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Abstract. The local scale of climate plays two different roles; it is the scale at 
which people experience climate, so that it is the dominant scale of applied climate 
research, ranging from climate impact to forecasting weather in the atmosphere 
and the ocean. On the other hand, the local scale is not important in its details 
for the formation of the global climate. For the understanding, and simulation, of 
the global climate, the small scales matter only in a statistical sense so that their 
influence may be described by means of parameterizations. In the present essay, we 
demonstrate that both processes, "downscaling" (the derivation of local information 
in climate change and climate variability simulations and in weather forecasts) and 
"parameterization" (the description of the net effect of small scales on the larger 
scales) may formally be understood as the building of empirical models whose 
parameters are conditioned upon larger-scale features of the state of the atmosphere 
or ocean. It is suggested to acknowledge the presence of unknown processes by 
building downscaling and parameterization procedures with a randomized design, 
conditioned upon the known resolved scales. 

1. Introduction 

1.1. The Character of the Local 

The present essay is about the "local" in climate, 
which we may vaguely define for the time being as the 
scale on which we, as people, experience climate, but 
also as that scale which is far too small to ever be glob­
ally captured in detail in climate models. Thus, "local" 
may mean scales of meters to several kilometers. 

By this definition, the local cannot be described by 
climate models, which would be disastrous if the global 
climate were the sum of all local climates. Luckily, the 
global climate is not the sum of local climates, but may 
be understood as being formed in a cascade of decreas­
ing spatial scales: To first order approximation, the 
global climate is the response of the fluid ocean and 
fluid atmosphere to the differential interception of solar 
radiation, which is modified by the presence of plane­
tary scale differences in surface properties such as cov­
erage by the ocean, presence of mountains and the like. 
This global picture is then further modified by features 
that result from interaction between the planetary scale 
atmospheric and oceanic flows and the local features 
such as marginal seas, secondary mountain ranges, dif­
ferences in land use, and so forth. 

In general, the statistics of climate variability at a 
certain scale are conditioned by the state of the climate 

. system at larger scales, whereas variations on smaller 
scales are in most cases insignificant in their details but 
their influence may be captured by some overall statis-
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ties. When building realistic climate models, the effect 
of the sub-scale processes, such as convection in the 
ocean or momentum flux through the interface of at­
mosphere and ocean, is parameterized. In Section 3 we 
will discuss the paradigm of parameterizations with the 
help of an example and point out a routinely made as­
sumption, namely that only those influences that can 
be conditioned upon features on resolved spatial scales 
matter for the development of the system. We will ar­
gue that this assumption is inadequate and that it can 
be easily overcome by a randomized design of parame­
terizations. 

The presence of the cascade of decreasing spatial 
scales, as well as the summary description of the subgrid 
scale processes, implies that the skill of climate models 
also decreases with spatial scales and that such models 
have no skill left at the local scale. This loss of skill is 
inconsequential for the modelling of the planetary scales 
and for our understanding of the climate engine. It is, 
however, consequential for users of climate information. 

Our statement that the global climate is not the sum 
of all local climates is valid only as long as we consider 
"climate" as a scientific object; if we consider "climate" 
as the everyday experience of people, which conditions 
many aspects of life to some extent, then the definition 
of the global climate as the sum of all local climates 
is meaningful. The socially defined item "climate" is 
significantly different from the item "climate" as un­
derstood by natural sciences ( cf. von Storch and Stehr, 
1997). 
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Thus we axe in a strange situation. Our climate mod­
els axe capable of simulating the overall performance of 

. the climate engine. As such, climatologists axe able to 
answer the fundamental questions of society about cli­
mate. However, for applications, which axe almost al­
ways on the local scales, the climate models have no or 
few answers. Special efforts are needed to deduce infor­
mation at the small scale from knowledge about large 
scales. We discuss the basic "downscaling" approach in 
Section 2 and illustrate it with an example. 

When compaxing the two very different tasks, namely 
the paxameterization of subgrid scale processes and the 
downscaling of laxge-scale features for estimating local 
variability, it turns out that the tasks axe conceptually 
similar. In both cases, the basic approach is to describe 
the local vaxiability as a random variable with a few pa­
rameters that axe directly linked to the laxge (resolved) 
scale. 

1.2. Conditional Statistical Models 

If a random variable X is conditioned upon another 
random variable G then the probability density func­
tion F x (x) of X may by paxtitioned such that 

f g(x) = j f xia=g(x)fc(g)dg (1) 

where lxia=g(x) is the conditional probability function 

of X provided that the random vaxiable G takes the 
value g, and f G is the probability density function of G 
(cf. Katz and Paxlange, 1996). 

The expectation and the vaxiance of X may be de­
composed: 

Ex(x) 
VARx(x) 

Ec(Ex(x1c)) 
Ec(VARx (x1c)) 
+VARa(Ex(x1c)) 

(2) 

(3) 

where the subscript indicates the random vaxiable upon 
which random "expectation" and "vaxiance" are oper­
ating. 

Thus, the overall expected value of X is a weighted 
mean of the conditional expectations; the overall vaxi­
ance is seen to be attributable to two different sources, 
namely the mean uncertainty of the vaxious conditional 
distributions and the vaxiability of the different condi­
tional means. 

In the following, we will argue that most downscaling 
and parameterization prescriptions underestimate the 
overall vaxiance because of a disregaxd of the first term 
in (3). 

For further demonstration of this effect, let us con­
sider the regression case. To do so, we assume that 
the univaxiate vaxiable X is normally distributed with 

meanµ and vaxiance a;: X,..., N(µ, a;). Let us further 
assume that the mean state µ depends on a large-scale 
state Gt through a lineax relationship 

µ= µo+/3G (4) 

and that the variability axound µis independent of G. 
Then 

(5) 

with a normally distributed variable N ,..., N ( 0, a;). If 
the "driving" process G,..., N(O, a~), then 

E(X) 

E(XIGt) 
VAR(X) 

µo 
µo + f3Gt 
E((X - µo) 2 ) 

E((f3Gt + Nt)2) 

/32a; +a~ (6) 

This decomposition is a special version of equation (3) 
and attributes paxt of the X-variance to the internal 
variability (a;) unrelated to the driving process and 
the remaining vaxiance to the variability of the driving 
process itself (a~). 

2. The Local as Object of Interest 

In this section we will discuss the problem of how 
to infer local details from information about the laxge­
scale state. This problem has long been known in the 
field of weather forecasting (Section 2.1). After the ad­
vent of climate models, which simulate in a Monte Caxlo 
manner the statistics of climate, the same problem has 
axisen in climate research (Section 2.2). We will distin-

. guish between the task of determining a "best guess", 
which has supposedly the smallest distance to the un­
known "true" state, and the task of generating the right 
variability within a simulated ensemble. 

2.1. The Case of Forecasting 

The need to discriminate between the dynamics of 
the laxge scales and the effect of these laxge-scale fea­
tures on the local scale was already acknowledged by 
weather forecasters in the days before the introduction 
of numerical weather forecasting, as was spelled out ex­
plicitly by Victor Staxr in his 1942 monograph about 
weather forecasting: 
"The general problem of forecasting weather conditions 
may be subdivided ... into two parts. In the first place, 
it is necessary to predict the state of motion of the 
atmosphere ... and, secondly, it is necessary to inter­
pret this expected state of motion in terms of the actual 
weather which it will produce at various locations. The 
first of these problems is essentially of a dynamics na­
ture ... The second problem involves a larye number of 
details because, under exactly similar conditions of mo-
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tion, different weather types may occur, depending upon 
the temperature of the air involved ... and a host of local 
influences." 

This statement holds also today, after the advent 
of sophisticated detailed numerical weather prediction 
models which operate on spatial scales of 100 km and 
less. The numerical results are post-processed by dy­
_namical or statistical models that relate upper air data 
to local variables, such as hours of sunshine on small is­
lands off the coast or in valleys 'which cannot be resolved 
adequately by the dynamical models. These technique 
go under the names of "Model Output Statistics" and 
"Perfect Prog" (e.g., Wilks, 1995). In the former case, 
statistical models are built which relate the forecasts 
to the observed values, whereas in the "Perfect Prog" 
approach such models are built from upper-air or large­
scale observations and local variables. 

2.2. The Case of Downscaling 

What we have said so far means, in the climate 
(change) context, that the local state of the ocean, at­
mosphere, or other components of the climate system 
is given by a random variable 

(7) 

with a vector of parameters a= (a1 ... aK ). The prob­
ability distribution P has to be chosen from a suitable 
family of distribution. In many cases P will be Gaus­
sian so that a 1 = j1 and a 2 = :E, with j1 representing 
the mean vector and :E the variance-covariance matrix. 
In other cases, P may be of considerably more com­
plex form, for instance in the case of daily amounts of 
rainfall (cf. Katz and Parlange, 1996). In the following 
we will disregard the dependence on the previous local 
state Xt-1 for simplicity. 

In the framework of downscaling, the parameters are 
conditioned upon a large scale feature Gt that is be­
lieved to be well simulated by a climate model ( von 
Storch et al., 1993) 

a= F(Gt) 

so that equation (7) is replaced by 

Xt "'P(F(Gt)) 

(8) 

(9) 

After the specification of F random sequences of Xt 
may be generated by drawing random samples from 
P(F(Gt)), with Gt itself drawn from a statistical model 
(i.e., from a stochastic process Gt) or from a global 
(large-scale) dynamical atmosphere-ocean model. 

Thus, we may understand the "local climate" X as 
being conditioned by the external variable G. Accord­
ing to (3), the local climate variability is caused by the 
local uncertainty unrelated to the large-scale dynamics 
and by the large-scale variability. 
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2.3. Best Guess - Reconstructions 

The externally induced part of the variability, which 
is in general 

or, in the linear univariate case (5), {Pa~, may be re­

covered by calculating for each external state Gt the 
conditional expected, or ensemble mean state of Xt. 
This part of the variability may be considered "deter­
ministic" or "predictable" to the extent that Gt is pre­
dictable. The remaining part cannot be specified (at 
least as long as the model F is chosen correctly) from 
large-scale information .. 

A standard statistical approach to this end is regres­
sion, which is based on the model (5) and leads to the 
"best guess" 

X= µo+,BG (10) 

In the general terminology of Section 1.2, the statistical 
model (9) is replaced by the deterministic conditional 
specification 

X = E(P(F(Gt))) (11) 

When attempting to determine a specific state, be it 
in the past or in the future, then the estimator (11), 
which tacitly sets the contribution of the intrinsic un­
certainty to zero, is the "best guess" with the minimum 
expected mean square error. Therefore, this type of 
downscaling is reasonable for the reconstructing of past 
variations and for forecasting specific states. Of course, 
the model (11) also makes sense when the intrinsic un­
certainty is negligible, which is sometimes the case when 
we are dealing with time averages. 

An example of such a reconstruction is the first flow­
ering date of the Galanthus nivalis (snow drop) in 
Schleswig Holstein, the northernmost state of Germany 
(Maak and von Storch, 1997). Thus, the local vari­
able Xt is the Julian date of the first sight of a flow­
ering Galanthus nivalis; as a large-scale parameter, Gt, 
the European scale JFM mean temperature was cho- • 
sen. The index t counts years. With the help of a 
canonical correlation analysis (e.g., von Storch, 1995b), 
a regression model of the type (5) was fitted to the data, 
covering the years from 1871to1990. 

Figure 1 shows the reported flowering date anomalies, 
i.e., deviations from the time mean of the first flower­
ing date, for the years 1896-1900 and 1951-1990 as well 
as the estimated flowering dates, derived via downscal­
ing from the European JFM temperature field. The 
local reports 1896-1900 and 1951-70 represent indepen­
dent information. Obviously, the regression model is 
skillful in reproducing the observed dates so that the 
best guess for the years without a local report may be 
considered useful information about interdecadal vari­
ability and the presence, or absence, of trends. 
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Figure 1. Local reports (dashed) and downscaled anomalies (solid) of the first flowering dates 
in Schleswig-Holstein. Units: Days. 

Similarly good results, which could be verified by in­
dependent data from the early part of this century, have 
been reported by Kaas et al. (1996) for wind force in 
Greenland and by von Storch et al. (1993) for precipi­
tation on the Iberian peninsula. 

2.4. Random Realizations - Simulations 

When dealing with the best guess (11), the disregard 
of the intrinsic local variability has the sometimes dis­
advantegous side effect that the time variance is undes­
timated: 

VAR(X) < VAR(X) (12) 

The missing variance is intrinsically unpredictable as 
long as climate is concerned. It is not a nuisance or due 
to measurement or modeling errors but an essential part 
of the statistics of local climate. It is real and significant 
for ecosystems and people's activity on the local scale. 
It cannot be accounted for by an inflation of the "de­
terministic part" as suggested by Karl et al. (1990) or 
Biirger (1996) but must be kept as independent random 
component. 

Thus in the situation that time series are wanted that 
reproduce the original variance, then the randomized 
design (13) is better than the deterministic approach 
(11). 

We return to the case of Galanthus nivalis and its first 
flowering in Schleswig-Holstein. Admittedly, the event 
"flowering of Galanthus nivali$' is not of great public 
or scientific concern when we address climate change, 
but expressing the climate change message in terms of 
this phenological event typical of the experiences of ev­
eryday life may be more ilustrative than expressing it 
in terms of winter mean temperatures in degrees centi­
grade. 

The standard deviation of the in situ dates is 16.5 
days (X) and that of the downscaled dates is 14.9 days 
(X). For arriving at the same variance, the additive 
white noise process must have a standard deviation of 
7.1 days. 

We have applied the "deterministic" downscaling (11) 
and the randomized downscaling interpretor (14) to the 

large-scale temperature fields simulated in a transient 
climate change experiment, which was initialized with 
C02 concentration as in 1935, run with C02 concentra­
tions as observed until 1990, and then continued with a 
"business-as-usual" scenario of a 1 % annual increase of 
C02 until 2090 (Cubasch et al., 1995). 

Thus, the missing variance must be accepted as it is, 
namely as variance due to unknown processes, and we 
replace the downscaling interpretor X, given by defini­
tion ( 11), with the randomized downscaling interpretor, 
X* The result of the downscaling exercise is shown in 

(13) Figure 2 with two independent realizations of the ran­
domized interpretation of the large-scale temperature. 
The three curves share essentially the same behavior, 

X*=X+N 

where N is assumed to be independent of X so that 

VAR(N) = VAR(X) - VAR(X) (14) namely an almost stationary behaviour until the end of 
this century and then a smooth transistion toward ear­
lier and earlier flowering dates; after about 100 years, 
the mean flowering date is indicated to happen about 

about N, only its variance (14) and its independence. 30 days earlier than in the 20th century. 

for having the right variance. In any concrete situation, 
with a given "deterministic" X, nothing more is known 
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Figure 2. Scenarios of first flowering of Galanthus ni­
valis in Schleswig Holstein derived from a 150-year cli­
mate change experiment starting in 1935. The solid 
line specifies the conditional expectation whereas the 
dashed and dotted lines represent two randomized sce­
narios with independent noise terms with a standard 
deviation of 7 days. Horizontal axis: years ( + 1900), 
vertical axis: Julian days. 

The difference between the deterministic and ran­
domized estimates is small, which is not surprising be­
cause the standard deviation of the noise term was 
only about half of the X-variability in the control cli­
mate. That the randomization has, however, an ef­
fect is demonstrated by the cumulative distribution 
functions shown in Figure 3. In this case, 30 differ­
ent winter temperature distributions taken from a T42 
time slice experiment with present day observed C02 
and with doubled C02 concentrations were downscaled 
to get estimates of Galanthus nivalis flowering dates. 
Thus, we get 30 realizations of mean flowering dates 
conditioned upon a temperature field. The cumula­
tive distribution functions for the two cases are given 

. as heavy (present day) and light (2 C02) solid lines­
the distribution is clearly shifted by 20 days in the 
mean. When, however, for the qouble C02 case, the 
randomization is introduced (dotted line), the mean 
value is almost unchanged, but the distribution becomes 
markedly broader (see the tails of the distribution). 

2.5. Weather Generators 

This example may be considered a simple case of a 
. "weather generator", i.e., a presciption to generate se­
quences of numbers which share certain statistics of the 
real world. Of course, considerably more sophisticated 
generators may be designed, as for instance the precipi­
tation generator proposed by Katz and Parlange {1996), 
in which the distributions of both the amount of pre­
cipitation and the probability for a day to be wet after 
the day before was already wet (or dry) are conditioned 
upon the large-scale atmospheric state. 
· Another class of weather generators was suggested 
by Hughes et al. {1993), who considered the vector 
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Figure 3. Cumulative distribution function derived 
from in situ observations (heavy solid line) and esti­
mated doubled carbon dioxide conditions without (light 
solid line) and with (dotted) superimposed white noise 
(with standard deviation 7 days). 

formed by a few indices characteristic for the air pres­
sure distribution1 and the daily precipitation. With the 
help of a clustering procedure (CART), they partitioned 
the full space spanned by the air-pressure indices into 
a few subsets which were found to be associated with a 
characteristic rainfall regime. After having determined 
the subsets, the procedure was applied to air pressure 
index vector sequences simulated by a climate model. 
The purpose of this exercise is the generation of realis­
tic, dynamically consistent rainfall sequences. To do so, 

·they estimated for each day in the subset of air pres­
sure a consistent rainfall by choosing at random one 
day from the large observational data set that fell in 
the same subset of the air pressure indices. 

Yet another approach, the "analogue technique" was 
suggested by Zorita et al. (1995), who also formed a 
vector with indices of the large-scale air pressure field . 
For any climate model air pressure distribution, they 
determined from the large set of observed weather maps 
which map would be closest to the examined simu­
lated map. Then, for the climate model day, the local 
feature-be it rainfall or high water level at a coastal 
gauge-was specified as being the local feature of the 
nearest neighbor in the set of observed states.2 The re­
sult of such an exercise is shown in Figure 4: In this 
case the local variable is the daily mean height of the 
high tides at the North German port Cuxhaven. The 
top diagram shows the daily reports for 10 consecutive 
winters (DJF), and the two diagrams below show the 
analogue specifications (nearest and 2nd nearest neigh­
bor). The specifications deviate from the reports quite a 
bit in the details, but the overall statistics, with times of 

. increased and reduced heights, are clearly reproduced. 
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1 Actually, EOF coefficients. 
2 The procedure is slightly more involved, but for the time 

being this simplifying description should be sufficient. 
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Figure ~· With ~n "analogue weather generator" created sequences of daily mean high-tides 
(cm) durmg 10 wmters (DJF; 1 January 1965 until 31 December 1974) in Cuxhaven. Top: 
reported values; lower two panels: specifications with the nearest and 2nd nearest neighbor. 

3. The Local Modifying the Global 

So far, we have dicussed the problem of inferring de­
tails of climate statistics on scales where climate models 
have lost their skill. But what is the effect of these unre­
solved scales on the general performance of the climate 
engine? Let us write a climate variable </> as a sum of 
the large-scale resolved component <f; and an unresolved 
part </>' 

Then, our basic differential equations 

is replaced by 

84> = R(c/>) 
at 

(15) 

(16) 

(17) 

with a modified operator RAx resulting from the full 
operator n after introducing a truncated spatial reso­
lution ~x (this could be the global or regional average). 
In general, this operator may be written as 

(18) 

with an operator n' describing the net effect of the sub­
grid scale variations represented by </>'. With this setup, 
the system (17) is no longer closed and can therefore no 
longer be integrated. For overcoming this problem, con­
ventional approaches assume that the "nuisance" term 
n' ( </>') is either irrelevant, i.e,. 

n'(c/>') = o (19) 
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or may be parameterized by 

n'(<I>') = Q(ef;) (20) 

with some empirically determined or dynamically mo­
tivated function Q. 

While both specifications (19,20) return an integrable 
equation ( 17), they both have to assume that the lo­
cal scale acts as a deterministic slave of the resolved 
scales. However, as we have seen before, in reality there 
is variability at local scales unrelated to the resolved 
scales. Thus, equation (17) should take into account 
that n' ( </>') can n:ot completely be specified as a func­
tion of ef;, but that formulation (20) should be replaced 
by 

R'(c/>') ""S(Oi) (21) 

with a random process s with parameters a which are 
conditioned upon the resolved state ef;: 

n'(<I>') ""S(:F(~)) (22) 

When the mean value µ is the only parameter in the 
vector a which depends on ~. then the distribution s 
may be written as 

S(:F(<f;)) = µ(<f;) + S' (23) 

with a conditional mean value and random components 
with zero mean value (E{S') = 0) and uncertainty un­
related to the resolved scales. Specification (20) equals 
specification (23) if S' = 0 and µ(ef;) = Q(~). 

To demonstrate the difference between the two spec­
ifications (20) and (23), we discuss Figure 5 display~ 
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Figure 5. Scatter of various simultaneous measure­
ments of the drag coefficient CD and of the wind speed 
at 10 m height. The straight line is a regression line for 
the scatter. After De Cosmo et al. (1996). [1 mm] 

ing various "measurements" of the drag coefficients CD 

of the sea surface sorted according to the value of the 
"10 m wind" lil10I during neutral conditions (from De 
Cosmo et al., 1996). In this case we consider the wind 
measured at a height of 10 m as the "resolved scale" pa­
rameter (fi, which is representative for a certain spatial 
and temporal scale and readily observable. The trans­
fer of momentum r = R(q/) through the interface of 
ocean and atmosphere, however, depends on the vari­
ance of short-term and smallest-scale variations of the 
wind. The latter quantity can be determined only in 
expensive obervational campaigns, but it has long been 
known that it can be approximated by the "bulk for­
mula" 

(24) 

where CD is considered to depend on the thermal stabil­
ity and the wind speed. Formula (24) represents a clas­
sical case of a parameterization, namely the frictional 
effect of small-scale short-term fluctuations of wind on 
the atmospheric flow. Figure 5 displays a scatter of 
points, each representing one observation, and a sum­
marizing regression line. Thus, to completely specify 
the parameterization ( 24), disregarding the dependency 
on the thermal stratification for the time being, the 
drag coefficient is specified as a linear function of lil10I, 
namely 

CiJ = a+b· lu10I (25) 

with some, in the present context, irrelevant numbers 
a and b. This type of specification has been used in 
countless simulations with numerical ocean circulation 
models and ocean surface wave models forced with ob­
served wind fields. 

The question is what to do about the scatter around 
the regression line in Figure 5. The application of the 

bulk formula (24) with the regressed Cjj implies that 
the scatter is considered inconsequential or artificially 
reflects observational errors. The alternative interpre­
tation is, however, that unknown processes (such as the 
sea state, gustiness of the wind, secondary flows) in­
fluence the value of CD so that it exhibits unaccounted 
variations almost symmetrically around the regression 
line with a standard deviation of about a ~ 0.5 units. 
Therefore, the randomized version of the bulk formula 
(24) would use 

CD= Cjj +N (26) 

with 
N "'N(O, a) (27) 

provided that the bulk formula is used with sufficiently 
large time steps so that the temporal correlation may 
be disregarded. 

3.1. Does It Matter? A Demonstration 

The question is, of course, does the use of the random­
ized parameterization (23) have an effect on the perfor­
mance of the model in which the parameterization is 
used? One may argue, that the introduction of noise, 
represented by S', is inconsequential since the contri-

. butions will just be averaged out. This may indeed be 
so in many cases, in particular in diffusive systems, but 
the situation is similar to the case of the "stochastic cli­
mate model" (Hasselmann, 1976), where the noise acts 
constructively in building up red noise variance. We 
argue that the use of the randomized design (23) will 
enhance the variability of the considered model on all 
time scales and will demonstrate this prospect by means 
of an energy balance model 
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dT 
dt = ew(St +Lt) (28) 

where T represents the near surface temperature and 
T the global mean of T. S is the globally averaged 
short wave radiation intercepted by the surface, which 
is determined by a range of factors, such as the extent 
of sea ice coverage, the cloud distribution, and surface 
properties. L is the outgoing long wave radiation, which 
depends on the temperature. Parameterizations of the 
type (20) are 

S(T) 
L(T) 

= (l -A)So 

bT4 

(29) 

(30) 

with the albedo A, which is the fraction of the total in­
coming short wave radiation So reflected to space. The 
specification of the long-wave back radiation features a 
constant b which is supposed to represent a diversity of 
factors, such as surface properties and the presence of 
radiatively active gases. The dependency of the albedo 
on the temperature may be approximated by 
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A(T) = h - g · tanh (r(T-T0 )) (31) 

with appropriately chosen constants h, g, r and T0 • 

Large global mean temperatures are assumed to be asso­
ciated with little or no sea ice, thus low albedo, whereas 
low temperatures are connected with a large sea ice cov­
erage and high albedo. 

The equation has three equilibria (Figure 7), two of 
which are stable and the third is unstable; whatever 
the initial state, the system moves smoothly with ex­
ponentially decreasing speed towards the nearest stable 
equilibrium (Figure 6) with no internal variability. 

The albedo is not only a function of the global mean 
temperature but is affected by the cloudiness, which 
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Figure 6. Temperature dependency of the expecta­
tion of albedo in the EBM (solid line). The dashed 
line represents required albedo values for the system to 
equilibrate at a given temperature. 

to some extent is also determined by the global mean 
temperature but exhibits a marked internal variability 
related to the regional and local temperatures. If we 
assume that this internal variability leads to an uncer­
tainty of 33 in (31), then we replace the "deterministic" 
parameterization (29) by the randomized parameteriza­
tion 

S(T) rv (1 - A(T) + N)So (32) 

. with a random variable N "'N(O, 33). The term A(T) 
is the mean albedo, averaged over all cases with global 
mean temperature T, given by specification (31). The 
effect of the randomized albedo parameterization on the 
global mean temperature T is shown in Figure 8. 

Note that the resulting model itself has become a 
stochastic model, since it will deliver a different path in 
its phase space for each simulation. Differently from the 
smooth convergence towards one of the stable equilibria 
in Figure 7, the trajectory wanders irregularly between 
two regimes, which correspond to the two stable equilib­
ria of the non-randomized system. Overlaid are short­
term erratic variations around these equilibira. The ex­
istence of the two statistical equilibria is documented 

clearly from the bimodal histogram of the temperature 
shown in the lower panel of Figure 8. Thus, the addi­
tion of noise transforms the simple dynamically inactive 
deterministic system into a much richer dynamically ac­
tive system. 

The noise does not act as a nuisance, or a veil blur­
ring the dynamics of the system; instead the noise con­
tributes a significant component of the dynamical sys­
tem. Therefore, it appears likely that the randomiza­
tion of subgrid scale parameterizations in numerical dy­
namical models will have an effect on the simulated 
space-time statistics; in particular, one may expect the 
overall level of variability to be enhanced and that more 
often transitions between different subregimes, if they 
exist, will occur. Also, the extreme values may become 
somewhat larger. 
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Figure 7. Solutions of the EBM with deterministic 
parameterization for different initial values. Note that 
the trajectory launched at 288 K starts out from an 
unstable equilibrium. 

4. Conclusion 

The purpose of the present paper is to discuss the 
role of the "local" in numerical models of the ocean's 
or atmosphere's dynamics. Conventionally, the local is 
considered either irrelevant or a complete slave of the re­
solved scales so that the effect of sub-grid scale dynam­
ics may be approximated by some suitably chosen func­
tions of the resolved scales. As long as such models are 
considered a tool for describing the large-scale dynam­
ics and the task of parameterizing the subgrid scales is 
done properly, the statistics of local states are of no in­
terest. However, after numerical models have matured 
in becoming tools for simulating quasi-realistically the 
statistics of the physical environment affecting ecosys­
tems and their risk management (e.g., Leemanns and 
Solomon, 1993; Lubchenco et al., 1993), the implica­
tions of model results for the local scales are becoming 
more and more significant (von Storch, 1995a). 
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Figure 8. Realization of randomized EBM 
Top: time series; Bottom: frequency distribution of the temperature. 

In the past five, or so, years, a rich literature in down­
scaling has emerged (e.g., Wigley et al., 1990; Karl et 
al., 1990; Hewitson and Crane, 1992, 1996; von Storch 
et al., 1993; Hughes et al., 1993; Zorita et al., 1995; 
Frey-Buness et al., 1995; Biirger, 1996; Kaas et al., 
1996; Tuentes and Heimann, 1996; Conway et al., 1996; 
Katz and Parlange, 1996; Cubasch et al., 1996). 

On the other hand, the paradigm of specifying pa­
rameterizations of sub-grid scale processes as condi­
tional expected values has been adopted in all ap­
proaches, without acknowledging this formal depen­
. dency. In some cases, researchers have noticed that the 
sub-grid scale "noise" unrelated to resolved scales has 
an impact on the resolved scales. Examples are gusti-
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ness and its effect on ocean waves (Komen et al., 1995) 
or on the atmospheric boundary layer. In these cases, 
the subgrid scale spatial variability was considered by 
adding a term, which may again depend on the resolved 
scale (so that the resulting parameterization is again of 
the deterministic form (20)). The motivation in these 
cases was that the sub-grid scale variability would act 
on the resolved scales via a non-linear mechanism, and 
not via the accumulation of short-term variability. The 
modification of the parameterization then describes the 
conditional mean effect of this nonlinear effect . 

It is suggested to conduct a number of numerical twin 
experiments with dynamical models using deterministic 
parameterizations and randomized parameterizations. 
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It is expected that the randomized parameterizations 
will give rise to broader frequency distributions with 
longer tails. It remains to be seen if this prediction 
will be confirmed or if the diffferences will appear as 
inconsequential and not worth the additional numerical 
load. 
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