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Abs t rac t .  In this paper a highly simplified model is considered which de- 
scribes the interaction of anthropogenic climate changes represented by the 
infiuences due to the enhanced emission of CG2 resulting in the increase of 
the averaged surface air temperature on one side, and the economical effects 
described by the abatement costs for the reduction of emissions on the other 
side. 

The model is formulated as a linear-quadratic optimal control problem with 
a compact control region. By applying the standard necessary conditions, a 
multipoint-boundary-value problem is derived and its numerical solution ob- 
tained by multiple-shooting technique is presented. Special attention is paid 
to the computation of the reachable set of the system and to the dependence 
of the control structure on the final state prescribed. 

In order to smooth a certain irregular behaviour of the solutions near the end 
of the arbitrarilly fixed time-interval, an additional monotonicity constraint 
for the C02-concentration is introduced. Solutions of this extended optimal 
control problem are presented too and they are compared with the former 
solutions. 

Key W o r d s .  Climate model, optimal control, control constraints, minimum principle, 
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OBERLE, VON STORCH, AND TAHVONEN 

1. Introduction 

In recent years there has been a growing interest in modelling the global climate changes 
which are due to the man-made increase in the atmospheric concentration of greenhouse 
gases (cf. IPCC-report [5Ii Srenath [I!]; Tabonen et al. [14]). The main effects due to 
0 

the enhanced emissions are an increase in the global mean temperature of the Earth and 
a rise in the global mean sea level. Under a "business as usual" scenario, the IPCC group 
expects by the end of the next century anthropogenic COz-emission of about 16 GtC ', 
an increase of about 3 K in the global mean temperature, and a rise of severe1 tens of 
centimeters in the global mean sea level. 

Due to this situation, it is of interest to consider realistic models of different complexity 
for these quantities which allow to propose strategies for the reduction of emissions and 
to assess the effects of such strategies with respect to the ciimate changes and to the 
C L u u U u z y .  

In this paper, as a first step a very simplified mode! due to Tahvonen et al. [I41 is csn- 
, sidered, which describes the interaction of climate changes and economy. The model is 

constructed in the form of an optimal control problem with two state variables, repre- 
senting the globally averaged tropospheric COz-concentration and the globally averaged 
---- 2--- -!- L T L -  ---&..-I - - - 2 ~ L l . .  - - b -  4L,. -$ +La Pf? - 
i i c a i  a u L L a L c  a i r  i x i i l y a a b u i c .  I U C  L U U ~ L U L  v a l l a u l c  L G ~ L G ~ C U W  ~ U G  L G U U L ~ I U U  U I  UUG W V Z -  

emissions related to the "business as usual level" of the IPCC study. The simplifications 
of the model are characterized by the limitation to: 

- just  only one greenhouse gas, namely C02, 

- to globally averaged quantities with just one memory term for each quantity, 

- and to a iinear modei for the behaviour of the system in time. 

The aim of the model is to determine reduction strategies for the COz-edssions such 
that a certain prescribed final situation with respect to the state variables can be reached 
within a time-period of hundred years. Further, the reduction strategy determined is an 
optimal one in the sense that with this strategy the total cost of reduction (abatement 
costs) is minimized. 

in this paper we do not take into account the so-caiied adaptation costs, i.e. the costs 
which are due to the adaptation of the world economy to an increased global mean tem- 
perature. An estimation and a modelization of these costs would be very uncertain (cf. 

[141). 

2. A Model for Reduction of COz-Emissions 

In this section we describe the model used for the interaction of climate and economy 
introduced by Tahvonen et al. [14]. 

The dynamic system is given for two state-variables 

'The unit GtC means gigatons carbon; giga = lo9 
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REDUCTION OF C02-EMISSIONS 811 

C ( t )  : globally averaged tropospheric concentration of carbon dioxide at  time t , 
T ( t  j : globaliy averaged near-surface air-temperature at time t . 

Both quantities are given as deviation2 from their preindustrial values round about the 
year 1860. Thus, for our time the following initial data are appropriate: 

The time behaviour of these quantities is described by the following linear system of 
ordinary differential equations 

The driving force E ( t )  is the annuai anthropogenic carbon dioxide emission. measured 
In glgatons carbon diox~de pro year. 

As reference behaviour of E ( t )  we take the IPCC-prediction for the "business-as-usual" 
scenario, which we approximate by a linear function in time 

Now, in equation (2.2) the emission E( t )  is substituted by 

where R ( t )  E [O,1] denotes the rate of abatement from the uncontrolled emission E b ( t ) .  

The parameters a, P ,  a ,  andp are assumed to be constant. Their values are empirically 
determined by fitting the observed record of concentrations and temperatures during the 
period 1860 - 1985 to the mode1 (2 .2)  (cf. Maier-Reimer, Hasselmann [ 6 ] ,  Marland [7] ,  
and Tahvonen et.al. [14]):  

In Fig. 1 the solutions of the initial-value-problem (2 .1 ) ,  (2 .2)  are plotted along a time- 
interval of tf = 100 a for different choices of a constant control function R ( t )  : 

R ( t )  = 0.0, 0.25, 0.5, 0.75,and 1 .0 .  

Further the solution of (2 .1) ,  2.2) is plotted for a time-variant control function R ( t )  
which is chosen such that the COz-emission is kept fixed E ( t )  Eo . 
In Fig. 2  the same trajectories are shown in the state plane ( C ,  T). The dashed line indi- 
cates those state variables ( C ,  T) which are stationary with respect to the temperature, 
i.e. T = 0 .  The arrows indicate the motion of the state with respect to time 0 5 t < 100. 
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812 OBERLE, VON STORCH, AND TAHVONEN 

"0 t loo "0 50 t [a] 100 

Fig. 1. Time behaviour of the COa-concentration and the temperature for different 
abatement strategies R(t)  = 0.0, 0.25, 0.5, 0.75, and 1.0 and for E( t )  E Eo. 

Fig. 2. Trajectories in the state plane (C, T )  corresponding to different choices of the 
control function R(t) as indicated in Fig.1. 

3. Statement of the Problem 

We consider the model of Section 2 as an optimal control problem with the rate of aba- 
tement R(t)  as control variable. The aim is to determine R(t), 0 < t  < t f ,  within a 
finite time region of tr = 100 a such that a prescribed final state (C,, T f )  is achieved 
with a minimum amount of abatement costs. 

These costs are measured by the functional 

t f 

I [R] = J A(R) e(T-6)t dt , 
0 
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REDUCTION OF C02-EMISSIONS 813 

Here, r is the rate of growth of net output, and E the rate of discount. A(R) describes 
the costs of abatement. In this paper we use a simpie quadratic ansatz: 

-. ;'he of the optimal control . . problem are the equations of motion (2.4, the 
initial conditions (2.1), the prescribed boundary conditions 

and the control constraints 

Before we apply the necessary conditons of optima! control theory, i t  seems to be useful to 
deterrine those f i d  states (Cf, Tf) which can be achieved fro= (C(C), T(C)) using an 
admissib!e control flmction, i.e. R(t)  is measurab!e and satisfies (3 4) The set of theqe 
final states is called the reachable se t  or the se t  of at tainabil i ty.  

It is well-known from optimal control theory (cf. Strauss[l3], Halkin [4]) that each point 
of the reachable set can be achieved using only control functions with values on the 
boundary of the control region, so-called bang-bang controls. Therefore, it is obvious 
that the boundary of the reachable set consists of those final states which are reached by 
bang-bang controls with just one switching point r E [O, 1001 , i.e. 

or vice versa 

TJsing these control functions one obtains points of the boundary of the reachable set 
by solving the initial-value problem (2.1), (2.2) numerically. And, by variation of the 
parameter r E jO,lOO], one obtains the whoie boundary of the reachable set. 

In Fig. 3 some of these trajectories are shown together with the boundary of the reachable 
set. 

Note again, that precisely the points in the "ellipse" can be achieved with a suitable 
reduction strategy. So, for instance, the preindustrial situation (corresponding to the 
origin) cannot be reached within the next hundert years by any kind of reduction strategy. 

4. The Necessary Conditions 

In this section we apply the necessary conditions of optimal control theory to the COT- 
emission model in order to build up a multipoint boundary value problem with switching 
conditions for the state- and adjoint variables of the control problem. The notation used 
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OBERLE, VON STORCH, ANDTAHVONEN 

Fig. 3. Reachable set and trajectories with bang-bang control. 

is taken from Bryson, Ho [I]. Note, that the problem is nonlinear with respect to the 
control and, therefore, the necessary conditions for constrained optimal control problems 
(state-constraint of order zero, cf. Maurer[lO]) have to be applied. 

Let Xc, AT denote the adjoint variables with respect to C and T, respectively. Then, 
the Hamiltoniao of the problem is given by 

Here, the classical notation pf the Hamiltonian is used instead of the so-called current va- 
lue Bamiltonian (cf. Feichtinger, Hart1 [3]> Tahvonen et, a!. [Id]) due to the nona~tonomocs 
state equations. Both Hamiltonions differ only by a factor e('-') ' , 

From (4.1) we obtain the following adjoint differential equations: 

The optimal control function is characterized by the minimum principle. 

Therefore, for optimal control functions in the interior of the control region we have the 
following necessary condition 
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REDUCTION OF C02-EMISSIONS 815 

Especially for (3.2) we observe that the Harniltonian has a unique minimum with respect 
to the controi ii which is given by: 

thus, the minimum principle yields the following optimal control law 

5. Numerical Solution 

The numerical solutions of the boundary value problem described in Section 4 are obtained 
by means of the multiple shooting code BNDSCO (cf. Bulirsch [2], Stoer, Bulirsch [12], 
Ober!e [9], j101)- 

For the application of this method to our boundary value problem the switching structure 
of the solution, i.e. the number and the relative position of the subarcs with different 
control strategies.in Eq. (4.4) has to be estimated a priori, If T I , .  . , , r, denote the 
junction points (or switching points) between subarcs with different control laws, the 
following swi tching condit ions have to be satisfied: 

Numerically the switching points are treated as unknown parameters of the boundary 
value probiem which are determined together with the state- and adjoint variables a t  the 
multiple shooting nodes by means of the damped Newton method such that Eq. (5.1) is 
satisfied. 

Often a reliable estimation of the switching structure of the solution can be found by 
inspection of the totally free control, i.e. one solves the two-point boundary value pro- 
blem (2.1), (2.2), (3.3), and (4.2) with R = Rfree neglecting the constraints (3 .4) .  Due 
to the linearity of this auxiliary boundary value problem the solution can be determined 
numerically by multiple shooting technique within one or two iteration steps nearly in- 
dependent of the initial data. Now, one determines those subarcs where the totally free 
control violates the constraints. 

Of course, this way of estimating the switching structure may fail for critical values of the 
final data Cf and Tf. Therefore it is worthy to note that  the boundaries of the regions 
of all final data (Cf,  Tr) whose corresponding optimal control history has a certain 
prescribed control structure can be determined explicitly by solving suitable parameter- 
dependend boundary value problems with switching conditions. 
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OBERLE, VON STORCH, AND TAHVONEN 

Fig. 4. Reachable set and regions of different control structure. 

Three of these regions of different control structures are shown in Fig. 4. 

The region @ , characterized by the boundary &, 8, Fz,  F3, Po, is the region of those 
final values (Cf ,Tf)  for which the optimal control is totally free, i.e. the restrictions 
(3.4) are not active. The boundary of this region is characterized by the condition that 
the totally free control has just one isolated contact point with the boundary of the 
control region (or two contact points in the edges). The different subarcs of the boundary 
are characterized by the conditions given in Table 1. 

For the numerical computation one substitutes one of the two boundary conditions (3.3) 
by the cGrrespcn&=g b=udary  Dr mitching c e n d i t i ~ ~  given in Tahle 1 and varies the 
other boundary value Cf or T,, respectively. 

The region @ marked in Fig. 4 indicates those final states which are achieved by an 
optimal control function of the structure 

Riree - Rmax = 1 - Rfree . 

Here, the upper boundary PzP3 is indicated by the switching structure : Qree - Rmax 
and the additional boundary condition h&,,(tf) = 1 . The lower boundary P3 P 4  is 
indicated by the switching structure : Rfree - Rmax - Rfree and the additional 
boundary condition Rfree(tf) = 0 . 

Finally, the region @) marked in Fig. 4 indicates the final states for which the corre- 
sponding optimal control function has the structure 

Riree - R , ,  = O . 
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REDUCTION OF C02-EMISSIONS 

Table 1. Boundary of the controi region 

I 1 boundary arc I characterizing condition 1 
t I 

1 Po PI 
i 

Rfree(0) = 0 

PI P2 Rfree!tf) = 1 

Rfree(') = 1 ,  0 < r < 1 

Rfree(tf) = 0 

5 

o 50 t [a] lm 

Fig. 5 .  State- and control histories for the f b a l  data Tf  = 3,2.5,2. 

The lower boundary P3 Po of this region is characterized by the control structure above 
together with a switching condition Rfree(r) = 1 indicating that the free control has 
an isolated contact point with the upper constraint of the control region. 

For the remaining parts of the reachable set the corresponding optimal control histories 
contain nontrivial subarcs on the upper and lower constraints of the control region. 

We do not want to stress these regions of different control structures in detail because 
the final states of practical interest are those which are near the stationary points for the 
final temperature (dashed line in Fig. 4). 

In Fig. 5 the state histories C(t ) ,  T ( t ) ,  the optimal control functions R(t),  and the 
corresponding time history for the emissions E( t )  are shown for the prescibed final data 
TI = 3 ,  2.5, and 2. 
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818 OBERLE, VON STORCH, AND TAHVONEN 

In Fig. 6 the solution histories are shown for TI = 1.5, 1, and0.7 . 

dT 
In each c a e  Cf is chosen such that the final temperature is stationary, i.e. -(tl)  = 0. 

dt 
According to the position of the finai state in the reachabie set (cf. Fig. 4) the optimal 
controi history contains a subarc with maximum reduction for T! = 3, 1.5, 1. a d  0.7 . 
For Tf = 2.5 and Tf = 2 the optimal control is totally free. 

In the following Table 2 the corresponding values of the performance measure I (R) ,  i.e. 
the total amount of abatement costs (the unit is about 10'' doilars, c.f. [14]) are given. 

6. Regularization of the Asymptotic Behaviour 

A serious drawback of the treatment of finite time horizonts is the somehow irregular 
behaviour of control and state functions near the end of the time interval considered. This 
is diie to the fact that the formulation of the optimai controi probiem used in Section 3 does 
not take into account the behaviour of the state for times after the artificially prescribed 
final time t f .  

In Figs. 5 ,6  examples are shown for which the emissions grow again at the end of the time 
period (hundred years) considered. Therefore, using this (optimal) control function, the 
COz-concentration would grow after the final time too, if one assumes that the reduction 
strategy varies continuously. Thus, the stationarity of the state in t = tl cannot be 
maintained for t > t f ,  independently of the further reduction management. 

In order to overcome this irregular behaviour in [14] a certain penalty term is added to 
the performance index which minimizes a weighted sum of the two state variables in the 
end point of the time interval. However, this method has the drawback that it is not clear 
how to choose the weight parameters appropriately. 

Also, the consideration of an infinite planing horizon does not necessarily overcome this 
difficulty, because we would like to achieve a stable situation (stationarity) with respect 
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1 

0.8 

0.5 

0.4 

0.2 

0 o 0 50 i [a] '00 

Fig. 6. State- and control histories for the final data Ti = 1.5,1,0.7. 

to the  emissions, the Con-concentration and the increased temperature on a low level 
within a reasonable finite time-interval. 

Therefore, in this paper we propose an alternative way to overcome the irregular behaviour 
near the end of the planing interval. To this end we add the following inequality constraint 
(monotonicity constraint) 

C( t )  _< O ,  f o r a l l t  > t l ,  (6.1) 

to the optimal control problem. Here, t l  denotes the first stationary point of the con- 
centration C( t f .  With this restriction, the Con-concentration is not a!!owed to increase 
after the first time we have achieved the stationarity of C(t) .  

Explicitly, (6.1) is an additional inequality constraint to the control and can be reformu- 
lated as follows: 

In this form the constraint (6.1) can be handled in the same way as the more simple 
control constraints (3.4). More precisely, if (6.2) is active on a certain subinterval [T I ,  rz],  
one introduces the corresponding switching points T I ,  rz as additional variables in the 
boundary-value problem, one uses the boundary control 
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OBERLE, VON STORCH, AND TAHVONEN 

Fig. 7. State- and control histories for the final data TI = 2,1.5,1. 

on this subinterval, and demands (switching conditions) that the boundary control and 
the free control coincide at these switching points. 

In Fig. 7 the optimal time histories of the state and control variables for this problem are 
shown. For the final temperature we chose again Tf = 2, 1.5, and 1. Cf is chosen such 
that the final temperature Tf is stationary. 

The behaviour of these trajectories can be compared directly with the solution behaviour 
shown in Fig. 5-6 for the problem without monotonicity constraint. One observes that 
due to (6.2) the basic constraint (3.4) is not longer active (for these final data however) 

that. st~tionnfity with respect t,a bath state variables is reached already a t  the 
corresponding switching time. 

Of course the demand on the reduction function R(t) is more severe for the constrained 
problem. 

In Table 3 the corresponding values of the optimal performance measure I (R)  are listed. 
Compared with the corresponding values in Table 2 one observes an only mild increase in 
the reduction costs. 

7. Conclusions 

In this paper, we have presented numerical solutions of a constrained linear-quadratic 
optimal control problem which describes the interaction of climate changes and economy. 
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REDUCTION OF C02-EMISSIONS 82 1 

Table 3. Minimal abatement costs under addition21 monotonicity constraint 

The two-?im-sio-,2! &;te repmsents the g!oba]ly .z~.rPrzv~c! 0-- f!nz-cnr?cent,ratinn_n - -  and the 
globally averaged increase of temperature. The aim was to determine optimal reduction 
strategies f ~ r  the COz-emissioos such that the present state is transfered to a desired 
(stationary) final state within a finite time-intervai in such way that the totai abatement 
costs are minimized. 

The dependence of the control structure on the prescribed final data are investigated and 
the reachable set and the regions of different control structure are computed by solving 
parameter-depending multipoint boundary vaiue probiem. 

In order to smooth the irregular behaviour of the solutions near the end of the arbitrarilly 
fixed time-interval, an additional monotonicity constraint for the C02-concentration is 
introduced. Solutions of this extended optimal control problem are presented and they 
are compared with the former solutions. 

The authors are we!! aware of the :imp!icity of the mode! considered, which may a!!ow on!y 
to predict a reasonable tendency of the efforts necessary to solve the practical problem. 
Further investigation are necessary to establish more realistic models which may take into 
account the effects of different greenhouse gases with different memory terms and more 
refined (possibly nonlinear) equations of motion. 
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