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ABSTRACT: Monthly means of sea level air pressure (SLP) and sea surface temperature (SSTJ fields 
are used as predictors to reconstruct an approximate climatology of wind and cyclonic activity, valid for 
10 stations, in winter over the northern North Atlantic region throughout the 20th century. The recon- 
structed climatology is based on statistical relationships between these predictors and local observa- 
tions at 10 synoptic stations during the period 1961 to 1987 The statistical relationships are identified 
by canonical correlation analysis combined with a cross validation technique. We apply double cross 
validation to independently verify the statistical model. An interpretati.on of the relationship between 
atmospheric circulation patterns and anomalies in the wind climatology and cyclonic activity is given. 
The historical climatology (1903 to 1987) for each observing station is obtained from the observed 
large-scale conditions by using the statistical relationships. It is found that within the present century 
both the monthly mean windiness and cyclonic activity show variations on the decadal time scale but 
no significant overall trends. This is confirmed for 2 of the stations for w h ~ c h  directly observed pressure 
data were available since the beginning of the century. 
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1. INTRODUCTION 

Variations in strength and frequency of storms and 
ocean waves in the northern North Atlantic region dur- 
ing this century have attracted increasing attention 
from the oil industry, commercial navigation interests, 
fisheries, insurance companies and the public, since 
severe property damages caused by waves and storms 
have been reported from time to t ~ m e  (e.g. Berz & 
Conrad 1994). Several scientific investigations have 
indicated that the strength and frequency of storms 
(Schinke 1993, Stein & Hense 1994) and waves (Bacon 
& Carter 1991) have been enhanced in recent years. 
These investigations, however, have been criticised by, 
e.g. ,  Schmidt & von Storch (1993) as being based on 
inhomogeneous records. Schmidt & von Storch argue 
that the increase in number of merchant ships and the 

'This is part of the European project WASA (Waves and 
Storms in the Northeast Atlantic) supported by the EU 
Commission (Contract No. EVSV-CT94-0506) 

'E-mail: ek@dmi.min.dk 

introduction of ocean weather ships, satellites and 
numerical weather prognoses gradually have im- 
proved the quality of weather maps, which therefore 
may reflect spurious trends in, e.g., the number of lows 
below a certain threshold. The same criticism applies 
to the available gridded datasets of daily values, since 
they essentially are digitised weather maps. To state 
the problem more clearly: gridded datasets probably 
represent the mean features correctly, but the day-to- 
day variability becomes more and more underesti- 
mated the further one goes backward in time. 

In order to solve the inhomogeneity problems, 
Schmidt & von Storch (1993) based their analysis of 
storminess in the German Bight on the calculation of 
geostrophic winds - as a proxy for real wind - from 3 
nearby stations forming a triangle, and they found no 
overall trend in either mean or extreme wind condi- 
tions during a 100 yr period. 

Another approach, which will be followed here, is 
to perform a downscaling of large-scale atmospheric 
flow. Basing our approach on certain observed large- 
scale climatological variables and applying a statistical 
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model based on canonical correlation analysis (CCA), 
we intend to reconstruct the climatology of wind and 
cyclonic activity at l0 locations in Scandinavia and the 
Northeast Atlant~c region during this century. 

The word 'downscaling' was used by von Storch et 
al. (1993) to mean a statistical process in w h ~ c h  rela- 
tionships between local and large-scale weather/ 
climate variables are sought. Assuming unchanged 
physical conditions, the parameters of these relation- 
ships are fixed and can be used to calculate the 
local/large-scale variables if the other variables are 
given. Usually it is the large-scale variables that are 
known and the local ones that are being sought. The 
methodology used in the present work is similar to that 
of von Storch et al. (1993), in which a linear statistical 
relationship between observed large-scale atmos- 
phenc/oceanic fields (in our case the monthly means of 
sea level alr pressure, SLP, and sea surface tempera- 
ture, SST), termed 'pr~dictors ' ,  and observed !oca! c!i- 
mate variables (in our case windiness), termed 'predic- 
tands', is identified in a training period where both 
predictors and predictands are observed and believed 
to be homogeneous. Assuming the large-scale SLP and 
SST fields to be homogeneous prior to the training 
period, the derived statistical relationship can be used 
to extend backward in time - 'hindcast' - a homoge- 
neous time series of predictands. 

As a measure of 'windiness' we use the monthly 
mean of the squares of wind speeds observed twice a 
day (W2).  This quantity is obviously biased towards 
the strongest w ~ n d s  in the month. Furthermore, the 
surface drag of the wind is approximately propor- 
tional to the wind speed squared, meaning that W* 
probably is a better descriptor of damage caused by 
the wind in a given month than the arithmetic mean 
of wind speeds. A final and somewhat surprising 
argument for choosing W2 is that we found that the 
downscaling model performs better on wind speed 
squared than on wind. 

In addition to W2, high-frequency variability of the 
mean SLP, a traditionally used measure of cyclonic 
activity, is aIso employed in the present work. One 
method commonly used is to apply a medium or high 
pass filter to the raw pressure data, and then to study 
the low-frequency variability of the high pass filtered 
data (e.g Nakamura & Wallace 1990). Here we use a 
very simple high pass filter, namely the pressure ten- 
dency over 12 h,  and monthly means (PT) of the 
absolute values of these tendencies are used as a mea- 
sure of cyclonic activity. The relationship between 
cyclonic activity and pressure tendency has previously 
been studied by e.g. Sanders & Gyakum (1980). Rogers 
& Bosart (1985), Gyakum et al. (1989) and Li (1990) In 
addition, synoptic experience tells us that both strong 
winds and large pressure cha.nges at mid-latitudes 

usually are associated with developing and/or moving 
pressure systems and thus to a wide extent are inter- 
connected, even though the timing and geographical 
positions of the two may be different. 

Our basic assumpt~on in the present study is that the 
average windiness in a given month at a given location 
is determin.ed to a certain degree by large-scale atmos- 
pheric conditions. In the actual application we repre- 
sent these conditions by gndded monthly means of 
SLP and SST By including both SLP and SST (which 
we take as a crude approximation of the air tempera- 
ture over the sea in the lower troposphere) as predic- 
tors, we hope to represent both the large-scale baro- 
tropic and large-scale baroclinic conditions of the 
atmosphere. See also Section 6 below for a discussion 
of pressure tendencies and windiness. 

Only winter months (DJF) are considered in the pre- 
sent work since this is the season when most storms 
cccur. 

The paper is organised as follows: Section 2 des- 
cribes the data used while Sectlon 3 mainly addresses 
the methodology used in model development, vali- 
dation and assessment. In Section 4 we take a look at 
the identified flow patterns associated with high W* 
and PT values. In Section 5, hindcasted time series of 
Mfz and PT are presented and discussed. Section 6 
examines the relation between W2 and PT Finally, 
Section 7 discusses several key aspects of the method- 
ology. 

2. DATA 

The predictands used in this study, W2 and PT, are 
derived from observations at 10 synoptic stations in 
Denmark, The Faeroe Islands, Finland, Greenland, 
Norway and Sweden (Fig. 1, Table 1). These quanti- 
ties cover the 81 winter months (DJF) from 1961 to 
1987 

The predictors were obtained from available 
datasets. The SLP data are gridded monthly averages 
of mean sea level air pressure fields obtained from 
the National Center of Atmospheric Research. These 
data are available on a 5" X 5" grid and are used here 
on the geographical domain 65" W-45' E and 45" 
N-75" N (Fig. 1). The SST data are from the GISST 
dataset, version 2.2 (Rayner et al. 1995). This dataset 
is used here on a 5" X 5" grid (although it is available 
at a higher resolution) and the domain is 65.5" 
W-44.5" E and 44.5" K-54.5" N, which makes it fairly 
compatible with the SLP dataset. Obviously points on 
land are of no value in this dataset; in addition, points 
covered by sea ice for more than one tenth of the 
winter period are disregarded. Both predictor fields 
are available over the period 1903 to 1987 
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Choosing the number of PCs to retain 
is always a matter of compromise: with 
many PCs retained, much noise is intro- 
duced; with few PCs retained, there is a 
risk of disregarding valuable inform- 
ation. For the present work a very simple 
truncation based on the varlance ex- 
plained by the individual PCs was cho- 
sen. It was found that 5 PCs explain more 
than 90 O/o of the variance for both predic- 
tands and for the SLP predictor. For the 
SST predictor only 70 O/o of the variance is 
explained by 5 PCs, but adding more 

Fig. 1. Location and number of the 10 synoptic stations used in this study 
(large squares) and all the grid points representing the large-scale flow 

fields (small dots). See Table 1 for station names 

PCs increases the explained variance 
only very slowly, so in this case as well 
5 PCs are retained. Table 2 shows the 
sum of the variance explained (in %) by 

3. METHODOLOGY AND DEVELOPMENT OF PCs 1 to 5 for both the predictor and predictand data. 
THE DOWNSCALING MODEL Note that a total of 10 predictors are used, i.e. 5 SLP 

PCs plus 5 SST PCs. 
Before any statistical analysis is performed, the 

yearly cycle is removed from both the predictor and 
predictand fields. Thus only anomalies from the long- 3.2. Canonical correlation analysis 
term average annual cycle are studied. 

The downscaling model is based on optimised rela- 
tlonships between the predictor and predictand fields, 

3.1. Prefiltering of data or rather the PCs of these as described in Section 3.1. 
Canonical correlation analysis (CCA) identifies the 

Generally, meteorological data contain high inter- linear relations that give the best possible correlations 
correlations, which often cause trouble when estimat- between 2 sets of stochastic variables. The technique 
ing the inverse matrices needed in statistical analyses, may thus be seen as an extension of multiple linear 
since the matrices may degenerate. To avoid such regression, allowing for 'more than one variable on 
problems and to minimise noise, we performed a pre- both sides of the equal sign'. Hotelling (1936) was the 
filtering that is often used (e.g. Barnett & Preisendorfer first to introduce CCA to the scientific community. 
1987), by compressing both the predictor and predic- Thorough descriptions and reviews of CCA are given 
tand data into a limited number of principal compo- in Tatsuoka (1971) and Wilks (1995). Step-by-step 
nents (PCs), i.e. a limited set of time series obtained as instructions for carrying out the CCA technique can be 
projections onto the dominant empirical orthogonal found in Barnett & Preisendorfer (1987). More recent 
functions (EOFs). papers have shown different applications and develop- 

ments of this technique (Barnston & Ropelewski 1992, 
von Storch et al. 1993, Cui et al. 1995). 

Table 1 Station number, station name, WMO (World Meteo- 
rological Organisation) number and geographical location for Our analysis follows the method of Barnett & 

the 10 stations used in the study Preisendorfer (1987). Mathematically expressed, we 

Station WMO no. Lat. Long. 

1 Tromss 01025 69" 41' N 18" 55' E 
2 Bergen 01317 60" 23' N 5" 20' E 
3 Ostersund 02226 63" 11' N 14" 30' E 
4 Stockholm 02464 59' 21' N 17" 57' E 
5 Sodankyla 02863 67' 22' N 26" 39' E 
6 Kuopio 02917 63' 47' N 27" 48' E 
7 Kirkjubajarklaustur 04064 63" 47' N 18" 04' W 
8 Nuuk/Godthaab 04250 64' 10' N 51" 45' W 
9 Torshavn 06011 62" 01' N 6" 46' W 

10 Kastrup 06180 55" 37' N 12" 39' E 
- 

are seeking linear combinations of the normalized (to 
unit standard deviation) predictor PCs (a;): 

Table 2. Sum of explained variance (in %) for PCs of SLP, SST, 
W2 and PT 

PC no.: 1 2 3 4 5 Sum 

SLP 37.8 23.3 15.4 10.0 4.0 90.5 
SST 28.1 13.6 12.4 10.9 5.2 70.2 
W2 38.7 27.0 12.7 8.7 6.4 93.5 
PT 59.4 15.9 11.2 7.9 1.6 96.0 
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- 

[the summation h u t  (10) reflects our choice 
of truncation In number of predictor PCs 
(5 SLP PCs, 5 SST PCs) and t is time, run- 
ning through winter months, 1961-19871 
and the normalised predictand PCs @,): 

The U'S and v's are called canonical 
component vectors (CCVs). The expan- 
sion coefficients rj, and sij are determined 
such that (a) the so-called canonical cor- 
relations between the individual pairs (U,,, 

v,) are maximised in such a way that the 
correlation decreases for increasing j, and 
(b) the canonical correlation between (U,, 

v,) is zero for j # k. 
Spatial patterns associated with the 

CCVs are called canonical maps. They 
are defined for each location as temporal 
inner products between the (truncated) 
predictors or predictands and the CCV 
time series. As in Barnett & Preisendorfer 
(1987) they are called g-maps (for the pre- 
dictors) and h-maps (for the predictands). 
The first g-map (associ.ated with the most 
significant CCV) is plotted in Fig. 2 for 
both W2 and PT. Having once calculated 
the g-maps and h-maps as well as the 
CCVs, the downscaling model for the W2 
predictands can be expressed as a sum of 
the different predictor CCVs times the 
corresponding canonical correlations 
times the corresponding W* h-maps: 

where W*, indicates the hindcasted value 
at station n ,  p, is the canonical correlation 
between U, and v,, and h,,, is the jth h-map 
component at station n. A similar expres- 
sion 

holds for hindcasting of PTat each station, 
however with different CCVs, g-maps 
and h-maps. 

The q'lindicates the truncation (in terms 
of number of retained CCVs) of the down- 
scaling model, which in our case must be 

Fig. 2. First g-map. Panels (a) and (b) show the SLP part and the SST part, 
respectively, in the W2 case, while panels (c) and (d) show the SLP part and 
the SST part, respectively, in the PTcase (Units are mb in (a)  and (c),  while 

in (b)  and (d]  they are "C) 
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less than or equal to 5. The optimum value of q"can be 
determined in different ways. We used a 'cross valida- 
tion' technique, in which each value q" = 1 ,  ..., 5 is 
tested by calculating a time series of hindcasted values 
(for 1961 to 1987) based on the actual q" in  the follow- 
ing way The hindcast of the 3 winter months (DJF) in a 
given winter, I, involves deletion of winter I - 1 ( 1  yr  
before), I a n d  I +  1 ( 1  yr after) from the record of predic- 
tors and predictands (special treatment is needed if l i s  
the first or last winter in the data records). This proce- 
dure is to ensure that effects caused by autocorrelations 
in the predictands and/or predictors are eliminated 
(Barnston & Ropelewski 1992). Then a downscaling 
model is built entirely from the ground up (includ~ng 
EOFs and PCs followed by CCA) based on this shorter 
training period. This procedure is repeated for all win- 
ters within the period 1961 to 1987. In that way we ob- 
tain 5 different (one for each value of g") time series of 
hindcasted values. The optimal q" is finally chosen as 
the one whose corresponding time series gives the 
highest correlation coefficient with the observed val- 
ues. Table 3 lists this optimal q" for each station for the 
W2 as well a s  the PTpredictands. 

Once the g" is determined, the final downscaling 
model is set up based on all the winters in the training 
period 1961 to 1987. The hindcasts can then be 
obtained from Eq. (3) or (4) with the predictor CCVs 
[u , ( t ) ]  calculated in the peiiod 1903 to 1987 as  input. 

3.3. Model validation 

The maximum correlations used in the previous sub- 
section to optimise q" cannot be considered an inde- 
pendent measure of the skill of the final model, since 
all data (1961-1987) were used to find q". To obtain an 
independent hindcast we resort to a 'double cross val- 
idation' (see e.g. Michaelsen 1987), which in our appli- 
cation works a s  follows: To hindcast the 3 winter 
months (DJF) in a given winter, J, the 3 winters J -  1, J 

Table 3. Number of retained canonical modes (q") for the 
hindcasts of W2 and PTat the 10 stations 

Station W2 PT 

1 4 4 
2 1 5 
3 4 4 
4 2 4 
5 3 4 
6 2 5 
7 5 4 
8 4 4 
9 1 5 

10 4 5 

and J +  1 are  deleted from the record of predictors and 
predictands. Then the entire procedure described in 
Sections 3.1 and 3.2 is repeated (including the cross 
validation optimisation) for the reduced dataset, result- 
ing in a specific model with specific truncation g';, 
which can be used to perform a n  independent hindcast 
for winter J. Applying the above method to all winters 
from 1961 to 1987, a time series of independent hind- 
casts is obtained. The correlation between this inde- 
pendently hindcasted time series and the observed 
time series is our measure of model skill. 

The model skill for each station is listed in Table 4. 
The most striking feature is that the skill for PTis  con- 
siderably higher than for W2 for all stations, meaning 
that hindcast of P T  can be considered more reliable 
than that of W'. We believe the explanation for this to 
be the inhomogeneity of the wind measurements dur- 
ing the training period 1961-1987. This is not an  
unlikely explanation. The station history files of almost 
any station report the relocation of a n  instrument site 
or the replacement of instruments by more modern 
ones. Such changes often take places at  intervals of 
10 yr or less. Furthermore, the surrounding canopy 
changes due  to growth of vegetation, construction of 
houses and sheds, etc. In contrast, p r e s s u r e  and 
therefore P T  is insensitive to these factors and can 
be regarded as  fairly homogeneous. 

Of course the skill differs from station to station, par- 
ticularly for W' where Stns ?, 8 and 10 have such low 
skills that the hindcasts are disregarded in the follow- 
ing discussion. 

4. FACTORS INFLUENCING MODEL SKILL 

4.1. General discussion 

Overall, the most important predictor patterns for 
obtaining the downscaled results are  the first g-maps, 
which are  shown in Fig. 2. 

Table 4.  Correlation coefficients from the double cross valida- 
tion for both W' and PT 

Station 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
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Beginning with the I/l/n- case, we note that the SLP 
part of the first g-map (Fig. 2a) is very similar to the 
North Atlantic Oscillation (NAO), which is the domi- 
nant anomaly pattern in the SLP fields in the North 
Atlantlc region. Therefore it is also qulte simllar to the 
first SLP EOF (not shown). 

The NAO has been recognized for many years and 
was first discovered by Walker & Bliss (1932) and fur- 
ther described by van Loon & Rogers (1978) and Wal- 
lace & Gutzler (1981), among others. The NAO was 
originally defined as the pressure difference between 
the Icelandic low and the mid-Atlantic subtropical 
high. As such it is a measure of the strength of the 
westerlies over the central North Atlantic reglon. 
Many studies have documented the anomalous 
weather associated with the 2 extremes of the NAO. 
The first dates as far back as the 1??0s, when the 
Danish priest Hans Egede Saabye (1778) wrote: 'All 
winters in Greenland are severe, however, with differ- 
ences. The Danes have noted that when the winter has 
been severe, as we call it, in Denmark, the Greenland 
wlnter has i n  its own way - been mild and vice 
versa'. The temperature seesaw described here be- 
tween northern Europe and (western) Greenland is 
related to the NAO (van Loon & Rogers 1978). This 
relationship between temperature anomalies and the 
NAO is also indicated in the SST part of the first g-map 
(Fig. 2b): cold water to the south of Greenland and 
warm water in the North Sea and the Norwegian Sea 
are associated with strong average westerlies around 
55"-60" N. Due to the similarity between NAO and the 
SLP part of the first g-map we can conclude that not 
only temperature anomal~es ,  but also anomalies in W 2  
(the corresponding h-map, not shown), are associated 
with the NAO. 

Turning to the PT case, the SLP part of the first g-  
map (Fig. 2c) is arguably more elongated in the east- 
west direction and displaced to the north, compared 
to the previous pattern. This is in agreement with 
Rogers (1995), who used monthly root mean squares of 
band-pass-filtered daily gridded SLP data - a quan- 
tity which is very similar to our PT- to estimate storm 
tracks. He  found no 1 : l  correspondence between vari- 
ations in the dominant storm tracks and the NAO. 

Rather, he found that the pattern related to strong 
storm act~vity in the Northeast Atlantic and northern 
Europe 1s more elongated in the east-west direction 
and displaced to the north and east, very slmilar to that 
in Fig. 2c. 

The SST part of the first g-map for the PT case 
(Fig. 2d) shows features very similar to the W 2  case: 
cold water to the south of Greenland and warm water 
in the North Sea and the Norwegian Sea. 

Finally, one should not put too much emphasis on the 
SST g-map patterns, since generally less than 5 %  of 
the explained variance in the hindcasts comes from 
SST PCs (see Table 5) .  Only 2 exceptions were found: 
namely Stns 8 and 10 in the W 2  case, where SST con- 
tributed 22.5 and 45.9%, respectively, to the total vari- 
ance. But for these 2 cases the model's validation cor- 
relation values were very low (0.136, 0.262; see 
Table 4),  and thus they should not be considered. 

4.2. Optimal predictor maps 

The g-maps shown in Fig. 2 are only the first and 
dominant g-maps, but more g-maps contribute to our 
downscaling model. When the downscaling model is 
built one can, for each individual station, construct a 
single predictor map which will give exactly the same 
predictions as those from Eqs. (3) & (4 ) .  These maps, 
which we call optimal predictor maps (OPMs), are 
quite informative when one wants to interpret the 
physics behind the downscaled results. A description 
of how OPMs are calculated is given in Appendix 1. 

In Fig. 3 the W 2  OPMs are shown for Stns 2 and 3, 
which are the stations with highest skill. Note that only 
the SLP part of the OPMs is shown. For both stations 
high W 2  values are associated with SLP patterns, 
showing an anomalously strong monthly mean flow 
near the stations and an upstream area of anomalous 
confluence. It is likely that there is a sharpening of the 
temperature contrasts associated with this confluence, 
leading to an  enhancement of the baroclinicity imme- 
diately upstream of the stations. 

Turning to the PT case the same tendency is evldent 
for most of the 10 OPbls (Fig. 4 ) ,  i .e. a strong gradient 

Table 5. Relatlve contnbutlon (In %) of SLP and SST ( ~ n  terms of explained variance) to the total vanance of the hindcasted W' 
and PTfor each of the 10 statlons 

I Station: 1 2 3 4 5 6 7 8 9 
l0 1 - 

W 2  SST 4.3 2 9 6 9 6.4 3 0 4.7 5.2 22.5 2.9 45.9 1 
95 7 97 1 93 1 93 6 97.0 95.3 94.8 77 5 97 1 54 1 

I PT 

SST 3.0 1.9 5.5 6 3 4.4 6 1 0.2 4.9 0 3 
SLP 97.0 98.1 94.5 93 7 95.6 93 9 99.8 95.1 99.7 



Kaas et al.: Statistical hindcast of wind climatology 103 

Fig. 3. Optlmal predictor maps for (a) Stn 2 and (b )  Stn 3 in the W' case. 
G e o g r a p h ~ a l  positions of the stat~ons are marked by black dots. Units are 

I O - ~  m3 kg-' 

near the relevant station and an upstream anomalous 
confluence area. There is a high level of consistency 
between the maps in the sense that stations close to 
one another have very similar OPMs, e.g. Stns 1 and 5. 
From the maps for Stns 7 and 9 it is seen that high Cen- 
tral Atlantic cyclonic activity (i.e. high PT value) is 
related to NAO-like patterns - a fact which is also 
well known from synoptic experience and not inconsis- 
tent with Rogers' (1995) findings. For the western 
Greenland station strong cyclonic activity is associated 
with an anomalous ridge over the Central Atlantic. 
This is also consistent with synoptic experience indi- 
cating that 'many lows migrate up along the west coast 
of Greenland when the pressure over the Central 
Atlantic is high' (pers, comrn. from forecasters at the 
Danish Meteorological Institute). 

It is tempting to try to inter-compare OPMs for the 
W 2  and PTcase at individual stations. For Stns 2 and 3, 
for example, the W 2  OPM shows a southwesterly 
anomaly flow at the station, while the PT OPM shows a 
westerly anomaly flow. This veering seems to be a gen- 
eral feature for the other stations as well, which is also 
reflected in the g-map patterns in Fig. 2a and 2c. The 
reason for this is not obvious, but one must bear in 
mind that it is not necessarily relevant to make inter- 

comparisons for the same station, since 
large pressure tendencies often occur 
upstream of and prior to the large winds. 

5. HINDCAST RESULTS 

5.1. Hindcast for W2 

The model was next used to hindcast 
the W 2  at the 10 synoptic stations. 
Fig. 5a-j show the hindcasted W 2  time 
series (1903 to 1987) and the 27 yr of ob- 
served W 2 .  For clarity both time series 
have been filtered by a 3 yr running mean 
before plotting. The long-term average 
values are also plotted for comparison. A 
visual inspection of these plots reveals no 
overall trends, but considerable variations 
on decadal time scale are seen. 

We cannot rely on all the hindcasted 
time series in Fig. 5a-j with equal confi- 
dence, since the model's skill is different 
from station to station (Table 4 ) .  As al- 
ready mentioned in Section 4.1, Stns 7, 8 
and 10 should be disregarded for the W 2  
case. 

5.2. Hindcast for PT 

Fig. 6a-j is 
Again visual 
considerable 

similar to Fig. 5a-j, but for the PT case. 
inspection reveals no overall trends but 
variations on the decadal timescale. No 

large change is apparent in terms of the amplitudes of 
the variations, though a more regular variation is seen 
at all the 10 stations during the latest part of the series 
(1970s to 1987). 

Since PT OPMs (Fig. 4) are very similar for stations 
close to one another (e.g. Stns 1 and 5), the PT hind- 
casts are also similar to each other for these stations. 
This can be clearly seen on the hindcast plots. 

Just before finishing the manuscript, digitised long- 
term records of SLP at Stns 2 and 3, containing data 
collected 2 to 4 times daily and ranging back to 
approximately 1875. became available to us. From 
these observed pressure values we calculated the PT 
values for the entire period (1903 to 1987) and plotted 
them (Fig. 6b, i). In these plots it is apparent that the 
downscaled values are very similar to the observed 
data throughout the entire period, even though the 
downscaling model was only trained on data from the 
last 27 yr. The overall conclusion of no trends is thus 
confirmed by considering the directly observed data 
for these 2 stations. 
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6. RELATIONSHIP BETWEEN PRESSURE 
TENDENCY AND WIND SPEED 

High local pressure tendencies indicate developing 
and/or moving strong synoptic disturbances. How- 
ever, a high pressure tendency generally will not 
occur at  the same location and time as high wind 
speeds. For this reason one cannot use station data to 
show a firm relationship between high winds and 
large pressure tendencies. Instead we chose to use 
gridded data from a 5 yr experiment with the 
ECHAM3 general circulat~on model run at T106 reso- 
lution (see Bengtsson et al. 1995). This dataset is, of 
course, homogeneous and contains a realistic number 
of storms in the North Atlantic, with core pressures 
down to approximately 930 hPa and pressure tenden- 
cies up to more than 40 hPa per 12 h. Maximum wind 
speeds over the ocean are generally between 25 and 
35 m S-'. 

Twice a day the model near-surface wind speed and 
the absolute values of the 12 h pressure tendency were 
extracted at all sea points in the Northeast Atlantic 
from approximately 50" N to 70" N and 20" W to 15" E.  
To account for the varying Coriolis effect, the tenden- 
cies were scaled with by factor of sin(45O)/sin(cp) where 
cp is the local latitude. Only extended winter seasons 
(NDJF) were considered, implying a total of 20 winter 
months. Next, 4 time series were calculated twice daily 
from these data: 

Series 1:  the number of grid points where the wind 
speed exceeded the local 95 % percentile level; 

Ser-ies 2: the average absolute 12 h pressure ten- 
dency in the area; 

Series 3: the maximum wind speed occurring any- 
where in the area; 

Series 4: the maximum absolute 12 h pressure ten- 
dency occurring anywhere in the area. 

To see whether strong winds were closely related to 
strong pressure tendencies, time series 3 and 4 were 
compared. A 5 d low pass filter was used to account 
partly for the fact that strong tv~nds may be related to 
older, occluded systems (with small pressure tenden- 
cies) which originally were generated during a baro- 
clinic instability process dominated by high pressure 
tendencies. The correlation between the filtered time 
series 3 and 4 was 0.78, which shows that short periods 
of a few days dominated by high extreme (in space) 
pressure tendencies are also dominated by high 
extreme winds, and vice versa. 

In the present paper monthly mean pressure ten- 
dencies are used as a proxy for cyclonic activity. The 
correlation between the 20 monthly averages of time 
series 1 and 2 will give an estimate of the extent 
to which a monthly average pressure tendency is a 
good indicator of strong winds occurring during the 

month. This correlation was found to be 0.80, which 
means that high/lotv monthly mean pressure tenden- 
cies imply a high likelihood of many/few strong 
winds. 

Our station PT values only represent local average 
windiness, but the relationships identified above show 
that extreme winds are most 1ikel.y to occur during 
months with high PT values. The strong winds may, 
however, occur remotely from the actual station. 

7. DISCUSSION 

There are several issues concerning the methodol- 
ogy we have used that should be discussed. Those 
which we find most important are listed below. 

(1) Physical processes captured by the downscaling 
model: The linear downscaling model is by no means 
perfect, and lnonthly mean SLP and SST maps can 
never describe all aspects of W2 and PT. One impor- 
tant aspect not covered by the model is the atmos- 
pheric static stability, which plays an important role 
in baroclinic instability (e.g. Eady 1949). This might 
have changed due to increased radiative forcing of 
the atmosphere, and thus may have influenced the 
e-folding time and size of the lows. The 2 observed 
P T  time series at Stns 2 and 9 covering the years 1903 
to 1987, however, bear no indication that this is the 
case. 

(2) Model skill: A key question concerning the down- 
scaling model I S  its skill. To obtain an estimate of the 
validity of the correlations obtained during the double 
cross validation, we correlated the independently 
observed PTtime series at Stns 2 and 9 (see Section 5) 
with the PT hindcasts for the period 1903 to 1960 and 
obtained the correlations 0.74 for Stn 2 and 0.79 for 
Stn 9. (Note that the curves in Fig. 6b and i show 3 yr 
running mean data, and not the raw data on which the 
correlations are based.) These raw correlations have 
the same order of magnitude as those in Table 4 .  We 
can conclude that, at least for these 2 stations, double 
cross validation works as a fair method of calculating 
skill. 

(3) Choice of predictors: One of our basic results is 
that the SSTs contribute very little to the hindcasted 
time series (see Table 5). Atmospheric near-surface 
temperatures would definitely have been a better 
choice for capturing elements of monthly mean baro- 
clinicity. Recently a new d.ataset, the North Atlantic 
Climatologic Dataset (Frich et al. 1996), which covers a 
period of 100 yr, was compiled from a large number of 
stations in the North Atlantic region. These monthly 
mean data are quality-controlled and homogenised 
and cover a range of variables - including near- 
surface temperature - which may be used for down- 
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scalina DurDoses. The NACD dataset will be used in Acknowledgements. Special thanks are given to the Norwe- 
.,A . 

future applications of the downscaling model. gian ~e teo- ro lo~ica l  ~nstitute, Finnish ~ e t e o r o l o ~ i c a l  Insti- 
tute, Icelandic Weather Service and Swedish Meteorological 

(4) WASA pressure data set: Pressure data and Hydrological Institute for delivering the observational 
2 to 4 times daily at 20 North Atlantic stations, covering data lwlnd and ~ressul-ei from the 10 stations indicated in 
the years 1875 to  1995, are  being digitised as part if Fig. 1; to the ~ a t ~ o n a l  center of Atmospheric Research, Boul- 
the WASA project (Schmith et  al. in press), An analysis der. Colorado, USA, for providing the gridded MSL pressure 

dataset; to the llridley Centre, Bracknell, Great Britain, for 
of these data is now being carried Out and both PTand providing the GISST dataset; and finally to the Max Planck 
geostr0phic wind (based on pressure data) time Institute for Meteoroloqy. Hamburq, Germany, for providinq 
series will be studied in the WASA project the ~ ~ ~ ~ ~ 3 / ~ 1 0 6 - r e s % u t i o n  mo&l data. 

Appendix 1. Calculation of optimal predictor maps 

Considering the predictand W2 (the equations are similar normalized SLP PC and a, with i =  6, ..., 10 is the (i- 5)th non- 
for the PTcase) at a given station n, this appendix derives a normalized SST PC. Using the definition 
single predictor map em,,, which includes 1 component from 

q'' 
SLP as well as 1 component from SST, with m representing = C p , h j , n r , , j o i - 1 ' 2  
the number of gridpoints. The map em,, is defined so that the /=l 
same prediction WZn(t) as in Eq. (3) (see Section 3.2) can be 
obtained as a projection of SLP and SST fields onto e,,,: Eq. (A2) can be written as 

At the RHS of Eq. (Al)  the flrst sum is the projection onto 
the SLP component of e,,,wth 161 grid points, while the last 
sum is the projection onto the SST component of em,,, includ- 
ing only 77 grid points. We can rewrite Eq. (3) as follows: 

161 5 

= CSLP,,(~)CU,,,EOF;~~(~) + ('44) 
m=1 1=1 

77 10 

SST, (t) 1 U;,, EOF,!:,% 
m=l r=6 

where EOF:" is the ith SLP EOF and EOFSsTthe ith SST 
EOF. From Eq. (A4) the predictor map em,, can be written as: 

for m 5 161 and as 

10 
where o, is the variance of the ith raw principal component, 
a,(t), and the remaining terms are the same as in Eq (1) (see em.n = ~ U r . n E O F ~ T m - ~ 6 ~  (A6) 

I* 
Sect~on 3.2). Note that a ,  with i = 1, . . . ,  5 is the ith non- form 2 162. 
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