementations, usually
destroys bitwise reproducibility and leads to different simulation
results.

Bitwise reproducibility of the results of computer experiments
is an important factor for high-quality software development
because software errors can be easily detected and the compu-
tational validity of scientific results can be checked. When the
model is used for numerical experimentation and scenario
building, scientists can operate with relaxed requirements. The
presence of noise produced by the components of the computer
system do not compromise the validity of the scientific results of
our experiments. According to our results, this finding holds for
changes in the order of execution of mathematical operations.
Other approaches suggest to reduce the number of bits for
selected variables, i.e., to increase the chance for rounding errors
in a controlled way. A benefit of this approach is the lower
memory consumption for the code and lower energy consump-
tion during execution because of the higher speed. Also in this
case the reproducibility of the simulation results can be enforced.
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Oslo in six realizations (differently colored) of the initial time ensemble. b Time series of surface air temperatures in six realizations (differently colored) of
the platform ensemble. ¢ Intra-ensemble standard deviations on each day are displayed for both ensembles.
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Fig. 2 Binned distributions of 7305 intra-ensemble standard deviations
for temperature in Oslo. Histogram of daily intra-ensemble standard
deviations in both ensembles (platform ensemble in blue and the initial time
ensemble in red) for the daily surface air temperature in Oslo.

However, it requires a thorough analysis of the effect of these
changes on the final results. See, e.g.,142223,

A possible application involves considering whether the change
from a given platform I to another platform II has a significant
effect on the numerical results that a given code generates,
namely, if platform II generates numbers that are beyond the
range of the internal variability of the simulation on platform I.
To do so, an ensemble of initial-state-disturbed simulations on
platform I is run, and the timing and intensity of the uncertainty
are determined. Then, the inter-platform differences can be
assessed, and whether these values are within the range of the
earlier determined uncertainty can be determined.

We may add some discussion about what “solution” means in
this context. We have seen that both types of noise, physical and
numerical, lead to different trajectories but to the same
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Fig. 3 Surface pressure composites depending on ensemble standard deviation. a Composites of mean sea level pressure for states with tendencies
toward convergence. The 366 cases with the lowest 5% of standard deviations in the sample are shown. b Composites of mean sea level pressure for
states with tendencies toward divergence for the initial-state ensemble. The 366 cases with the highest 5% of standard deviations in the sample are shown.

population type of trajectories. Interestingly, it does not matter
what type of noise is present; notably, only some minor variations
are needed, which under suitable dynamical conditions will lead
to significantly large-scale differences in the trajectories.

This is not an error in the code or in the approximation of the
dynamics of the system but is a property of the system; ie., a
system can exhibit a number of equally valid but different tra-
jectories. There is not a “true” simulation because at least 5 if not
all 6 of the computing platforms considered yield a “false” result.
Alternatively, at least 5 or all 6 initial states must be inconsistent
with each other to achieve this result, even though they are taken
from the observed trajectory and are similar to each other. All six
ensemble members are mere random outcomes of a stochastic
system. Thus, a “true” solution does not exist.

The concept of a “true” solution is also questionable because it
alludes to the existence of “true” differential equations. However,
such equations do not exist?4. First, the limit Ax >0 makes little
sense. Second, at increasingly small scales, the numbers of pro-
cesses and state variables increase (e.g., properties of cloud dro-
plets). There is no intrinsic way of modifying the parametrization
schemes, which are genuine elements of climate models, when
increasing the resolution. The equations encoded in the computer
programs operate on grids, and the parametrizations are for-
mulated for these grids. Thus, the equations themselves are mere
approximations of an assumed “true” set of equations. All the
approximations operate with many degrees of freedom and
incorporate various nonlinearities, which lead to what is best
conceptualized as stochastic variability, here named “noise”.

Thus, the solution is not to suppress the noise by some
numerical measures; instead, this consideration needs to be
incorporated into the experimental strategy of the modeler. When
asking if a parametrization scheme or different forcing factors
induce a change in the probabilistic structure, we need to consider
ensembles and compare these ensembles with statistical measures,
confidence intervals or hypothesis testing. Alternatively, when the
assumptions of stationarity and ergodicity are considered valid,
very long simulations may also be considered, with segments of
the full record taken as samples. In our case, the latter is not
given, as the differences are clearly not stationary.

Methods
The ensembles, initial time and platform were produced using COSMO5.0_cIm9.
For all ensemble members, the same configuration files had a grid size of 0.44° in
rotated coordinates, with 40 vertical levels in terrain-following hybrid height
coordinates up to 22.7 km height, 132 pixels in the x direction, 129 pixels in the y
direction, and 10 soil levels down to 11.5 m depth. The time step was 300 s with
continuous integrations over the entire simulation period; we used a fifth order
Runge-Kutta time integration scheme. The COSMO-CLM includes the TERRA-
ML scheme?> to parameterize land surface processes, and cumulus convection was
parameterized using the Tiedtke scheme?®. No spectral nudging was applied.
The external dataset was compiled using GLOBE for orography, GLC2000 for
land use, FAO-DSMW for soil parameters and a look-up table?> and MODIS dry
and saturated data for the surface albedo with the program EXTPAR v1.6_clm6.
The initial and boundary data from ERA-Interim!” were converted once for all
ensemble members to COSMO-CLM input data format with the program
int2lm_2.0_clm1. We used temperature, u and v direction of wind velocity, specific
cloud liquid water content, specific cloud ice content and specific humidity as 3D
fields and surface geopotential, surface pressure, snow surface temperature, surface
snow amount, soil temperature, soil moisture and land-sea fraction as single-level
fields.

Data availability

During the current study, data from COSMO-CLM simulations were used. The used data
are publicly accessible via http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?
acronym=DKRZ_LTA_302_ds00003

Code availability

The source code of the used regional climate model COSMO-CLM is available for
members of the CLM-Community. The community is open for non-commercial
research. It is necessary to register, to sign the terms of use and to contribute to the work
of the community.
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