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ABSTRACT

In the present paper the concept of the principal oscillation pattern (POP) analysis is
reviewed. This technique is used to simultaneously infer the characteristic patterns and
time scales of a vector time series. The POPs may be seen as the normal modes of a
linearized system whose system matrix is estimated from data. As a demonstration, the
POP technique is used for the analysis of the intraseasonal variability in the equatorial
Pacific Ocean; first results are presented. Daily observations of temperature and currents
in the upper 500 m of the equatorial Pacific, recorded by moored buoys, are analyzed with
respect to intraseasonal (40-180 day band) variations. Two oscillatory highly coherent
modes are found with periods between 65 and 120 days. Both modes propagate eastward
along the equator. The modes are clearly reflected in both the zonal currents and the
temperatures, which trail behind the zonal currents by 45°. In the slower of the two
modes, the temperature signal propagates more slowly than the zonal current signal, and
no signal occurs in the meridional current. The mode’s activity is enhanced during warm
events of the Southern Oscillation. In the faster mode a signal also appears in the
meridional current. Its amplitude exhibits an annual cycle, with variance on the annual and
on the semiannual period. The slower mode might be an equatorial Kelvin wave but the
faster mode, which has a significant meridional current component, is inconsistent with the
concept of an equatorial Kelvin wave.

1. INTRODUCTION

Principal oscillation pattern analysis. In the present paper the principal oscillation
pattern (POP) technique is reviewed (Section 2) and its usefulness is demonstrated by an
analysis of the intraseasonal variability in the equatorial Pacific (Section 3). The POP
analysis is a multivariate technique to empirically infer the characteristics of the space-time
variations of a complex system in a high-dimensional space (Hasselmann, 1988; von
Storch et al., 1988). The basic ansatz is to identify a low-order system with a few free
parameters fitted to the data. Then, the space-time characteristics of the low-order system
are regarded as being the same as those of the full system.
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Applications of POP analysis. The POP analysis is now a routinely used tool! to
diagnose the space-time variability of the climate system. Processes analysed with POPs
are

o The low-frequency variability of the thermohaline circulation in the global ocean
(Mikolajewicz and Maier-Reimer, 1991; Weisse et al., in press),

¢ The low-frequency variability in the coupled atmosphere-ocean system (Xu, 1993),

e The El Nifio / Southern Oscillation ENSO (Xu and von Storch, 1990; Xu, 1990,
Blumenthal, 1991; Latif and Villwock, 1989; Latif and Fliigel, 1990; Biirger, 1993; Xu,
1992; Latif et al., 1993),

¢ The Madden and Julian Oscillation (MJO), also named the tropical 30- to 60-day
oscillation (von Storch et al., 1988; von Storch and Xu,1990; von Storch and
Baumbhefner, 1991; and von Storch and Smallegange,1991),

e The stratospheric Quasi-Biennial Oscillation (Xu, 1992),
« Tropospheric baroclinic waves (Schnur et al., 1993).

Generalizations of the POP analysis. There is a series of generalizations of the basic
POP approach which we will not detail in the present paper. The predictive potential of
the POP method has been tested with the Southern Oscillation (Xu and von Storch, 1990)
and with the Madden and Julian Oscillation (von Storch and Xu, 1991). In the cyclo-
stationary POP analysis, the estimated system matrix is allowed to vary deterministically
with an externally forced cycle (Blumenthal, 1991). In the complex POP analysis not only
the state of the system but also its “momentum” is modeled (Burger, 1993).

Organization. In Section 2, the POPs are introduced in two conceptually different ways.
One way is to define POPs as normal modes of a linear system in which parameters are
inferred from a vector time series. The other way is to regard POPs as a simplified version
of principal interaction patterns (PIPs). The PIP ansatz (Hasselmann, 1988) is a fairly
general approach which allows for a large variety of complex scenarios. In Section 3 a
POP analysis of daily hydrographic reports (temperature, zonal and meridional currents, as
well as surface wind) from moored buoys in the tropical Pacific Ocean is presented. Two
eastward propagating modes, both similar to the mode described by Johnson and
McPhaden (1993), are identified and their spatial signatures are described. The paper is
concluded in Section 4 with some remarks on the general merits and limitations of the
POP technique.

1A FORTRAN code with a manual (Gallagher et al., 1991) of the regular POP analysis is free of charge
available at the Deutsches Klimarechenzentrum, Bundesstrassse 55, 2000 Hamburg 13, Germany.
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2. PRINCIPAL OSCILLATION PATTERNS

The following notations are used: Vectors are given as bold letters and matrices as
calligraphic letters like A or X If A is a matrix then A7 is the transposed matrix. If x is
any complex quantity then x* is its conjugate complex. It should be noted that the POP
formalism—conventional, cyclostationary, and complex POP analysis—may be applied to
linear systems whose system matrices are estimated from data or whose system matrices
are derived from theoretical dynamical considerations (Schnur et al., 1993).

2.1 POPs and Normal Modes
Normal modes. The normal modes of a linear discretized real system

x(t+1)=Ax(r) ¢))
are the eigenvectors p of the matrix “A. In general, A is not symmetric and some or all of
its eigenvalues A and eigenvectors p are complex. However, since A is a real matrix, the
conjugate complex quantities A* and p* satisfy also the eigen-equation A-p* = A*p*. In

most cases, all eigenvalues are different and the eigenvectors form a linear basis. So each
state x may be uniquely expressed in terms of the eigenvectors

Xzz,zj'pj- (2)

The coefficients of the pairs of conjugate complex eigenvectors are conjugate complex,
too. Inserting (2) into (1) we find that the coupled system (1) becomes uncoupled, yielding
n single equations, where » is the dimension of the process x,

2(t+1)-p=h-z(t) p 3)

so that if z(0) = 1
z2t)-p=X-p. “4)

The contribution P(7) of the complex conjugate pair p, p* to the process x(7) is given by
P(1) = z(1)- p+1z(¢)-pI". ()
Writing p = p! + i - p? and 2z(t) = 2 (£) —i- 2* (¢), this reads

P(t)=7'(t)-p' +22()-p’ (6)
=p'-(cos(ne)-p' —sin(nt)- p*)
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with A = p-exp(—in) and if z(0) = 1. The geometric and physical meaning of (6) is that
between the spatial patterns p! and p? the trajectory P(t) performs a spiral (Figure 1) with
period 7= 2r/w and e-folding time T = —1/In (p), in the consecutive order

e p o -p' S -p 2P 2P > (7)
=1
=0
200) —
Z2

Figure 1. Typical evolution of a POP signal, given by Eq. (6), if z'(0) = 0 and z%(0) = 1. In this
demonstration the period is 7= 9 and the e-folding time is T = 2.8.

The e-folding time. The e-folding time has to be considered with some caution. It
represents formally the average time for an amplitude of strength one to reduce to 1/e. But
in the POP context this time is a statistic of the entire time interval, i.e., it is derived not
only from the episodes when the signal is active but also from those times when the signal
is weak or even absent. As such, the mode will be dampened less quickly as indicated by
the e-folding time when the mode is active. The other limitation refers to the presence or
absence of high-frequency variations. If these are filtered out, as in Section 3, the e-folding
time is lengthened.

Representation of normal modes. The modes may be represented either by the two
patterns p! and p? or by plots of the local wave amplitude A2(r) = [p!(r)]2 + [p(r)]? and
relative phase y(r) = tan-![p2(r)/p!(r)] (Figure 2). The transformation (7) between the
patterns p! and p? can assume various geometric wave forms. If pX(r) = pl(r -ry) with a
location vector r and a fixed vector r, the signal appears as a parallel crested wave of
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wavelength 4r,, propagating in the ro-direction (Figure 2a). In Figure 2b an amphidromal
(rotational) wave is shown.
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Figure 2. Examples of (a) a propagating wave and (b) an amphidromal wave and their representation in
terms of POPs. Top two panels: representation by pl and p2. Bottom panel: representation by phase y
(dashed) and amplitude 4 (solid). From von Storch et al. (1988).

Time coefficients. The pattern coefficients z; are given as the dot product of x with the
adjoint patterns pj.‘, which are the normalized eigenvectors of AT:

PH'x=Y 7N P =z (8)
k

POPs. All information used so far is the existence of a linear equation Eq. (1) with some
matrix A . No assumption was made about the origin of this matrix. In dynamical theory,
the origins of Eq. (1) are linearized and discretized differential equations. In case of the
POP analysis, the relationship

x(t+1) =A-x(t) + noise )]
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is hypothesized. Multiplication of Eq. (9) from the right hand side by the transposed x7(¥)
and taking expectations, £, leads to

A= E[x(t+1x" (0] [Elx()x" 1] (10)

The eigenvectors of Eq. (10) or the normal modes of Eq. (9) are called principal
oscillation patterns. The coefficients z are called POP coefficients. Their time evolution is
given by Eq. (3), superimposed by noise

z(t+1) = A-z(¢)+ noise . (11)

The stationarity of Eq. (11) requires p < 1. In practical situations, when only a finite time
series x(t) is available, A is estimated by first deriving the sample lag-1 covariance matrix
X, = le(t +1)x” (¢) and the sample covariance matrix X = le(t)xT () and then

forming A = X, X;'. The eigenvalues of this matrix always satisfy p < 1.

To reduce the number of spatial degrees of freedom in some applications, the data are
subjected to a truncated empirical orthogonal function (EOF) expansion, and the POP
analysis is applied to the vector of the first EOF coefficients. A positive by-product of this
procedure is that noisy components can be excluded from the analysis. Then, the
covariance matrix X has a diagonal form.

If there is a priori information that the expected signal is located in a certain frequency

band, it is often advisable to time-filter the data prior to the POP analysis. A somewhat
milder form of focusing on selected time scales is to derive the EOFs from time-filtered
data and then to project the unfiltered data on these EOFs.

Criteria to decide whether a POP contains useful information or if it should be regarded as
reflecting mostly sample properties are given by von Storch et al. (1988). The most
important rule-of-thumb is related to the cross spectrum of the POP coefficients z! and z2:
at the POP period 7, or at least in the neighborhood of 7, the two time series should be
significantly coherent and 90° out of phase, according to Eq. (6).

Invariance against coordinate transformations. If the original time series x(t) is
transformed into another time series y(7) by means of y(¢) = £ - x(f) with an invertible
matrix L, (i.e., L] exists), then the eigenvalues are unchanged and the eigenvectors
transform as x:

Ax =X X Ay=Y Y
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with Y ;= E(y(t+ 1)y’ (2) =LX LT and Yo = LX(LT. Thus Ay - LA L1 If py is an
eigenvector of A y with eigenvalue A, i.e., Aypy= Apy then AyL-1Lpy=Apy and,
eventually LA v L-1(Lpy) = MLpy). That is, if py is a POP of the time series x, then
Lpy _py is a POP of y with the same eigenvalue A.

The EOFs are not invariant against linear transformations £, since in general the matrices
X, and £X LT will have different eigenvalues and eigenvectors. Therefore, if the POP
analysis is begun with a projection of the data on a truncated EOF expansion, the results
of a POP analysis will change if the data are transformed into another coordinate system.

The POP coefficients. To get the POP coefficients, z(f), two approaches are possible.
One is to derive the adjoint patterns p4 and to use Eq. (8). An alternative is to not derive
adjoint patterns but to derive the coefficients z by a least-square fit of the data x by
minimizing

=|x-2'p' -2p’| (12)

Jx-ep—fenl
if p is complex, or
|x-z-p|. (13)
2.2 POPs = Trivial Case of PIPs

State space models. Many complex dynamical systems, x € R”, may conveniently be
approximated as being driven by a simpler dynamical system, z € R, with a reduced
number of degrees of freedom, m < n. Mathematically, this may be described by a stare
space model which consists of a system equation

z(t+1) = F[z(t), o, t] + noise, (14)
for the dynamical variables z = (z,,...,z,) and an observation equation

x(t) =P z(t)+ noise = sz(t)pj + noise (15)
j
for the observed variables x. P is the matrix whose columns are the vectors, or patterns,
p; In general P is not a square-matrix. Fz(1),c, t] denotes a class of models which can
be nonlinear in the dynamical variables z and which depends additionally on a set of free
parameters o, = (0, 0t,,.*.). Both equations, Eqs. (14,15), are disturbed by an additive
noise.
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Since m < n, the time coefficient z{({) of a pattern p; at a time  is not uniquely determined
by the x(7). Instead, it may be obtained by a least-square fit, i.e.,

z(t) = (f_pTg))'lprx(t). (16)

The intriguing aspect of state space models is that the dynamical behavior of complex
systems often appears to be dominated by the interaction of only a few characteristic
patterns p;. That is, even if the dynamics of the full system are restricted to the subspace
spanned by the columns of P, its principal dynamical properties are represented.

PIPs. When fitting the state space model Egs. (14,15) to a time series, the following
entities have to be specified: the class of models ‘F, the patterns P, the free parameters o,
and the dimension of the reduced system m. The class of models F has to be selected a
priori on the basis of physical reasoning. Also, the number m might be specified a priori.
The parameters o and the patterns P are fitted simultaneously to a time series by
requesting them to minimize

€[P;0] = E || x(t + ) —x(t) = P(F2(0), 0051 - 2(0))| (17)

where € [P;a] is the mean square error of the approximation of the (discretized) time
derivative of the observations x by the state space model. The patterns P, which minimize
Eq. (17), are called principal interaction patterns (Hasselmann, 1988). If only a finite time
series of observations x is available, the expectation F is replaced by a summation over
time.

In general, the minimization of Eq. (17) is not unique. In particular, the set of patterns

P' =P - £ with any nonsingular squared matrix £ will minimize Eq. (17), if P does, as
long as the corresponding model F' = L-1F belongs to the a priori specified model class.
This problem may be solved by requesting the solution to fulfill some constraints, e.g., that
the linear term in the Taylor expansion of F is a diagonal matrix.

POPs as PIPs. The principal oscillation patterns can be understood as a kind of simplified
principal interaction patterns. For that assume m = n. Then, the patterns P span the full x-
space, and their choice does not affect € [P;a]. Also, let F be a linear model

Flz(t),a] = A -z(¢), where the parameters o are the entries of A. Then the dynamical
equation Eq. (14) is identical to Eq. (11). The constraint mentioned above leads to the
eigenvectors of A as being the PIPs of the particular, admittedly simplified, state space
model.
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2.3 Associated Correlation Patterns

Definition and representation. The associated correlation pattern analysis (von Storch
et al., 1988) is a regression analysis to infer the spatial properties of a signal which is
encoded in a two-dimensional index (a complex POP coefficient, for instance). If the
parameter under consideration is Y(t) and the bivariate index is (z' (1), 2% (1)) the two
associated correlation patterns §' and g minimize

2

1 2
ZHYU)-Z Wz 20zl _min. (18)

BT

The normalization with V2 in Eq. (18) has been introduced so that g' represents a typical
state for z!(#) = 1, z2(7) = 0 and §* a typical state for z1(#) = 0, z(#) = 1. The solution of
Eq. (18) is straightforward and requires the solution ofa 2 X 2 linear equation at each
location 7 of the input field Y= (y,).

The associated correlation patterns can be displayed directly by the two patterns g' and §°
or by amplitude distributions and phase distributions (Figure 6). The amplitude 4 and the
phase v at the location r is given by

A=@G)+@ (19)

_=2
tan(Zn%) =4 (20)

-1

q

with T being the period of the mode. The phase y has been defined such that y =0
coincides with z2 = 0 and z! > 0, and y = 7/4 with z! = 0 and z2 < 0 (compare with

Eq. (7).

Measure of skill. A number measuring the relative importance of a POP for a parameter
y, at the location 7 is the rate of explained y,-variance by the index (z!-z2). This rate is
given by

_ Var(y,)-€’

T .2 - 2
y,.z2,7") Var(y ) (21)

with
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1 2
(1) o ()
€=y~ ;= q;
Z{y %20 " To,
being the local error in Eq. (18); € = 1 indicates a perfect model and € = 0 a model
without skill.

3. POP ANALYSIS OF THE INTRASEASONAL VARIABILITY
IN THE EQUATORIAL PACIFIC

General. The general analysis strategy is first to derive an index of the equatorial modes
through a principal oscillation pattern (POP) analysis of the equatorial current meter
moorings at 165°E, 140°W, and 110°W. The time series at these stations are relatively
long and sample the equator fairly well. Zonal currents and temperatures, which ought to
reflect equatorial Kelvin waves well, as well as meridional currents are monitored by these
buoys. After having established that the index makes sense, all available data from the
current meter moorings and from the ATLAS buoys are examined in an “associated
correlation pattern” analysis. The purpose of this exercise is to infer the 3-dimensional
spatial structure of the modes.

3.1 Raw Data

For the analysis, daily observations were available from two series of moored buoys
(Hayes et al., 1991):

o Current meter moorings at four locations, the exact positions of which are given in
Table 1. These buoys recorded zonal and meridional currents and temperature at
various levels and near surface air temperature and zonal and meridional wind.

» ATLAS buoys located at 20 positions in the near-equatorial Pacific (for the exact
positions, see Table 1). From these buoys, subsurface temperatures at various levels,
as well as near surface air temperature and wind, are available.

The shortest time series is from 147°E, 5°N (9 months). Maximum length is 7 years (at 0°,
110°W and 140°W).

Mean State. The buoy data represent a good data base to sketch the mean distribution of
currents and temperature in the equatorial Pacific. In Figure 3 are plotted the mean zonal
current and temperature distributions along the equator as well as latitude-depth cross-
sections of temperature along 165°E and 110°W. The mean equatorial temperature
distribution is dominated by the sharp thermocline that separates water of 10-15°C at
deeper layers from warm surface waters of 24°C in the east and 28°C in the west. If we
identify the thermocline with the 20°C isotherm, then the thermocline rises from 180 m at
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165°E to 100 m at 140°W to 60 m at 110°W. The zonal current is weakly westward at the
surface with maximum values below 25 cm/s. Maximum eastward flowing currents, the
Equatorial Undercurrent, prevail along the thermocline, with maximum values at about
the 17.5°C isotherm. At 165°E the maximum current is below 50 cm/s, at 140°W
maximum speeds are 100 cm/s, and at 110°W above 75 cm/s.

Maximum temperatures prevail north of the Equator in the east and south of the Equator
in the west. The thermal wind relationship is nicely reflected in the mean distributions (Fig.
3a,cand d).

Table 1. Position of buoys from which data have been used in the present study. Also
given is the maximum time interval for which at least one variable is available.

Instrument  Longitude Latitude  Data interval _ Parameters
CMM 0° 165°E 5/86 - 4/91 current, temperature, wind
CMM 0° 140°W 5/84 - 4/91

CMM 0° 110°W 5/84 - 4/91

CMM 7°N 110°W 5/88 - 4/91

ATLAS 5°N 147°E 5/90 - 2/91 temperature, wind
ATLAS 8°N 165°E 5/90 - 4/91

ATLAS 5°N 165°E 7/88 - 4/91

ATLAS 2°N 165°E 7/87 - 4/91

ATLAS 2°S 165°E 5/86 - 4/91

ATLAS 5°S 165°E 7/87 - 4/91

ATLAS 0° 169°W 5/88 - 4/91

ATLAS 7°N 147°W 11/88 - 11/90

ATLAS 9°N 140°W 5/88 - 4/91

ATLAS 5°N 140°W 5/88 - 4/91

ATLAS 2°N 140°W 5/87 - 4/91

ATLAS 2°S 140°W 5/87 - 4/91

ATLAS 5°8 140°W 10/90 - 4/91

ATLAS 7°N 132°W 5/89 - 10/90

ATLAS 0° 124°W 5/87 - 4/91

ATLAS 5°N 110°W 5/86 - 4/91

ATLAS 2°N 110°W 6/85 - 4/91

ATLAS 2°S 110°W 5/85 - 4/91

ATLAS 5°S 110°W 5/86 - 4/91

ATLAS 8°S 110°W 5/86 - 6/87

Variability around the annual cycle. The annual cycles have been removed from all
data. To also exclude part of the Southern Oscillation-related variability, this removal of
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the annual cycle was done for each May-to-April segment separately. The May-to-April
segments were chosen to represent one “El Nifio year” (Wright ,1985). As an example,
three variables at 0°, 140°W are shown before and after the removal of the low-frequency
variability (Figure 4).

At the equatorial buoy all parameters undergo marked variations on the interannual time-
scale, some of which stem mostly from the regular annual cycle (e.g., the zonal wind). In
the subsurface variables the irregular ENSO-related variations contribute most to the low
frequency variability. The high-frequency variations are normally distributed. In the zonal
wind the intraseasonal variations are almost white in time, whereas the subsurface
parameters exhibit an oscillatory behavior with typical periods of 50-100 days. The zonal
current seems to lead the temperature by a few days.

3.2 The POP Analysis of the Equatorial Current Meter Mooring Data

Preprocessing of the data. In the data field to be analysed, we have parameters that differ
with respect to units as well with respect to their standard deviations. To allow all
parameters to play the same role in the analysis, all data are standardized to zero mean and
standard deviation one.

For the POP analysis it is often helpful if the data are preprocessed prior to the analysis
with the purpose of suppressing space-time noise (see section 2.1). The spatial noise is
taken out by doing the analysis in a low-dimensional subspace spanned by the first few
EQFs, and the temporal variations on time scales irrelevant for the process under
investigation are taken out by a time filter.

The data are first subjected to an EOF analysis. In this EOF analysis the entries y;; of the
correlation matrix have been estimated from all available pairs of observations, i.e.,

y,=— 3 0P, 22)
j T,
where p;(t) represents the i-parameter of the data field X(t) at timez. ‘T if is the set of all
times when both p; and p; have been observed and n;; is the number of elements in T if
Definition Eq. (22) is adequate for the case of gappy data. Only those pairs of indices (7,7)
were considered for which n,;; was at least 50% of all possible observations.

The EOF coefficients o(2) are then no longer given as the dot product of the field X(z) at
time ¢ and the respective EOF ¢* but are determined as a least-square-fit

| X(1)- o (1) x 2" | =min. (23)
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Figure 3. Mean distributions derived from the buoy data. The 20°C isotherm i 1n the temperature
distributions (in 1071 °C) and the zero line in the current distribution (in 1073 m/s) are given as heavy
lines. Top: Longitude-depth cross sections of temperature and zonal current along the equator. Bottom:
Latitude-depth cross-sections of temperature along 165°E and 110°W.
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Figure 4. Time series at 0°, 140°W for temperature and currents at 120 m and for zonal wind, before and
after subtraction of the annual cycle and of low-frequency variations. The years are given as May-to-April
segments.
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The EOF coefficients o%(#) represent complete time series over the entire 7-year time
interval from May 1984 through April 1991. These time series are time-filtered such that
all variability below 10 days and above 180 days is completely eliminated and all variability
on time scales between 40 and 150 days is not affected. In the windows between 10 and
40 days and 150 and 180 days the filter response function smoothly changes from 0 to 1.

Results of POP analysis. Two oscillatory modes are identified whose coefficient time
series exhibit the desired high coherency and 90°-out-of-phase relationship. In Figure 5 the
amplitude time series of the two complex POP coefficients are plotted. Note that the
coefficient time series have been normalized so that Var(z' (#)) = 1. The coefficients were
obtained by means of the adjoint patterns and Eq. (8).

One mode has a POP period 7= 65 days, and an e-folding time T = 73 days. It represents
about 16% of the variance of the band-pass filtered, EOF-truncated and normalized data
(at all three locations, for temperature, zonal, and meridional currents as well as winds,
and at all depths). In consistency with the POP period the maximum coherence is obtained
for 60 days. The amplitude time series reveals a marked annual cycle, with a definite
appearance of a semiannual component. The wave activity is strongest during solstice
conditions and minimum activity during equinoctial conditions.

The second mode has an e-folding time of 106 days and a POP period 7= 120 days. But
the POP coefficients z/(#) and z?(1) have largest coherencies at 72 days, so that the POP
period of 120 days likely is an overestimate of the true oscillation period. The POP
coefficient represents 18% of the variance of the band-pass filtered, EOF-truncated, and
normalized data. The amplitude time series in Figure 5 are hardly affected by the annual
cycle. Instead the modification of the large-scale environment through the development of
warm El Nifio conditions leaves a clear mark on the time series. During the warm event in
1986/87 and the early phase of the warm event in 1990/91 the activity of the waves is
enhanced.

The two modes are only weakly correlated. The correlations between the real and
imaginary parts of the coefficient time series are very small, and the correlations between
the real (imaginary) parts of the two modes are about —0.25.

3.3 The Spatial Signature of the Mode

General. In the present study, associated correlation patterns have been computed from
various parameters for both modes separately. In all cases the annual cycle, as represented
by the first two annual harmonics and the overall mean of each May-to-April segment, has
been removed prior to the analysis. No more time-smoothing was done because of the
wide gaps in the data. An implicit time-filtering has been introduced through the use of the
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Figure 5. Time series of the amplitude of the two modes identified in the joint POP analysis of normalized
data from equatorial current meter moorings. The years are drawn as May-to-April segments. (a) The 120
day mode. (b) The 65 day mode.
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POP coefficient time series. Since these time series have been derived from time-filtered
data (see above), they are themselves smooth. Unlike the POP analysis, the data are not
normalized for the associated correlation pattern analysis.

Currents at the current meter moorings. The longitude-depth distributions of the
amplitudes and phases of the two intraseasonal modes, with POP periods of 120 days and
65 days, are shown in Figure 6 for the zonal current. Both modes represent eastward
propagating signals.

The 120-day mode has its largest amplitudes in the central part of the tropical Pacific, with
maximum values of 16 cm/s, as typical anomalies, at 50 m depth at 165°E and 160 m
depth at 140°W. In contrast, the 65-day mode has maximum zonal current anomalies at
upper levels (50 m and above) in the eastern part of the basin, with a typical maximum of
12 cmy/s at 140°W and 19 cm/s at 110°W.

In the 120-day mode, the zonal current signals need about 60 days to propagate from the
165°E buoy to the easternmost buoy at 110°W. If we accept the estimate of 120 days as a
period, then the mean phase speed is 1.8 m/s. This number is increased to 2.4 m/s or 3.0
/s if the period is set to 90 or even 72 days (see above). The phase lines are vertically
tilted at 165°E and 140°W, with the upper levels lagging the lower levels by about 45° or
15 days (of a 120-day period).

The phase speed for the 65-day mode is estimated to be, on an average, 2.1 m/s. At the
two eastern positions, the phase lines are again tilted, with the lower levels leading the
upper levels by about 45° or 8 days (of a 65-day period). Maximum explained local
variance of the zonal current field is 40% at 120 m at 140°W for the 120-day mode and
20% at 120 m at 110°W for the 65-day mode.

Current information is also available for one off-equatorial location from the 7°N, 140°W
buoy. Here a maximum of 7% of explained variance is obtained for the 120-day mode at
40 m, where an amplitude of 5.4 cm/s is found (not shown). Thus the signal is weak at
that location, but interestingly the sign at 7°N is opposite to that at the equator (not
shown). A similar result is found for the 65-day mode.

In the meridional current the signal is negligible for the 120-day mode, but a well-defined
signal is identified in the 65-day mode. Maximum percentages of explained local variance
are 12% at 120 m and 160 m at 110°W. A maximum amplitude of 10 cm/s near the
surface lags an amplitude of about 8 cm/s at lower levels by about 10 days (not shown).
The phase relationship with the zonal current is that northward meridional current
anomalies lead easterly zbnal current anomalies by 10 days or so. An alternative
interpretation is that easterly current anomalies lead southward current anomalies by 20
days or so.
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Temperature at all buoys. For temperature, the amplitude distributions 4 and phase
distributions y are shown as three cross sections through the tropical Pacific: a longitude-
depth cross section along the equator (Fig. 7), a latitude-depth cross section at 110°W
(Fig. 8), and a longitude-latitude cross section at 100 m (Fig. 9).

Maximum temperature amplitudes of both modes cluster along the thermocline (Fig. 3a)
with maximum values of more than 1°C (Fig. 7). Overall, the temperature signal of the
120-day mode is stronger than that of the 65-day mode. The temperature signals
propagate like the zonal current signals eastward along the equator. The 120-day
temperature signal travels over the basin in about 90 days (relative to a base period of 120
days) so that the phase speed of temperature is 1.5 times that of the zonal current. At the
165°E buoy, the temperature and zonal current signals are almost in phase so that the later
phase lags must stem from different travel times. The propagation of the temperature
signal of the 65-day mode is mostly parallel to that of the zonal current signal but there is
a uniform lag of about 10 days.

The latitude-depth cross sections of the associated correlation patterns at 110°W reveal
maximum amplitudes of more than 1°C at about 100 m depth. In both modes are a marked
amplitude minimum at 2°N and a maximum at 6°N. The activity of the 120-day mode is
largest south of the equator, with a maximum amplitude of 1.4°C at 2°S, whereas the 65-
day mode has its largest amplitude of 1.4°C at 6°N. Both modes exhibit complicated phase
distributions. In the 120-day mode the phase varies mostly between 60 days at deeper
levels and 90 days at upper levels. Only along the minimum at 2°N the phase is markedly
lagging its neighborhood by 30 or more days. In the 65-day mode the maximum at 6°N is
180° out of phase with the temperature signal at the equator which, in turn, lags the
secondary maximum at 2°S by another 10 to 15 days.

Figure 9 shows the latitude-longitude distributions of the amplitudes and phases of the two
modes in 100 m depth. Maximum amplitudes of the order of 1°C at 140°W at the equator,
where the thermocline is close to 100 m, tend to appear simultaneously with even larger
(=2°C) anomalies with opposite sign at 7°N. The eastward propagation is clearly visible in
the 65-day mode, whereas in the 120-day mode the eastward propagation seems to be
limited to the area west of 140°W. The isolated amplitude maximum at 5°N, 147°E should
not be taken too seriously because of the shortness of the time series at that location (see
Table 1).
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Figure 9. Horizontal distribution of temperature at a depth of 100 m of the 120 day mode and of the 65
day mode. Top: Amplitude distributions 4 in 10-2 °C. Bottom: Phase distributions y (in days relative to
the 120 day and 65 day base periods).

Discussion: Equatorial temperature anomalies and advection. Because of the marked
spatial gradients in the mean temperature field (Fig. 3) the temperature advection with the
anomalous zonal currents might contribute significantly to the creation of temperature
anomalies. Estimates of such temperature anomalies may be obtained for the equator since
information on the currents is available there. If the anomalies are labelled by a * and the
mean state by a ~, then the effect of the anomalous currents on the temperature is
approximated by

. | LIT LIT|_ T
T [ E® —+V ay:| XE 24)

with T, u, and v representing the temperature and zonal and meridional currents, and 7 the
period; x refers to the zonal direction and y to the meridional direction. In the following
we consider the situation at 140°W at 120 m depth.

The zonal gradient of the mean T is approximately 2x10™® K/cm (Fig. 3). For the 120
day mode the anomalous zonal current is 10 cm/s (Fig. 6) and the period is somewhere
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between 80 to 120 days. Equation (24) yields with these numbers a temperature anomaly
between 0.6 and 1.0°C, which compares well with the result of 1.0°C in Fig. 7. The 120
day mode is not connected with significant anomalies of the meridional current. Thus this
back-of-the-envelope calculation Eq. (24) proposes that the equatorial temperature
anomalies are due to anomalous zonal advection. This hypothesis is supported by the
different travel times of the temperature and zonal current signal, which was found in a
numerical experiment on the the response of the tropical Pacific to westerly wind bursts
(Latif et al., 1988).

The typical zonal current anomalies of the 65 day mode are only 5.4 cm/s at 120 m (Fig.

6) and the characteristic time 7/2 is only 32 days. Thus the effect of zonal advection is
estimated as 0.3°C, which is significantly less than the predicted 0.9°C (Fig. 7). Thus zonal
advection cannot fully explain the observed temperature anomalies—which is consistent
with the coincidence of the temperature and zonal current travel times. The 65-day mode
exhibits, however, a significant signal in the meridional current which could account for
equatorial temperature anomalies of 0.3°C.

Kelvin waves? Are the modes identified and described so far what people call Kelvin
waves (Moore and Philander, 1977)? The vertical structure of the modes along the
equator, the horizontal scale, the eastward propagation and the time scale are broadly
consistent with the concept of equatorial Kelvin waves. But several aspects are
inconsistent with this concept. There are two modes, which have similar vertical
structures, similar horizontal scales and time scales, that certainly cannot be accounted for
as the first two Kelvin modes. The presence of a signal in the meridional signal in the 65
day mode does not fit the specification of a Kelvin wave nor has the rich structure found
off the equator yet been described by the theory of equatorial Kelvin waves.

Johnson and McPhaden (1993) analyzed five years (1983-87) of current and temperature
data from the 140°W and 110°W equatorial moorings and seven months of data from
bouys at 2°S, 0° and at 2°N, 140°W. They used the complex empirical orthogonal
functions (CEOFs, see also Section 4) and found one dominant mode that was broadly
consistent with the idea of a first baroclinic Kelvin wave. The main differences from a
conventionally defined Kelvin wave were these:

¢ A local maximum and a local minimum of the zonal velocity below and above the core
of the equatorial undercurrent. This results holds for both modes identified in the POP
analysis.

« An equatorial minimum of the temperature signal at the thermocline is straddled by
two maxima at 2°S and 2°N. In the present POP analysis, on the other hand, the
maximum at 2°S is reproduced, but north of the equator at 2°N a well-defined
minimum is identified. Possibly Johnson and McPhaden's (1993) result is due to the
short analysis period of only 210 days.
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e A nonzero temperature signal at the surface lags the zonal current signal at the surface
and the temperature signal at the thermocline by 90°. This result is confirmed by the
POP analysis, in particular for the 120 day mode.

The biggest difference from Johnson and McPhaden (1993) is the presence of two modes
which have uncorrelated coefficient time series but share substantial similarities in their
spatial appearance. A reason for this difference might lie in the different analysis
techniques. Johnson and McPhaden (1993) used CEOFs so that any two modes must be
orthogonal in space whereas the POP analysis does not require orthogonality. If there are
two orthogonal modes (T, u,) (i =1,2) with temperature signals T and zonal current
signals u the orthogonality requires

T/ T,+uju, =0, (25)

Because of the sharp thermocline in the east equatorial Pacific the largest temperature
anomalies will be centered around the thermocline so that T; ~ T,. Thus to satisfy Eq.
(25) a negative correlation of the current signals is needed, i.e., u; ~ —u,. This latter
condition represents a severe limitation without any physical justification. Therefore I
speculate that the CEOF technique could not easily be used to identify two orthogonal
modes in the equatorial (T,u) data. This (admittedly handwaving) argument might help to
resolve the apparent contradiction of only one mode in Johnson and McPhaden (1993) but
two modes in the POP analysis. On the other hand, there is no support in the literature (as
far as I know) for the idea of two non-orthogonal modes.

The 65 day mode is not envisaged by the theory of equatorial wave dynamics. This theory
deals with the growth of small disturbances and not with the development or breakdown
of finite amplitude disturbances. Schnur et al. (1993) have shown, for the case of synoptic-
scale disturbances in the extratropical troposphere, that the POP analysis is an adequate
tool to obtain not only the normal modes of a dynamical system but also modes that
represent finite amplitude phases in the full spectrum of variability. I speculate that the 65
day mode might represent such a finite amplitude mode. It remains to be clarified if the
results of this study will stand the test of more data, longer time series, and closer scrutiny.
However, one has also to keep in mind that the present theory of equatorial Kelvin waves
is based on a number of severe simplifications, one being the horizontal homogeneity of
the background state.

4. CONCLUSIONS
The purpose of the present paper is two-fold. The main point is to introduce the POP

technique to the oceanographic community. The minor point is to present first results from
an analysis of data that are irregularly distributed in space and time.
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The POP technique. The POP method is a powerful method to infer simultaneously the
space-time characteristics of a vector time series. The basic idea is to isolate low-
dimensional subsystems that are controlled by the linear dynamics of the full system. Even
if the POP method represents the most consistent way of doing so, there are other
techniques that can be used successfully for similar purposes. An alternative is the complex
empirical orthogonal functions (CEOFs; Wallace and Dickinson 1972, Barnett and
Preisendorfer 1981). CEOFs are obtained by applying the conventional EOF technique to
a complex time series whose real part is the real time series that has to be analysed and
whose imaginary part is the Hilbert transform of that real time series. (CEOFs are related
to EOFs just like complex POPs to regular POPs ). The main difference between CEOFs
and POPs is that CEQFs are constructed under the constraint of a maximum of explained
variance and mutual orthogonality. The characteristic times, the period and the damping
time, are not an immediate result of the CEOF analysis but have to be derived a posteriori
from the CEOF coefficient time series. The POPs, on the other hand, are constructed to
satisfy a dynamical equation Eq. (11), and the characteristic times are an output of the
analysis; also the complex POP coefficients z(2) are not pairwise orthogonal. The non-
orthogonality makes the mathematics less elegant, but it is not a physical drawback,
because in most cases there is no reason to assume that different geophysical processes
develop statistically independent from each other. The rate of variance explained by the
POPs is not optimal and has to be calculated after the POP analysis from the POP
coefficients.

The POP method is not a tool that is useful in all applications. If the analysed vector time
series exhibit a strongly non-linear behaviour, as in turbulent flows, the POPs will fail to
identify a useful sub-system, simply because a linear sub-system does not control a
significant portion of the variability. The POP method will be useful if there are a priori
indications that the processes under consideration are to a first approximation linear.

Equatorial Waves. We have found two modes of variability in the equatorial Pacific
Ocean. The slower mode, with a nominal period of 120 days, resembles a first baroclinic
Kelvin wave. The other, 65-day mode is different from theoretically derived modes and
from previously empirically derived modes. More work is needed to ensure the reality and
the signature of the two distinct modes.
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