
Data assimilation for hydrodynamical modelingof the Odra lagoonLaurent Bertino1, Julien S�en�egas1, Hans Wackernagel1,Hans von Storch21Centre de G�eostatistique, Ecole des Mines de Paris35 rue Saint Honor�e, F{77305 Fontainebleau, France2Institute for Hydrophysics, GKSS Research CentreMax-Planck-Stra�e, D{21502 Geesthacht, GermanyContact: bertino@cg.ensmp.frAbstractData assimilation can be de�ned as the incorporation of measurements into the numericalmodel of a physical system, to improve the forecasts of this model. Data assimilation hasgained increasing popularity in the atmospheric and oceanographic communities over the last twodecades. The random functions approach of geostatistics, its multivariate spatial modeling toolsand its change-of-support models and the spatial simulation capabilities provide an attractiveframework for performing data assimilation.The study of nutrients in estuaries from the Ebro and Odra rivers in the EC funded PIO-NEER project allows combination of both techniques for forecasting the physical, biological andchemical state of the estuarine system.The dynamical evolution of the estuarine variables and corresponding observations are mod-eled with a state-space model and, since their evolution is given by non-linear functions, anextended Kalman Filter is used for the data assimilation. Di�erent suboptimal schemes such asthe Reduced Rank Square Root (RRSQRT) Kalman Filter and simple Data Assimilation meth-ods are compared, focusing attention to computer time and memory requirements. Geostatisticalmodeling ideas are discussed in the application of these algorithms.1 IntroductionData assimilation has been widely used since the sixties in operational weather forecast formelding atmospheric model predictions with independent informations (measurements ...). Sincethen, they have been applied in oceanography mainly by the means of sequential methods(Evensen [4]). Data Assimilation methods meld a physical model deriving from the systemequations with in-situ measurements. These methods lead to a best estimate of the past, presentor future state of the system, but they also allow for parameter estimation and initial or boundaryconditions estimation. However, Data Assimilation in its actual form doesn't modify the system1



2equations, nor their discretization.In the present study, the goal of data assimilation is to give short-term operational predictionsof the hydrodynamical state of the Odra lagoon, which allows for forecasting extreme events suchas the Odra ood of summer 1997 (Rosenthal [7]). Furthermore, the hydrodynamical state hasto be known with high accuracy for e�cient ecological monitoring of the lagoon.The Odra Laggon straddles the Polish-German border. Its surface covers about 600 km2,its average depth is 5m, so that its volume is about 3 � 109 km3. Fresh water enters the lagoonfrom several rivers, with the Odra being the most important. Intermittently salt water intrudesin small amounts through the three narrow entries to the Baltic Sea. Such intrusions are causedby water levels di�erences between the Baltic Sea and the Lagoon and have a large impact onthe whole ecosystem.The present article �rst reviews simple Data Assimilation methods and Kalman Filteringmethods applied to high-dimensional models. Then an example of data assimilation of the OdraLagoon water levels is given using the RRSQRT Kalman Filter.2 The Data Assimilation problem: continuous and discretizedLet Z(x,t) be a multivariate function of space and time. In most sections of this article, wewill discretize the spatial dependence of Z, that is, we will consider the multivariate randomfunction Z(t) where all locations x are di�erent components of the state vector Z(t), withoutloss of generality. We will use the continuous spatio-temporal notation Z(x; t) in section 4.4when comparing data assimilation to Kriging methods.The state Z is supposed to follow the di�erential equation of the physical model :@Z@t = f(Z) (1)f is often a nonlinear function of Z and of the spatial derivatives of Z. Equation (1) is calledthe evolution equation of the system.The system state Z(x,t) is observed through a measurement vector z of m observations. Theobserved variables are not necessarily the state variables of Z but they are linked through theobservation equation (2) : z = L(Z(x; t)) (2)8� = 1 : : :m, z� = L�(Z(x; t))Contrarily to the evolution equation (1), this operator is linear.The system of both equations (1) and (2) is called a state space model. This system isill-conditioned and generally has no solution since every measurement contradicts the modelpredicted state, but the introduction of random errors in both equations allows for �nding anoptimal solution that satis�es best both constraints.When discretized, the above equations (1) and (2) become for time step n :Zn+1 = F (Zn)zn = L(Zn)



3where Zn is a vector of length number of state variables � number of spatial grid cells and zn avector of lengthm. Within the discretized framework, it should be noted that measurements andmodel state values have di�erent spatio-temporal supports : a measurement is an average of thevariable of interest on a small spatio-temporal interval, while model state values are averages ona whole grid cell during a model step which are both much larger. Therefore, measurements havemuch higher variability than model output and they have to be averaged in order to comparemodel output with observations that have similar variability.3 General solution to the nonlinear problemThe evolution equation (1) is perturbed by a random model noise dwt, classically considered amultivariate white noise and becomes an Itô stochastic di�erential equation.dZ(t) = f(Z; t)dt+ g(Z; t)dwtWhen de�ned, the pdf �t(Z) of Z(t) follows the Fokker-Planck equation :@�t@t = �r:(f(Z; t)�t) +Xi;j @2@Zi@Zj (G=2)ij�twith G = ggT . This equation is a deterministic advection-di�usion equation having addi-tional constraints of positivity of �t and of unit sum of probabilities R �t = 1.The Fokker-Planck equation could be solved as a partial di�erential equation with morecomplexity due to both constraints quoted above, Miller [6] found a solution to the double-wellproblem, a nonlinear monovariate problem. But for high-dimensional problems such as oceanmodels no solution has been found yet.4 Sequential methodsIn the sequential approach, one can estimate the state of the system at time step n only fromthe estimated state at time step n� 1 and from in-situ data at time step n. The unknown truestate remains Zn, the model forecast state at time n is noted Zfn and the analyzed state afterassimilation of the measurements Zan.4.1 Primitive methodsThese methods are simple and economical. They provide a basis for assessment of more expensivemethods.Direct Insertion The model-forecast value is replaced by an observation at all grid cells wheremeasurements are available. As a �rst remark one can notice that extending a quasi-punctualmeasurement to a whole grid cell is statistically incorrect.Nudging Also called Newtonian relaxation, this method aims at a dynamical model relaxationtowards the observations : Zfn = F (Zan�1) (3)



4Zan = Zfn +Kn(zn � L(Zfn)) (4)Equation (3) is called Time Step and equation (4) the Measurement Step.An example where Kn is obtained by cost function minimization is given by Zou and LeDimet [11].Optimal Interpolation This technique is also know as Statistical Interpolation in meteorol-ogy and commonly used for numerical weather prediction (Daley [3]). The Time and Measure-ment Step equations are the same as above, but the gain matrix Kn is generally obtained byclassical kriging techniques (Wackernagel [10]).4.2 Principles of the Kalman FilterKalman �ltering applied to oceanography is described in detail by Bennett [1]. Discretization isrequired in our applications for resolving the advection-di�usion equations. The crude Kalman�lter is designed for linear systems such as :Zn+1 = FnZn + qnqn is the Model Error, a random noise vector of variance-covariance matrix �m. This matrixcan be made time-dependent without any incidence on the ongoing calculations.The observation equation (2) also has a random additive error rn, called the MeasurementError of variance-covariance matrix �o :zn = L(Zn) + rnThe classical hypotheses for the Kalman Filter are that both qn and rn are independentcentered Gaussian white noise processes :� E(qn) = E(rn) = 0.� 8p 6= n, cor(rp; rn) = cor(qp; qn) = 0� 8(n; p); cor(rn; qp) = 0The spatial structure of the measurement error is often modeled by a Nugget E�ect, and therandom functions Z and z are generally implicitly assumed stationary of order 2 while computingthe covariance matrices �o and �m.4.3 Equations of the Kalman FilterThe Time Step equation is linear : Zfn = Fn�1Zan�1and the Measurement Step equation is equation (4). Zf and Za are estimates of the true stateZ, Zf being a �rst guess given by the model and Za the optimal estimate after assimilation of



5the measurements. The estimation errors �f = Z � Zf and �a = Z � Za have respectively Cfand Ca for covariance matrices. In Kalman Filtering these matrices evolve according to :Cfn+1 = FnCanFTn +�m (5)Kn+1 = LT (Cfn+1)(LLT (Cfn+1) + �o)�1 (6)Can+1 = Cfn+1 �Kn+1L(Cfn+1) (7)Where it can be shown under the above hypotheses that Kn+1 minimizes the variance of theestimation error (see Maybeck [5]).J(Kn+1) = Tr(E[�an+1(�an+1)T ])4.4 Formal equivalence with CokrigingGiven a time step n, we demonstrate equation (6) by Simple Kriging of the random function(Z�Zf ) : the prediction error (Z(x)�Zf (x)) is estimated by a combination of the observationmis�ts z � L(Zf ) at a given location x. The demonstration is carried out in the monovariatecase in order to simplify the notations. In the multivariate case, similar equations lead to theresult that the Kalman Filter Measurement Step is equivalent to a Simple Cokriging.When applied to a function of two positions such as the covariance C(x1; x2), the one-positionfunction obtained by measurements of the �rst (resp. the second) position is noted L(C)(x2)(resp. LT (C)(x1)), then, the m �m matrix obtained by composition of both L and LT is notedLLT (C). For � = 1 : : :m, L� is the function giving the � measurement.Let us consider the following linear combination�a(x) = (Z(x)� Zf(x))� (8)= X� ��(z� � L�(Zf))Since the observation error is supposed to be stationary of order 2, the estimation error hasa �nite variance. The error covariances are :Var(�f(x)) = Cf(0) (9)8� = 1 : : :m, Cov(�f(x); z� � L�(Zf )) = LT�(Cf)(x)8�; �, Cov(z� � L�(Zf ); z� � L�(Zf )) = (�o)�;� + L�LT� (Cf)Using the independence between Model and Measurement Errors.Considering the Kalman Filter assumptions E(r) = E(q) = 0 for all previous time steps,E[�f(x)] = 0which means that the mean of Z�Zf is known, equal to zero and therefore that we are performinga Simple Kriging.Lastly, at a given location x the corresponding line of the Kalman gain matrix K is called� = (��)�=1:::m. J(�) = Var(�f (x)�X� ��(z� � L�(Zf )))



6= Cf(0)� 2X� ��L�(Cf)(x)+X�;� ����((�o)�� + L�LT� (Cf)) (10)In order to minimize J(�), the derivatives of the above expression along all ��; � = 1 : : :mare set equal to zero, then the following matrix products appear:8� : @J(�)@�� = 0 , �(�o� + L�LT (Cf)) = L�(Cf)(x), �(�o + LLT (Cf)) = L(Cf )(x), � = L(Cf )(x)(�o + LLT (Cf))�18x) K = LT (Cf)(�o + LLT (Cf))�1When varying the estimation location x we �nd back the Kalman Gain expression (6). Thesame result can be found in the multivariate case and demonstates the equivalence between theMeasurement Step of the Kalman Filter and Simple Cokriging.4.5 Extension of the KF to the non-linear caseHydrodynamical models are often non-linear and the Kalman Filter method has to be modi�edto the Extended Kalman Filter, in which the system evolves according to the following equationZn+1 = F (Zn; qn)and the covariance matrix is propagated by �rst order derivatives of F . The measurement stepis performed by the means of a linearization of the model. Truncation to higher orders can benecessary in some - exceptional - cases, see Verlaan [9] for a discussion.For coastal modeling application, even with �rst order development, the propagation ofthe covariance matrix and the computation of the Kalman Gain are such time and memorydemanding tasks that the implementation of the EKF is not realistic. The propagation of thecovariance matrix by itself runs forward the model as many times as there are columns in thecovariance matrix Cf , usually about 105 times. Therefore many Sub-Optimal Schemes havebeen developed for faster and more practical computations, but whose solutions do not strictlyminimize the estimation error variance. A few are listed here:Stationary �lter The Gain is user-assigned and constant. This method is interesting if thegain Kn converges when n! +1.Coarse grid approximation The covariance is de�ned on a coarser grid as the state grid.Singular Values Partial KF The linearized model evolution matrix is truncated along itshighest singular values for the error covariance propagation.Model reduction The state vector is constrained to a subspace determined by measurementerror minimization.RRSQRT Kalman Filter (Verlaan [9]) Reduced Rank Square Root Kalman Filter : Thecovariance matrix is simpli�ed by an eigendecomposition and a truncation on the strongesteigenvalues at every assimilation step. As the main time consuming step is generally the
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U10 velocity   1.5m/s Figure 1: DA by RRSQRT KF : map of the water level assimilated on August the 4th, 1997 at 12:00,the wind direction in the frame indicates a low wind at that time. The Odra inow comes at the bottomright of the graph and the three channels to the Baltic Sea are on the top left middle and right of thedomain. Measurement stations are marked by an asterisk.forward propagation in time of the reduced square root covariance matrix, the computationtime of the crude model is approximately multiplied by the number of eigenmodes keptfor rank reduction.Ensemble KF (Evensen [4]) The state and covariance matrix are estimated by a Monte-Carlo method on an ensemble of simulated states which should be large enough to repro-duce the non-Gaussian true pdf. Here, the �lter multiplies the computation time by thenumber of simulated states.5 Case of the Odra Lagoon hydrodynamicsThe TRIM3D model is a 3D numerical model for hydrodynamics (Casulli [2]). It solves theNavier-Stokes equations for free-surface ows under hydrostatic hypothesis. A semi-implicit�nite di�erence scheme is carried out on an Arakawa grid; see Rosenthal et al. [7] and S�en�egas[8] for numerical simulations of the Odra Lagoon using TRIM3D.In the following case study, the Odra Lagoon grid has a 250m horizontal resolution andspreads itself on 357*259 square nodes among which 16053 are wet. Three vertical layers areconsidered which �nally gives around 48000 active nodes. The initial state of the model is suchthat all variables are set up to zero.The assimilated observations are water levels. Hourly measurements are sampled in �ve pilestations located in the \Kleines Ha�" and near the coast.Implementing a Kalman Filter prerequisites the knowledge of both observation and modelerror covariance matrices �o and �m. In our case these matrices are unknown. Observation
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Figure 2: DA by RRSQRT KF : error variances of the previous estimation, variances vary between0.0004 and 0.002 m2 which means that the water levels are known with a precision between 2 and 5 cm.Measurement stations are marked by an asterisk.errors can be considered as spatial white noise because they depict a lack of accuracy in themeasurement protocol and are seldom correlated from one device to another. The variance ofthis white noise has been set to the nugget e�ect part of the variograms of the measurementstime series, which means that this observation variance is overestimated.Since in this case study the main causes for imprecision in the model are errors in the bound-ary conditions, the model errors are limited to a nugget e�ect in the wind �eld (of amplitude0.5m/s) and a correlated noise in the Baltic interface water levels, for which the covariancematrix was computed by structural analysis of historical water level data in the Baltic sea.The number of retained eigenmodes is set to 50 considering the shape of the eigenvaluesdiagram and a previous simpli�ed 1D study (S�en�egas [8]).The RRSQRT KF run simulates the period from the 4th of August 1997 at 00:00 to the 19thof August 1997.On the assimilated water levels map in Figure 1 the RRSQRT Kalman Filter proves to haverealistic smooth state estimates after twelve hours of assimilation, while a corresponding runwithout assimilation takes two days to erase the marks of the arbitrary initial state. Since theMeasurement Step is also an interpolation method, it also diminishes the e�ect of erroneousinitial and boundary conditions.The error variance map in Figure 2 shows that the error expected by the RRSQRT KF isreasonable (a few centimeters standard deviation) and remains stable. It also shows that thesystem noise, although it is only introduced at the boundary conditions, is spread on the wholesystem and has maximum variance near the basin coasts. When following the evolution of the



9error variance from one step to another, the error seems to be reected on the basin coasts likewaves in a closed cavity.It was also observed on the variance maps that during a 15 days DA run the covariancematrix does not converge towards a stable state of the �lter, which is an e�ect of both thetime-dependence of the hydrodynamical model and of the variable system noise.6 ConclusionsWhen applied to high-dimensional systems such as the hydrodynamics of the Odra Lagoon,Kalman Filtering becomes excessively demanding in CPU and disk space and leads to practicalproblems.In this case study, the Kalman Filter based on the suboptimal RRSQRT scheme providesits own analysis of the prediction errors as it interpolates the errors by the means of a SimpleCokriging and propagates forward the error statistics in the model.The inputs of Geostatistics in Data Assimilation methods are the description of supporte�ects while comparing in-situ measurements with model forecasts, improvements of the in-terpolation technique and computation of the error covariances. For this last topic, anotherpractical problem is found with sparse measurement locations.The RRSQRT Kalman Filter can handle these di�culties and in future work this DataAssimilation algorithm will be put in competition with other suboptimal schemes.AcknowledgmentsThis work was carried out within the EC funded MAST III project PIONEER (description:http://pioneer.geogr.ku.dk).References[1] Bennett, A. F. (1992) Inverse methods in physical oceanography, Cambridge UniversityPress, Cambridge, UK.[2] Casulli, V.; Cattani, E.; Stability, Accuracy and E�ciency of a Semi-Implicit Method forThree-Dimensional Shallow Water Flow, Computers Math. Applic. (1994), Vol. 27, No. 4,pp. 99-112.[3] Daley, R. (1991)Atmospheric Data Analysis, Cambridge University Press, Cambridge, UK.[4] Van Leeuwen, P.J.; Evensen, G. Data Assimilation and Inverse Methods in Terms of aProbabilistic Formulation, Monthly Weather Review (1996), Vol. 124, pp. 2898-2913.[5] Maybeck, P.S. (1979) Stochastic models, estimation, and control, Volume 141-1 of Mathe-matics in Science and Engineering, Academic Press, New York, USA.[6] Miller, R. N.; Carter, E. F. Jr.; Blue, S. T. Data Assimilation into Nonlinear StochasticModels, Tellus (1999), Vol. 51A, pp. 167-194.
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