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Abstract  
 

The derivation of regional information from integrations of coarse-resolution General Circulation 
Models (GCM) is generally referred to as downscaling. The most relevant statistical downscaling 
techniques are described here and some particular examples are worked out in detail. They are classified 
into three main groups: linear methods, classification methods and deterministic non-linear methods. 
Their performance in a particular example, winter rainfall in the Iberian peninsula, is compared to  
a simple downscaling analog method. It is found that the analog method performs equally well than 
the more complicated methods. Downscaling analysis can be also used as a tool to validate regional 
performance of global climate models by analyzing the covariability of the simulated large-scale 
climate and the regional climates.  
 

 
Ein Überblick über statistische Regionalisierungsverfahren   
 
 
Zusammenfassung  
 
Die Ableitung regionaler Information aus Integrationen grob aufgelöster Klimamodelle wird als 
„Regionalisierung“ bezeichnet. Dieser Beitrag beschreibt die wichtigsten statistischen Regionalisie-
rungsverfahren und gibt darüber hinaus einige detaillierte Beispiele. 
Regionalisierungsverfahren lassen sich in drei Hauptgruppen klassifizieren: lineare Verfahren, Klassi- 
fikationsverfahren und nicht-lineare deterministische Verfahren. Die Methoden werden auf den 
Niederschlag auf der iberischen Halbinsel angewandt und mit den Ergebnissen eines einfachen Analog- 
Modells verglichen. Es wird festgestellt, dass die Ergebnisse der komplizierteren Verfahren im 
wesentlichen auch mit der Analog-Methode erzielt werden können. 
Eine weitere Anwendung der Regionalisierungsmethoden besteht in der Validierung globaler 
Klimamodelle, indem die simulierte und die Kovariabilität zwischen dem großskaligen 
und dem regionalen Klima miteinander verglichen wird.  
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1  Introduction. 

One of the most important tools in the study of climate variability and climate change are  

General Circulation Models (GCMs). These models are state-of-the art numerical coupled mod- 

els that represent several subsystems of the earth's climate (atmosphere, oceans, sea-ice, land surface 

processes) that are thought to be capable to simulate the large scale state of the cli- 

mate. At planetary scales, GCMs are able to simulate reliably the most important mean features  

of the global climate, for instance the Intertropical Convergence Zones, the three dimensional 

atmospheric circulation cells, the jet streams, etc. With some limitations, they also simulate rea-

sonably well essential features of the ocean circulation like the western boundary ocean currents and 

the conveyor belt driven by the thermohaline circulation. Some of the latest GCMs also  

produce ENSO- type atmosphere-ocean coupled variability in the Pacific basin. With respect  

to the interannual variability, it has been found that some GCMs also reproduce satisfactorily  

the most important patterns of variability of the atmospheric flow and of the sea surface tem- 

peratures (SST) at mid-Iatitudes. However, at finer spatial resolutions, with scales of a few  

grid distances, climate models have much smaller skill (Grotch and MacCracken, 1991). Many 

examples of the deficiencies of the global GCMs in simulating basic local climatic variables like 

surface-air temperature and precipitation have been presented, two of which will be mentioned  

here.  

• A detailed comparison among the regional performance of several low-resolution GCMs in  

the Mediterranean basin can be found in Cubasch et al. (1996). Therein, it was concluded  

that the skill of the models in simulating the observed climate is much higher for near- 

surface air temperature than for precipitation, but that even for the former variable clear 

discrepancies are detected. With respect to climate change the responses simulated by the 

models to a doubling of atmospheric CO2 concentration are not univocal. In some cases  

two versions of the same atmospheric model coupled to a different ocean model produce 

temperature change patterns with the reversed sign. Concerning the changes in simulated 

precipitation each model actually predict patterns that are quite different to one another.  

• Another example is provided by Risbey and Stone (1996), who analysed the performance of the 

Climate Community Model model with T42 and T106 resolutions in the Sacramento 
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River basin in California. They found that although the model reproduces the right mean 

annual rainfall, its probability distribution differs markedly from the observations: whereas 

the simulated rainfall occurs mainly in form of drizzle distributed of many rainy days, the 

observed rainfall is measured in much stronger precipitation events distributed over much 

fewer days.  

The fact that the models do a credible job on the global scale and fail on the regional scale seems to be 

a contradiction. However, the global climate is to a great extent the response to 

the differential solar forcing, earth rotation and the large-scale structure of the earth's surface (land-sea 

distribution, topography). The regional climates, on the other hand, are the response  

of the global climate to regional details. Therefore, it seems reasonable to simulate the global climate 

adequately even though none of the regional climates is simulated skillfully.  

 There are at least three reasons for the failure of the models on this regional or local scale:  

• The spatial resolution provides an inadequate description of the structure of the earth's 

surface. The land-sea distribution is heavily smeared out: the mountains appear as broad 

flat hills. For spectral models the truncated representation of the topography is also 

a source of additional difficulties which may be severe at the local scale (Lindberg and 

Broccoli, 1996). A clear example is provided by the real annual cycle of precipitation in the 

Alps: in the northern side a summer rainfall maximum is observed, whereas some hundreds 

of kilometers southward a winter maximum is apparent (Fliri, 1974). It is reasonable to 

think that it will be quite difficult for the GCMs to simulate properly those small-scale  

features of the actual climate and therefore the climate change assessment at those scales  

will have to be considered with care.  

• The hydrodynamics of the atmosphere are non-linear and the energy, which is fed into the 

system at the cyclonic scale, is cascaded through nonlinear interactions to the smallest  

scales. Because of the numerical truncation this cascade is interrupted and the flow to  

smallest scales is parameterized. This parametrizations affect the smallest resolved scales  

most strongly.  

• Sub-grid scale processes in the models, such as cloud formation, rainfall, infiltration, evap- 

oration, runoff, etc., are all parametrized. These processes are calculated by means of  
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bulk formulae, the parameters of which may not have been fitted for the region of interest. 

These parametrizations may include additional errors in the GCM simulation. There are 

indications (Risbey and Stone, 1996; Machenhauer et al., 1996) that this may be the most 

important source of error of the GCMs, perhaps even more than its inadequate resolution.  

 However, these subgrid processes are actually those with the greatest ecological or societal  

impact, since they strongly affect the local climate at the scales of the human and ecological 

environment. Therefore, there is a broad consensus about the need to simulate the subgrid- 

process and the local climates properly, perhaps beyond the capabilities of the current GCMs.  

1.1 Strategies to bride the scale gap. 

The efforts to improve GCM simulations have been directed in two directions. In the last years,  

with increasing computer power, there has been a clear tendency to finer and finer GCM hor- 

izontal resolutions. For instance, while in 1990 a T21 resolution (about 5.6° x 5.6°) for the 

atmospheric submodel was considered as state-of-the-art, some of the last integrations with 

atmospheric models have been carried out with a resolution of T106 (about 1.125°). This res- 

olution is however quite costly and for climate change estimation the applications so far have  

been restricted to the “time slice modus”. In this modus the atmospheric high-resolution model  

is forced by the mean boundary conditions simulated in a low-resolution atmosphere-ocean cou- 

pled model. On the other hand the use the so called limited area models (LAMs) (Giorgi and  

Mearns, 1991), is becoming more frequent and is being also applied to the ocean component of  

the climate model (Kauker, personal communication). These LAMs are sophisticated atmo- 

spheric (or oceanic) models of a limited geographical area (of the order of 107 km2) with a  

resolution of the order of 20-50 km, which use the large-scale fields simulated by the GCMs  

as boundary conditions, but that take the regional characteristics, such as topography, into  

account. Although an increased resolution in the region of interest usually improves the simula- 

tion of orographycally induced precipitation and the cyclonic activity at mid-latitudes is better 

reproduced (Machenauer et al., 1996), it may not go hand in hand with an improved regional climate 

simulation. For instance, the LAMs developed at the UK Meteorological Office (UKMO)  

and in Meteo-France (based on the UKMO GCM and the ARPAGE GCM, respectively) show 

systematic errors that are not solved by increasing the resolution. These are probably associated
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with the parametrizations of sub-grid processes, which are taken over from the parent GCMs 

 and with the large-scale errors of the coarse-resolution GCMs themselves (Machenhauer et al.,  

1996). Therefore, there seems to exist also a need not only for finer resolutions, but also for  

better sub-grid parametrizations (Risbey and Stone, 1996). 

 The alternative approach to overcome the scale mismatch between the skill of climate simu-  

lations and the needs of ecosystem and sector models is statistical downscaling. This technique  

is becoming quite popular, due to relative simplicity and lower costs compared to the use of  

LAMs. This paper is focused on the description of some types of statistical downscaling and a 

discussion of the their most important merits and caveats.  

1.2  Statistical downscaling.  

Essentially the idea of the statistical downscaling consists in using the observed relationships 

 between the large-scale circulation and the local climates to set up statistical models that could 

translate anomalies of the large-scale flow into anomalies of some local climate variable (Storch 

1993). There exist quite different statistical models, depending on the nature of the local  

variable.  

 An important assumption that underlies the statistical approach to climate impact assess·  

ment is that the link between the large-scale circulation and the local climate remains unchanged  

in an altered climate, which is by no means guaranteed. However, if the time series used to tune  

the statistical model are long enough it is reasonable to assume that they contain many different 

situations, including those that will be stronger or more probable in an altered climate. If these 

situations are important for the local climate, the statistical model should be able to identify  

them in the historical observations and estimate with some skill the probable impact on the  

local climate. This assertion is of course only valid if the expected shift in the mean state lies  

roughly within the natural variability of the present climate, which is the information used by  

the statistical model. If changes in the mean climate are larger than the observed natural vari-  

ability the estimation via statistical downscaling may still be useful but it should be considered  

with care. This draw-back is in some sense also present in climate change estimation with GCM 

experiments, since these models contain many parametrizations which in principle are only valid  

for the present climate. However, the functional form of these parametrization schemes are in 
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many cases based on sensible physical reasoning, so that they hopefully will remain more or less  

valid in an altered climate.  

 To avoid to some degree the uncertainties of GCMs and LAMs simulations, the ability of  

these models to simulate past climates is, or should be, tested. The counterpart requirement for 

statistical downscaling models is that they should be able to reproduce the historical evolution  

of the local variables when they are driven by the observed large-scale circulation in the past. 

However, the statistical models are seldom so good that they can replicate with accuracy the  

recorded historical evolution at the local scale. Often, other factors that are not present in the  

fitting period, like changes in the station location 01' in measurement procedures, hinder the  

validation of the model. These should ideally be identified and corrected when possible. More 

interesting in the context of climate change, is the replication of the low- frequency (decadal  

and longer) natural variability. The low-frequency natural variations in the form of trends or 

oscillations can be considered as natural climate changes and a good statistical model should be  

able to reproduce them.  

 A recent example of the validity of the statistical downscaling approach has been presented  

by Busuioc and Storch (1996). These authors fitted a statistical model linking the atmospheric 

circulation and rainfall in Romania with data from a control run of the ECHAM3 climate model  

with an atmospheric resolution of T42 (about 2.5°). Then they used this statistical model to  

estimate changes in precipitation in a CO2 climate based on the atmospheric circulation changes 

simulated by a CO2 experiment. The estimated precipitation changes were consistent with those 

changes directly simulated at the grid-point level by the ECHAM 3 model at a T106 resolution  

(about 1.125°). Therefore, it can be concluded that their statistical downscaling model could  

bridge the scale gap in the world simulated by the ECHAM 3 model.  

1.3  By-products of statistical downscaling.  

The application of statistical downscaling is not restricted to the context of climate impact  

studies, but it can also be used for the validation of GCMs and LAMs. A statistical downscaling  

model describing the relationship between the local variable and the large-scale circulation in  

the observed climate can give useful insights about the physical causes of the natural variability  

of the local climate variable. In the ideal case this relationship should be also found in the 



 

 

 

- 10 - 

GCM/LAM simulations. The identification of a wrong statistical relationship in the simulation  

the absence of any, may help find the origin of the model deficiencies in particular regions 

 and suggest improvements for the parametrizations of local processes. This type of validation is  

seldom carried out and we would like to underline its importance with the evaluation of the skill  

with which two climate models reproduce the well known connection between the North Atlantic 

Oscillation (NAO, van Loon and Rogers, 1978), the seasaw of the sea level pressure between  

Azores and Iceland in the North Atlantic in wintertime, and near-surface air temperatures in 

Scandinavia (see section 3)  

 Another useful by-product of a downscaling application is the verification of the historical  

data quality and the reconstruction of past local conditions. If the statistical downscaling model  

can be physically interpreted and it is successful in the replication of past climate features, such  

as trends or oscillations, their real existence will gain support. For instance, von Storch et al.,  

(1993) found that the long-term upward trend of winter Iberian rainfall could be explained by a 

counterpart trend in the North-Atlantic SLP field. They reasonably concluded that both trends  

were real and not an instrumental artifact (see section 7).  

 Also, downscaling models can be a useful tool to fill data gaps of the local time series or even 

represent a first estimation of lacking information in relatively prolonged periods. It happens  

quite often that data observational networks present inhomogeneities due to changes of location  

or measuring techniques. The use of a downscaling model would yield in principle an estimation  

of the missing data which would be consistent with the large-scale forcing.  

 The paper is divided into 10 sections. Through the examples presented in this paper several  

data sources and climate model integrations have been used. These are described in section 2. 

In section 3 an example of the application of downscaling to the validation of climate models  

is presented. Section 4 deals with a general formalism of statistical downscaling models. In 

the following sections several families of statistical models are presented. To some degree it is  

a matter of taste to classify statistical models into families, but it seems that in downscaling  

literature three types of models have been used so far. These are the analog method (section  

5), classification methods (section 6), linear methods (section 7) and neural networks (section  

8). The problem of the level of simulated variability is discussed in section 9. A section with  

final considerations and an outlook closes the paper (section 10).  
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2 Data description 

The sea-level pressure data that represent the observations originate in the National Center  

for Environmental Research (NCEP, previously NMC, Washington DC) analysis provided by  

National Center for Atmospheric Research (NCAR, Boulder). They have been used with a  

resolution of 5°x5° degrees. The monthly means of air-surface temperature in Scandinavia  

belong to the World Station Climatology data set provided by NCAR. The daily rainfall data in  

Spain were kindly supplied by the Instituto Nacional de Meteorologia (Madrid), and the monthly 

 rainfall records by the Universidad Complutense (Madrid, Spain). The control integrations  

with the coupled atmosphere-ocean ECHAM1-LSG and the atmospheric model ECHAM3 were 

carried out at the Deutsches Klimarechenzentrum (Hamburg). The ECHAM1 model was run  

with a T21 resolution (about 5.6°x5.6°) and coupled to the LSG ocean model. A detailed  

description of this control run can be found in Cubasch et al. (1992). The integration with  

the atmospheric model ECHAM3 was run at a resolution T42 (about 2.8°x2.8° in a time slice  

modus, where the boundary conditions for sea-surface temperature and sea-ice distribution were  

taken from a ten-year me an of the ECHAM1-LSG control run (Cubasch et al., 1996).  

3  Statistical downscaling for the validation of climate model 

 integrations.  

 

In this section the skill of two climate models to reproduce the well-known relationship between the 

North-Atlantic SLP field and Scandinavian air temperature in winter (DJF) is investigated  

by means of Canonical Correlation Analysis (CCA). This CCA identifies patterns of two fields,  

in this case pairs of SLP and Scandinavian temperature patterns, that tend to appear simultane- 

ously (see section 7 for a more formal description). Two pairs of canonical patterns of observed  

SLP and Scandinavian air temperature are shown in Figure l.  

 Both canonical pairs of patterns may be physically explained by temperature advection  

by the large-scale circulation. For instance, the first SLP pattern, describes the variations  

of the strength of the zonal flow over the North Atlantic that brings milder or colder winter 

temperatures to the whole Scandinavian peninsula, and is related to the NAO pattern. The  

CCA also identifies a weaker, more local, relationship between both fields, represented by the 
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Figure 1: The first two canonical correlation patterns of observed winter (DJF) Scandinavian air 

temperature (bottom) and simultaneous SLP in the North Atlantic area (top). The correlation between 

the time coefficients is .73 and .63 respectively.  

 [North Atlantic winter SLP (hPa)] 

 

 

 

 

 

 

 

 

 

[Scandinavian air temperature (K). The temperature patterns explain 56% and 28% 01 the 

variance, respectively. The stars indicate the station positions.] 

  

 

 

 

 

 

 

 

 

second SLP canonical pattern. This second SLP pattern describes the strength of advection  

anomalies from higher latitudes to the Northern part of the peninsula and of continental origin  

to the southern part.  

 One of the main advantages of the method based on CCA is that it delivers spatial patterns  

that normally lend themselves to a clear physical interpretation. In this sense it is also simple  

to investigate if the GCM is able to reproduce the observed linear relations hip between both  

fields and therefore to infer a subjective level of confidence of the performance of the model 
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simulations in a sensitivity experiment. In Fig 2 the same CCA analysis between DJF North  

Atlantic SLP and simultaneous Scandinavian near surface temperature is shown for a GCM  

simulation of the present climate with the low-resolution (T21) ECHAM1-LSG coupled climate 

model. It can be seen first that the correlations between the time coefficients are much weaker  

than in the observations. Concerning the SLP patterns, they look qualitatively different: none of  

them can be associated to the strength of the zonal flow in the North Atlantic and their physical 

interpretation is not straightforward. The first pair seems to be associated with blocking activity  

over Scandinavia; the second pair may however be explained by air-temperature advection.  

Therefore, it is to be expected that this model will not properly simulate changes in Scandinavian 

temperature in a future climate, although surface air temperature is perhaps the variable best  

simulated by climate models.  

 A more recent version of the ECHAM atmospheric model is the ECHAM3. In this version  

several changes were introduced, in particular a different gravity-wave drag parametrization that 

considerably improved the simulation of the atmospheric circulation over the North Atlantic. 

The same CCA analysis based on a control integration of this model with a resolution T42  

(about 2.8°x2.8°) run in a “time slice” modus are shown in fig 3. The canonical patterns  

based on the T42 simulations are much more realistic, and both pairs of canonical patterns  

are satisfactorily reproduced. It is therefore to be expected that the regional climate change  

estimation over Scandinavia with the ECHAM3 model will be much more credible than with  

the ECHAM1 model.  

4  Statistical downscaling procedures.  

The statistical downscaling strategy can be formulated in a general way as follows:  

 1. MODEL DESIGN  

  (a) Identify regional climate parameter of interest, R.  

  (b) Find climate parameter L which  

   i.  controls R by R = F(L, !) + " with a vector of unknown stochastic parameters  

    (!l ... ! m)· The " represents the part of R not described by F (see section 9).  
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Figure 2: As in Figure 1, based on control simulations by the ECHAMI-LSG climate 

 model (resolution T21, about 5.6°x 5.6°). The correlations between the time coefficients is .44  

and .19.  

[North Atlantic winter SLP (mb)] 

 

 

 

 

 

 

 

 

 

[Scandinavian air temperature (K). The temperature patterns explain 51 % and 21 % 01 the  

variance, respectively] 

 

 

  

 

 

   

 

ii. is reliably simulated in a climate model.  

  (c) use paired samples (R, L) from historical records to fit ! such that  

   || " || R – F(L, ! ||= min 

  (d) Verify the fitted model R = F(L, !) by means of independent historical data.  

 2. MODEL APPLICATION  

  (a) Get the climate parameter L from the output of a climate model. 
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Figure 3: As in figure 1 but based on the ECHAM3 atmospheric model (T42, about 2.8° x 2.8°).  

The correlations between the time coefficients is .86 and .68.  

[North Atlantic winter SLP (mb)] 

 

 

 

 

 

 

 

[Scandinavian air temperature (K). The temperature patterns explain 42% and 17% of the total  

variance.] 

 

 

 

 

 

 

 

 

  (b) Check if the climate model reproduces the link between R and L  

  (c) Calculate R by R = F(L, !).  

  (d) Use R as forcing function for an impact model.  

 The most difficult step is the design of the statistical model. The type of model depends on  

the desired output needed for the climate scenario. Obviously, a model required to yield daily  

time series of temperature, rainfall, cloudiness, etc (sometimes called a weather generator) will  

be more complicated than a model set up to estimate changes in total annual precipitation.  
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The statistical models found in the literature can be roughly classified into three groups: 

linear methods, classifications methods and the quite recent applications of neural-networks.  

But perhaps the most simple technique is the analog method. The analog method is also a 

extreme form of the classification methods, hut due to its simplicity it can be taken as a kind  

of benchmark for the other methods. In the following sections the results of the analog method 

for a particular example (winter rainfall in Spain) are presented and compared with the results 

obtained with more complicated techniques.  

5 The analog method.  

The most simple downscaling scheme is the analog method. This method has been essentially applied 

in the field of weather forecasting (Lorenz (1969; Kruizinga and Murphy, 1983), and  

in short-term climate prediction (Barnett and Preisendorfer, 1978; van den Dool et al., 1994).  

For downscaling purposes the idea of the analog method is simple. The large-scale atmospheric 

circulation simulated by a GCM is compared to each one of the historical observations and the most 

similar, in a sense that has to be still defined, is chosen as its analog. The simultaneously observed 

local climate is then associated to the simulated large-scale pattern.  

 The most relevant problem associated with this method is the need for sufficiently long 

observations, so that a reasonable analog of the large-scale circulation can be always found.  

Due to the amount of degrees of freedom of the large-scale atmospheric circulation, it has been 

pointed out (Van den Dool et al., 1994) that on a global basis and for prediction purposes several 

thousand years would be needed to guarantee that an analog can always be found. However, many of 

these degrees of freedom represent just background noise that can be previously filtered out, for 

instance by a standard Empirical Orthogonal Function Analysis (EOF) and the area  

of interest is not global but normally covers a continent or an ocean basin. Furthermore for 

downscaling purposes the analog method is not used in a prediction modus, but rather for hindcast. In 

this case, analogs are indeed found for most of the downscaling applications that  

we have explored. In this slightly modified form, the anomalies of the atmospheric circulation, for 

instance represented by the anomalies of the SLP field f, are described by the few leading 
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EOF patterns: 

 

! 

f (i,t) = xk
k

" (t)gk (i)   (1) 

where i is a grid point index, t is the time step, gk is the kth EOF pattern and xk is the amplitude  

of this pattern at time t. The analogs are searched only within the space spanned by these EOF 

patterns.  

 Consider an atmospheric anomaly pattern "f(r) (for instance the difference between a CO2  

and control simulation with a GCM or the anomaly between an observed circulation and the  

long-term mean). This pattern may have coordinates zi in this EOF space. Its analog is defined  

as the month t that minimizes the distance in EOF space:  

 

! 

zk – xk{
k=1

n

" (t)}
2

  (2) 

where xk(t)) are the projection of the SLP anomalies onto the kth EOF pattern, and n is the  

number of the retained EOFs. The method can be generalised by introducing different weights  

dk on the EOF coordinates:  

 

! 

dk{
k=1

n

" (xk (t0) – xk (t))
2}   (3) 

The weights dk may be optimised, so that the normalized squared deviation E between the simulated 

and observed local rainfall is as small as possible:   

 

! 

E = f j
o{

t=1

T

"
j=1 

N

" t( )  – f j
s
(t)}

2
/# j

2
  (4) 

where 

! 

f j
o

 and  f j
s
 are the observed and simulated rainfall at station j, respectively, and 

! 

" j
2
 is the 

observed variance at station j.  

 The optimization procedure can be considerably difficult, since the function E has in general  

a complicated topography. We will restrict here to the simpler method contained in (2), with  

n=5.  

 This method is illustrated in detailed by the following example. We are interested in the win-ter 

(DJF) precipitation over the Iberian Peninsula, given at a number of irregularly distributed 

meterological stations. It is assumed that this regional variable is controlled to a great extent  

by the atmospheric variability in the European-North Atlantic sector. The large-scale variable 
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will be the SLP field, which for this purpose offers some advantages compared to geopotential 

height data. First, there exist long homogeneous time series of this variable that allow to set  

up the statistical model in some period and check it in an independent data set. Second, in  

climate change GCM experiments, geopotential heights tend to be much more affected by the 

global warming, but these changes may be related to changes in the mean atmospheric density 

and not necessarily to changes of the atmospheric circulation.  

 To check the quality of the analog method we try to reconstruct the time series of the winter 

(DJF) average precipitation in the period 1901-1989 by looking for analogs of the atmospheric 

circulation in the period 1951-1989. In the overlapping period the analog for a particular month  

is searched in the whole data set available, but always in a season different to the target pat- 

tern. Since the interannual autocorrelation of the atmosphere is negligible this procedure should 

amount to searching the analogs in an independent data set.  

 To reduce the number of atmospheric degrees of freedom the EOFs of the winter SLP are 

calculated. Then, the winter SLP anomalies are projected onto the first few EOFs. The results 

obtained by the analog method are subsequently presented in the following sections, compared 

directly with those achieved by the more complicated techniques.  

6  Classification methods.  

 

The general principle underlying the classification methods is also simple, although the practi- 

cal implementation can become quite complicated. A classification scheme of the atmospheric 

circulation in the area of interest is developed and a pool of historical observations is distributed 

into the defined classes. The classification criteria are than applied to atmospheric circulations 

simulated by a GCM, so that each circulation can be classified as belonging to one of the classes. 

To each observed circulation there exist a simultaneous observation of the local variable. The 

value of the local variable to be associated with the simulated large-scale circulation can be cho-

sen as either the average of all regional observations simultaneous to the elements of that class,  

or only the regional observations simultaneous to one element of the class, selected at random. 

Which of both strategies is best suited depends on the particular problem. For instance, if one  

is interested in simulating local daily rainfall, averaging over all the elements of a class will 
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Figure 4: Five-year-running mean time series of area-averaged winter (DJF) rainfall anomalies 

(mm/month) as derived from station data in the Iberian Peninsula (solid line); derived from the North 

Atlantic SLP pressure field: analog method (dotted line) and Canonical Correlation  

Analysis (dashed line)  

 

 

 

in general lead to an underestimation of the local rainfall variance, of extreme events, and in general, 

to a local rainfall probability distribution different to the observed. On the other hand, averaging over 

several elements of the class will filter out more effectively measurements errors at that station.  

 Another possibility is to apply a fuzzy-logic approach (Ozelkan, 1996). Each circulation  

pattern belongs to several classes simultaneously, with an intensity that can be calculated by 

previously defined fuzzy-rules. The local variable is estimated as a weighted average of the mean local 

climates corresponding to each class.  

 The practical problem remains to define a method to classify the large-scale patterns. There are 

many classification methods. However, it should be pointed out that all classification schemes are to 

some degree subjective, although so me of them, once defined, allow for an automatic clas-ification of 

circulation patterns. In the most objective schemes only the number of independent classes has to be 

subjectively fixed at some stage of the model design.  



 

 

 

- 20 - 

 The typical example of subjective classification schemes is the traditional Grosswetterlagen 

classification of the German Weather Service for Western Europe-North Atlantic sector. This 

classification has been used for downscaling purposes (Bardossy and Plate, 1992). Weather 

typing procedures have been developed by many national weather services for their particular 

regions based on the local expertise. Other well known subjective schemes are the Schuepp's 

scheme for Switzerland and the Lamb classification for the British Isles daily weather patterns. 

There exists an automatic procedure (Jones et al., 1993) that takes into account the empirical 

rules first proposed by Lamb.  

 More complicated technically is the design of an objective classification scheme. In this 

respect several types of schemes can be distinguished: classifications that only depend on the 

large-scale circulation data, classifications that depend on the local variable, and schemes that 

use information from both data. A typical example of the first and second group is traditional 

cluster analysis of atmospheric circulation patterns (Cheng and Wallace, 1993) or of the local 

variable. In the first case the classes of the large-scale circulation are given directly by the 

analysis. In the second case the elements of the large-scale circulation class are defined as the 

simultaneous circulation to each element of the local climate class. This second method has  

the advantage that the resulting large-scale classes should really correspond to different local 

situations, which is not necessarily the case in a classification based only on the large-scale 

patterns.  

 An example of a quite complicated classification based simultaneously on the large-scale 

circulation and the local variable is represented by CART (Classification and Regression Trees, 

Breimann et al., 1990) analysis. This method has been mainly applied to the simulation of  

local daily rainfall (Hughes et al., 1993, Schnur and Lettenmaier, 1997). However, due to its 

extensive needs of computer time, it has been applied to a limited number of stations and it  

has been assumed that rainfall is just a two-outcome process, wet or dry. The CART analysis 

searches recursively for a binary decision tree, whose decision nodes are based on the values of 

the atmospheric variables at some key locations, or the values of key atmospheric indices. Each 

terminal node of the tree represents a weather state. A weather state resulting from the CART 

analysis is such that the joint probability distribution (including all stations) based on the days 

belonging to that weather state is, in some sense, maximally different from the probability of
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the other weather states.  

 The weather states defined by any classification scheme can be also used to validate the 

performance of a GCM and eventually investigate the reason why a particular GCM may not  

be simulating properly the local climate in a certain region. Notwithstanding the fact that the 

weather classes are the result of a more or less subjective definition, and if these classes are  

not defined in a very restrictive manner, the GCMs in general are able to simulate reasonably 

their probabilities of occurrence (Hulme et al., 1993). Much more problematic is the simulation  

of the local climate associated with the individual large-scale classes, since the local climate is  

for instance quite sensitive to the exact location of anticyclones or deviations of storm tracks  

from the long-term mean. The best performance is usually found for surface temperature in the 

winter season, since this local variable is to a great extent determined by large-scale advection. 

The associated summer temperature and rainfall in both seasons, however, are normally not so 

satisfactorily reproduced.  

 If the large-scale circulation is classified on a daily basis, an important aspect of the valida- 

tion is the dynamical behavior of these classes, for instance, their mean life times and transition 

probabilities. Since the weather typing is not usually defined from a dynamical point of view, 

 this aspect of the validation can give more objective information on the ability of the models  

to simulate the regional weather. The GCMs do show some skill in reproducing the transition 

probabilities of the weather types (Zorita et al., 1995), but their performance has still to be 

considerably improved if realistic local weather time series are to be directly used in climate  

impact studies. Therefore, some of the deficiencies in the simulation of local weather scenarios  

lie clearly in the deficiencies of the GCMs to simulate the evolution of the large-scale atmo- 

spheric patterns. However, for daily rainfall there exists a more serious problem, which remains  

still unsolved. Downscaling procedures based on classification schemes and using the observed  

large-scale circulation produce daily rainfall time series with clearly less persistence than in the 

observation, i.e. the observed time-clustering of precipitation is not replicated by the downscal- 

ing techniques (Hughes et al., 1993). This problem can be partially, but not completely, reduced  

by simulating daily rainfall not only conditional on the daily weather-class, but also on the evo- 

lution in the previous few days (Zorita et al., 1995). Therefore, there seems to exist in the real  

rainfall process some kind of local persistence that presumably cannot be taken into account 
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only by large-scale processes alone (Hughes et al., 1993). One possibility that should be worth 

exploring could be to assume that the rainfall events resulting from the passage of mid-latitude 

depressions follow some kind of spatial-temporal stochastic model, such as the Newmann-Scott 

or Barlett-Lewis models (Marroquín et al., 1996), and try to find a link between the adjustable 

parameters of these models and the monthly or seasonal circulation statistics, for instance, mean 

circulation and intramonthly variability. The daily rainfall amounts would be generated in a 

second step, once the stochastic model parameters have been estimated conditioned upon the 

large-scale state.  

 The classification methods can also be combined with a dynamical LAM for regional climate 

change estimation (Frey-Bunness et al., 1995). Once the large-scale circulation patterns have 

been classified, several integrations with a LAM model are carried out, in which the dynamical 

model is driven by boundary conditions that represent the large-scale circulation of each class. 

The local climates corresponding to each large-scale class simulated by the LAM are averaged, 

weighted by the probabilities with which each class occurs, either in the observations, in a control 

integration of a GCM or in a climate change experiment with a GCM. The advantage of this 

method is that the computation costs only depend on the number of classes. If one is interested  

in the broad features of the local climate, integrations with the boundary conditions of only the 

most frequent classes may be sufficient. However, for a more reliable representation of the local 

climate, for instance of the extreme events statistics, one is forced to carry out simulations also 

with the classes that appear only with low probability.  

7  Linear methods.  

Linear models are perhaps the most popular in the downscaling context. They apply the huge 

battery of already existing linear methods, for instance from the simple linear regression up to 

multivariate singular value decomposition, to the concept of teleconnection. One of the first 

physical teleconnections identified in climate research was the link between the North Atlantic 

Oscillation (NAO) and the surface-air temperature in Scandinavia (see introduction and Figure  

1). This link can be applied to downscaling by setting up a linear regression between the 

anomalies of the NAO index (the SLP difference between Azores and Iceland) and the anomalies 
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of the temperature in a Scandinavian station. The changes in the strength of the N AO in a future 

climate can be then translated to changes in local temperature by means of linear regression,  

apart from the global temperature increase.  

 The general idea of the linear methods is the same as in the above example, namely to link 

anomalies of the large-scale circulation to anomalies of the local climate. However, the technical 

complexity of the method can be considerably increased, as shown in this section in a more 

sophisticated treatment of the relationship between the North-Atlantic SLP and winter Iberian  

rainfall (von Storch et al., 1993).  

 For this purpose we have chosen Canonical Correlation Analysis (CCA). Given two random  

vector time series x and y, in this case the winter rainfall at the Iberian stations and the SLP  

field defined on a grid over the North Atlantic, CCA identifies pairs of patterns whose time  

evolution is optimally correlated (Barnett and Preisendorfer, 1987; Bretherton et al., 1992).  

These spatial patterns are the eigenvectors of the matrices: 

 

! 

MX  =  Cxx
–1
CxyCyy

–1
Cyx

MY  =  Cyy
–1
CyxCxx

–1
Cxy

  (5) 

where C's are the respective cross-covariance matrices involving the variables of the SLP (x) and  

local temperature (y) time series. It can be shown that both matrices MX and MY have the same  

non-zero eigenvalues ck, which are the squared correlation between the time series associated  

with the kth eigenvector of MX and MY. Otherwise the time series are pairwise uncorrelated.  

This does not necessarily mean that the processes represented by the different CCA patterns are 

physically independent but they normally represent, at least in a first approximation, different  

aspects of the variability. For more technical details about CCA and other similar techniques  

the reader is referred to Bretherton et al. (1992). Prior to the CCA analysis both fields, North- 

Atlantic SLP and Iberian rainfall, are filtered by standard EOF analysis to reduce the number  

of degrees of freedom of both fields. We will compare the results of the CCA with the analog  

method in the previous section, and therefore the same number of EOFs for the SLP field are  

retained, so that the same large-scale information enters both methods. For Iberian rainfall the  

first two EOFs, that describe about 80% of the total variance, are retained for the CCA.  

 The CCA identifies one dominant pair of patterns (Fig 5). The rainfall pattern has the same  

sign at all stations, with highest values near the Atlantic coast and decreasing values towards 
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Figure 5: The first pair of canonical correlation pattern of observed winter (DJF) Iberian rainfall  

(isolines 25 mm/month) and simultaneous SLP (hPa) in the North Atlantic sector. The corre- 

lation between the time coefficients is .86. The rainfall pattern explains 50% of the variance.  

 

the Mediterranean. The associated SLP pattern consists of a low-pressure cell located over the 

British Isles. The canonical pair of patterns may be physically explained by advection by the 

large-scale circulation. For instance, the SLP pattern describes variations of the advection of  

air masses of Atlantic origin to the Iberian Peninsula.  

 The result of the CCA provides a method for estimating a regional rainfall anomaly Rt(y)  

at a set of stations from a given large-scale pressure anomaly field ft (x) in a consistent way. 

Mathematically, this is accomplished in three steps: If the pairs of CCA patterns for the large-

scale and local variable are denoted by pk and qk, respectively the first step is to calculate the 

amplitude ak with which the kth large-scale CCA pattern pk appears in the new SLP data ft (x). 

This is achieved by minimizing the sum of squares:  

 

! 

E = f t{
t,i

" xi( ) – ak
k

" t( )pk (xi )}
2

  (6)  

Equating to zero the derivatives of E with respect to ak leads to a linear system of equation that 

can be solved by standard methods. The estimated rainfall anomalies at station yj associated  

with f (t) is just the sum of the estimated amplitudes of the local CCA patterns.  

 

! 

R y j( ) = ck
k

" ak t( )qk y j( )   (7) 

where ck are the canonical correlations. This procedure is, of course, capable of describing only  

the part of rainfall variance that can be traced to the atmospheric circulation. The implicit 

assumption is that the observed intermonthly SLP-rainfall relationship can be extrapolated to 
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longer time scales, which is reasonable as long as the climate variations are considered small.  

We will later see that this condition is fulfilled.  

 The reliability of the suggested statistical relationship is tested by reconstructing the patterns 

of Iberian rainfall from the beginning of this century. The North Atlantic pressure field has 

undergone significant changes during this century (Hense et al., 1990; Schabbar et al., 1990) and 

this variability should have had an effect on rainfall. Note that the data prior to 1950 have not 

been used to perform the CCA and, thus, represent independent samples.  

 The area-averaged rainfall, obtained indirectly from the pressure fields and from the in- 

situ meteorological observations are displayed in Fig. 4. The two time series, both smoothed  

with a 5-year running-mean filter, vary coherently on all resolved time scales. Interestingly,  

the method is able to reproduce the low-frequency oscillations with a time-scale of about 20  

years and the positive rainfall trend. This confirms that, to large extent, winter rainfall in  

this region is controlled by the large-scale circulation, and that the trend, as well as the inter-

decadal variations, are real. This follows since the two data sets, rainfall and pressure, are from 

independent sources.  

 The linear methods can also been combined with other high-resolution empirical information 

to produce the desired downscaling. The model proposed by Stamm and Gettelmann (1995) lies 

in some sense between the purely empirical model described in the previous example and nested 

LAMs. These authors also focus on rainfall and take the large-scale variables that may have  

some influence, namely observed sea surface temperature and winds. They set up a numerical 

advection scheme that takes also into account high-resolution topographic data and that tries to 

estimate the precipitable water budget of an air parcel in its way towards the region or station  

of interest. Then, a regression equation is used to link this value with the observed rainfall. For 

climate change assessment the winds (and SSTs) simulated by a GCM are used to estimate the 

amount of precipitable water and then the regression equation is used to estimate local rainfall. 

This type of model, however, has not been yet profusely used.  

 An important difference between the linear method and classification methods is that the  

linear regression methods produce time series with smaller variance than the observations, which 

can be a quite serious problems for some ecological applications. This occurs because the linear 

models filter out the noise inherent in the observations that is not related to the atmospheric
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circulation. This problem is discussed in more detail in section 10.  

 A caveat of the linear methods is that they cannot be used directly when the local variables 

are not normally distributed. Since the variability of the large-scale atmospheric circulation is 

usually normally distributed (at least it is quite difficult to detect deviations from normality)  

the output of any linear method is bound to be also normally distributed. There are, however, 

local variables that strongly deviate from normality, the most important example being perhaps 

daily precipitation. The standard solution to this problem has been to transform the local  

variable so that the distribution of the transformed variable is approximately gaussian. This is 

always possible for an unbound random variable, but not for rainfall which is always bounded  

by zero. This may be not such a serious problem if the bound is sufficiently separated from the 

median in terms of the standard deviation, but this type of transformation would always induce 

additional errors. Perhaps more serious is the fact that such a variable transformation would 

probably shrink the long tails of a non- normal distribution ( for instance the usual (1+log x) 

transformation in the case of rainfall), but then the inaccuracy in the estimation of changes  

in the mean have to be expressed in physical units, and therefore has to be back-transformed, 

widening the confidence intervals.  

 In the next section we present another possibility to apply linear methods even if the local 

variables are non-normally distributed.  

8  Linear methods applied to non-normally distributed local vari-

 ables.  

Some climate impact models (e.g., agricultural models) do not need time series of local forcing 

functions that are consistent with the simultaneous large-scale fields, but just a few statistical 

properties of those time series suffice: it is the mean rainfall, distribution of rainfall amounts,  

the distribution of the length of dry periods, etc., and their changes in a new climate, that are 

important. The idea is then to establish relationships between the large-scale fields and, for 

instance, the probability distribution or the distribution of storm interarrival times, etc. The 

interannual variability of these functions is expected to be more normally distributed, since they 

are calculated by suitable time-averages. In this case a linear technique may have chance to be 
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successful.  

 In this example we focus on the probability distribution of daily rainfall and of the storm 

interarrival times of the station Cáceres in the Iberian Peninsula (30.5°N, 6.3°W) in winter  

(DJF), The probability of storm interarrival time psit(#) is defined as the probability that the 

length of periods with no rain equals or exceeds # days.  

 We choose in this case the seasonally averaged winter SLP fields as large-scale variables. 

Two CCA calculations have been performed: one in which the second field for the CCA is the 

winter daily rainfall distributions at this station; and another one in which the local field is  

the frequency of storm interarrival times. These frequency distributions are determined for each 

winter season from the observations. It is clear that the long-tails may not be reliably estimated. 

For instance, since each winter contains 90 days, the 98% quantile of the rainfall distribution 

depends on a single value, namely the highest amount in that winter. The 90% quantile depends 

on 9 values.  

 The CCA is then performed as in the previous section in the period 1965-85. The results of 

both calculations are shown in figure 6. The SLP canonical pattern looks similar in both cases  

to the result of the CCA analysis between SLP and monthly rainfall. This supports the validity  

of this approach. The canonical patterns of rainfall distribution and storm interarrival times 

indicate that the increase of mean rainfall that occurs when the SLP in the North Atlantic is  

lower than normal (Fig 5) and is mainly caused by an increase of days with weak rainfall at the 

cost of dry days, whereas the number of days with heavy rainfall (> 3 mm/day) remains almost 

unchanged. With respect to the storm interarrival times the canonical patterns indicate that  

the low pressure cell over the North Atlantic is associated with a reduction of the probability  

of moderate dry spells (< 5days), where the changes in the probability of longer dry spells is 

smaller.  

 To validate the statistical model the distribution of interarrival times for the period 1942- 

1989 may be estimated based on the linear model and the SLP data in this period. We show in 

Figure 7 the evolution of the 5-day storm-interarrival time (i.e. the probability that a dry period 

would last a least 5 days), both from the observations and from the estimation with the CCA 

method. The analog method has been also applied to the same data set. In this case the analogs 

for the whole period are searched on a daily basis in the winter months between 1965-1985. For 
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Figure 6: Results of the two Canonical correlation analysis of seasonal North Atlantic SLP in  

winter time and daily rainfall amounts in Cáceres, Spain: SLP and daily rainfall probability   

distribution; and SLP and the probability of storm interarrival times.  

[SLP (mb) and probability of daily rainfall amounts in mm/day. The correlation between the 

time coefficients is .87, the probability pattern explains 30% of the variance.] 

 

 

 

 

 

 

 

 

[SLP (mb) and storm interarrival times in days. The correlation between the time coefficients 

is .62, the probability pattern explains 38% 0/ the variance. ] 

 

 

 

the training period the analogs were again searched in a season different from the target day.  

The agreement between simulations and observations is clear, especially at low frequencies. The 

90% quantile time series seems to be negatively correlated with the 5-day interarrival time time 

series also at low frequencies, indicating that periods with higher (lower) rainfall are associated 

with shorter (longer) dry spans. This relationship is also captured by both statistical methods.  
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Figure 7: Time series 0/ probability of 5-day storm interarrival time and quantile of daily rain/all  

amount in Gáceres (Spain) in wintertime (DJF) , as observed and reconstructed from the winter  

North Atlantic SLP field, by the analog method and the CCA method.  

 

9   Neural networks. 

Neural networks have found in the last years a wide range of applications. A quite complete 

review about this subject can be found in (Lau and Widow, 1990). For applications in meteorol-

ogy the reader is referred to Elsner and Tsonis (1992) and the references therein. In climatology 

recent applications comprise the EI Niño-Southern Oscillation phenomenon (Grieger and Latif, 

1994; Tangang et al., 1997) and Indian monsoon rainfall (Navone and Ceccatto, 1994). Neural 

networks have a great potentiality in many contexts, but they have been applied to the down-

scaling problem only in a few cases (Hewitson and Crane, 1992 and 1996). Although promising, 

it remains to be demonstrated that they are generally a useful downscaling method.  

Only the basic concepts necessary to follow this section will be given here. Very briefly, a 

neural network is an algorithm that transforms an input vector xin into an output vector xout  

by a stepwise non-linear transformations, as illustrated in figure 8. Each transformations is  

carried out in two steps . In a first step each component of the input vector 

! 

xi
in

 is separately  
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transformed by a nonlinear function f: 

 

! 

xi
* =  f xi

in( )   (8) 

In a second step a linear transformation is applied to x*: 

 

! 

x j
1

=  wij
1

i

" xi
*

 (9) 

The resulting vector xl is in turn the input for the next non-linear transformations. It is useful  

to think as if these two step process is performed by one layer of “neurons” (fig 8), the whole 

neural network containing several layers. Finally, the output vector xout is the result of the 

operation of the last layer.  

A complete model can be build when the parameters 

! 

˜ w  are known. This can be achieved by 

fitting them with a set of known inputs 

! 

xi
in
(t) and outputs 

! 

yi (t), by minimizing the deviations:  

 

! 

 xi
out{

t=1

T

"
i=1

N

" t( )  – yi t( )}
2

  (10) 

where N is the number of stations and T the length of the time series.  

We have used in this example a neural network of three layers to construct a nonlinear model 

that links the daily SLP (as predictor) and daily rainfall amounts (as predictand). The input  

vector is composed of the principal components associated with the leading EOFs of the daily 

SLP field.  

The number of elements in the intermediate layer (sometimes called the hidden layer) is 

somewhat arbitrary but constrained by the following considerations. First, as in any statistical 

model the number of parameters in w

! 

˜ w  should be kept to a minimum to avoid overfitting of the 

noise in the training period. Otherwise the skill of the network falls abruptly when it is applied  

to a set of predictors in an independent data set. To understand the second consideration  

more easily, consider for the moment a linear network (with a linear filter function f) with  

just a single element in the hidden layer and assume that the desired output time series are 

normalized (µ = 0, $ = 1). Then this linear model is equivalent to a CCA model with the first  

pair of canonical loadings given by 

! 

wij
1
 and 

! 

wij
2
. If we think of a canonical pair of patterns as 

representing a physical process, as we did in the Scandinavian temperature example, then we 

should include so many neurons in the hidden layer as many physical situations giving rise to 

rainfall. As a rule of thumb, this number should be of the order of the rainy Grosswetterlagen  
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Figure 8: Schematic structure of an algorithmic neural network.  

 

 

 

 

 

 

 

 

 

 

 

 

 

for this region or the number of significant rainfall EOFs. In this example we have included five 

elements in the hidden layer.  

The last question that needs to be solved is the form of the filter function f. For many 

applications, sigmoidal-type functions of the form:  

 

! 

f (x)  =
1

1+ e
x– x

c

  (11) 

have been used (fig) 9, but they are not suitable for our downscaling purposes: the net could only 

generate rainfall in the interval (0,1), or by re-scaling in some apriori finite interval; furthermore  
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Figure 9: Two possible nonlinear filter functions that relates the input and output of a neuron  

in a neural net. Bold line is a classical sigmoidal type; the dashed line represent Eq. 12, more  

suitable for the simulation of daily rainfall. In this plot xc = 0  

 

it could not generate truly dry days. We have found that the function: 

 

! 

f (x)  =  0
                   :  x " xc

e
r(x– x

C
)

– 1 :  x # xc

$ 
% 
& 

' 
( 
) 

* ) 
 (12) 

gives reasonable results (fig 9, where the cut-off xc is the value of the input for which the neuron 

becomes active. The fact that it is not strictly differentiable at x = xc is not a too big practical 

problem. This choice is dictated by the nature of rainfall and is not universally applicable. For 

other applications other forms for the non-linear transformation f could be explored. Of course  

the form of f for the last layer of neurons strongly influences the probability distribution of  

the simulated local variable, so that a good choice for f has to take the real distribution into 

account. Note that in principle one could use different filter functions for the different neurons,  

so that considerable flexibility is possible.  

Following this considerations a neural network has been design to describe the daily rainfall 

in wintertime in Cálceres (Spain) in the period 1978-1983. These winters include relatively well 

defined wet and dry periods, so that the skill of the net can be better illustrated. The input 

variables are the coefficients of the leading 5 SLP EOFs, calculated on a daily basis. The 

coefficients for day t, t-l, t-2 are used to estimate the rainfall at day t. Therefore the input  
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layer has 15 neurons. An intermediate layer of 5 neurons has been intercalated. The output  

layer consists of a single neuron. The form of filter functions is the same for all neurons (see 

figure 9, dashed line), but for the output neuron the exponential parameter is about 5 times 

larger. The weights wand the values of the cut-offs xc (different for each neuron) of the network 

have been fitted with daily data in the winters between 1970-1975 by the back propagation error 

algorithm (Rummelhart et al., 1986). Then the winter daily SLP data in the period 1978-83 

are used to simulate rainfall at Cáceres. The results with the neural net are also compared 

with those obtained with the analog method (see section 4), by looking for three-day evolution 

analogs in the whole data set available except in the winter months in 1978-1983. Fig 10 (left) 

shows the observed rainfall and the rainfall estimated by these two methods. Figure 10 (right) 

shows the same time series but smoothed with a 5-day running mean filter. It can be seen that 

the neural net shares a common drawback with other “deterministic models”: they produce 

time series with less variance than in the observations and therefore they tend to underestimate 

the frequency or intensity of heavy rainfall and the frequency of dry days, although the general 

distribution of dry and wet periods is reasonable. The agreement with the observations is clear 

in the smoothed data time series, indicating that there exists high-frequency variability that is 

not captured by the neural net. Note that only information from the SLP has been used and that 

incorporation of geopotential heights or temperature in upper atmospheric layers (also large- 

scale fields) is likely to improve the results. It is also suspected (Hughes et al., 1993, Zorita et  

al., 1995) that the daily rainfall process is not only conditioned by the large-scale meteorological 

fields but also by the local rainfall in previous days, and this information is only indirectly and 

not completely available to the net through the SLP field in the previous days. But perhaps the 

biggest drawback is the difficulty to assign a physical interpretation to the weights.  

10 The problem of the level of simulated variability.  

The statistical models presented here describe in general a partial relationship between inde-

pendent variables representing the large-scale climate variability, and dependent local variables. 

The part of the local variables that remains undescribed by the independent variables is nor- 

mally referred to as noise. From this point of view the observed local variable at time t R(t) 



 

 

 

- 34 - 

Figure 10: Daily rainfall (mm/day) time series at Gáceres (Spain) in the winter months (DJF) 

in the years 1978-83 (first point is 1st January 1978, last 31st December 1983, simulated by the 

neural network and the analog method. The input for both models are the coefficients of the five 

leading SLP EOFs in the current and two previous days.  

 

 

 

 

 

 

 

 

 

 

 

 

is the outcome of a stochastic variable 

! 

˜ R (t) , with a probability distribution P that depends on the 

simultaneous large scale forcing F(t):  

 

! 

˜ R (t)  P(F(t))   (13) 

The parameters of the downscaling models presented in this paper (with the exception of the 

analog method in its simple version where all EOFs are treated equally) are fitted by minimizing 

a sum of squared deviations between the simulated and observed values, what means that the  

fitted model yields the best (in the sense of minimum uncertainty) estimation of the mean of  

E {P(F(t)} = 

! 

P(F). We denote this optimal fitted model by M and the best estimation of 

! 

P(F).by 

! 

ˆ R (t) .With this notation:  

 

! 

ˆ R (t)  P(F(t)) (14) 

However, the fitted model M is not optimized with respect to the the variance of 

! 

˜ R (t) . There 

are two contributions to the variance of 

! 

˜ R (t) : a local one:  

 Var local = E {P(F – 

! 

P(F)).2}  (15) 
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caused generally by local processes and measurements errors, and the variance forced externally 

by F: 

 V arexternal ! E {(F – 

! 

F)2}  (16) 

where we assumed that the variability of the external forcing is independent of the internal 

variability. 

When the statistical model is applied to an external forcing simulated by a GCM or taken 

from the observations in a verification period, the variance of the simulated output is less than 

the observed variance. This occurs because the variance of the simulated local variable is caused 

only by the variance of the external forcing V aexternal, and does not contain the internal 

contribution to the variance of 

! 

˜ R (t) . This is not important if the aim of the model is just 

the estimation of changes in the mean local climate, but it is really important if the output of 

the statistical model is used to drive an ecosystem or sector model. In this case the level and 

structure of this noise may need to be addressed.  

Some authors (Karl et al., 1990) have used inflated regression coefficients in linear models to 

increase the variance of the simulated output. However, in doing so one is artificially enlarging 

the signal-to-noise ratio in the simulated time series and also modifying the cross-covariance 

structure of the regional climate. This can be important for ecological modelling, for instance 

if temperature and rainfall are downscaled simultaneously. Another approach to this problem 

has been recently proposed by Bürger (1996). According to this author the second step in the 

design of the downscaling model (section 4), namely the estimation of the models parameters 

by minimizing the differences between the model response and the observations, is replaced by a 

constrained minimization procedure. The simulated local variables are forced to have the same 

covariance structure, and therefore the same individual variances, than the local observations. 

The price that has to be paid is that the fitting between simulations and observations in the 

training period is not as good as with an unconstrained minimization. Therefore, the statistical 

model produces a simulated output with the right level of local variability, but it is less consistent 

with the large-scale forcing. One has to find a compromise between both requirements that surely 

will depend on the particular application.  

A more consistent way would be to acknowledge our ignorance about the origin of this 

unexplained part of the local variability and try to take it into account as an additional and  
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independent random component. Therefore, for the purposes of obtaining estimates of the local 

variable, for instance to be subsequently used as forcing for an ecosystem model, the estimation 

of (14) could be replaced by a more useful estimation of the local variable conditional on the 

external forcing: 

 

! 

ˆ R (t)  =  M(F(t))  +  "  (17) 

where 

! 

" is a normally distributed random variable with mean zero and variance given by: 

 

! 

Var(")  =  Var(R)  –  Var(M(F))   (18) 

In other words, the variance of 

! 

" is the difference between the variance of the observed local 

variable and the variance of the simulated response. 

11 Concluding remarks.  

A variety of statistical downscaling examples has been presented and discussed. It is clear that 

there is no universal method valid for all variables and all regions and that one is bound to design  

statistical models on a case-by-case basis. This should not be a too large disadvantage for the  

investigator interested in a single region but it is certainly impracticable for an assessment of 

climate change on a global basis. In this respect Limited area models (LAMs) are more suitable. 

On the other hand, statistical models should be in most cases easy to develop and test. If they 

are able to reproduce the observed low-frequency variability of the regional climate, they will 

likely estimate correctly regional climate changes (provided that the GCMs correctly simulate 

the large-scale climate changes). LAMs are much more difficult to test. They require high 

quality large-scale forcing fields, that are normally available only for a couple of decades. This 

means that one cannot be sure if they can simulate regional climates other than the present 

one. Statistical methods can in this respect be of some help: LAMs should also be able to 

represent the statistical relationship between the large-scale fields and the regional climate. A 

study of these relationships as simulated by the LAM can be helpful in improving the dynamical 

model itself. The number of applications of statistical downscaling is rapidly growing, but 

unfortunately several problems have been only marginally considered: One aspect is the error in 

the estimates of local climate change due to the statistical analysis (Nonhebel, 1994; Gyalistras,  
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1996). The final output of a climate impact study is the result of a regional climate change 

estimation and the application of this estimation to a climate impact model. The estimation 

of climate change at regional scale contains a certain degree of uncertainty, which is the result 

of the intrinsic uncertainty of the global climate simulations superimposed on the uncertainty 

introduced by the statistical or the dynamical downscaling technique.  

Other aspect is related to the sensitivity of climate impact models. Much effort is being put 

to reduce the uncertainties of the regional climate change estimations, but these efforts have to be 

matched from the side of climate impacts studies by an assessment of the sensitivity of the climate 

impact models. For a meaningful climate impact study the error bars of the estimations of the 

local climate change have to be smaller than the sensitivity of the climate impact models, defined 

roughly as the minimum increment in the forcing fields necessary to produce a significantly 

different output. Some studies in this direction have been recently published (e.g. Bugmann, 

1997).  

Therefore, the solution of the spatial scale gap between climate research and climate impact 

studies has to be bridged not only by downscaling on the side of the climate research but 

also by upscaling on the side of the climate impact research. Upscaling means to design the 

impact models in such a manner that they can be run with forcing fields with the considerable 

uncertainty that is to be expected from quasi-realistic climate models. This can mean in practice 

that internal model parameters cannot be derived from detailed case studies. A more reasonable 

strategy for the application to climate impact studies would be to fit those internal parameters, 

so that the model can reproduce the low-frequency natural variability of the ecosystem.  
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