
Chapter 13

Spatial Patterns: EOFs
and CCA

by Hans von Storch

13.1 Introduction

Many analyses of climate data sets suffer from high dimensions of the vari-
ables representing the state of the system at any given time. Often it is
advisable to split the full phase space into two subspaces. The “signal” space
is spanned by few characteristic patterns and is supposed to represent the dy-
namics of the considered process. The “noise subspace”, on the other hand, is
high-dimensional and contains all processes which are purportedly irrelevant
in their details for the “signal subspace”.

The decision of what to call“signal” and what to call “noise” is non-trivial.
The term “signal” is not a well-defined expression in this context. In ex-
perimental physics, the signal is well defined, and the noise is mostly the
uncertainty of the measurement and represents merely a nuisance. In cli-
mate research, the signal is defined by the interest of the researcher and the
noise is everything else unrelated to this object of interest. Only in infre-
quent cases is the noise due to uncertainties of the measurement, sometimes
the noise comprises the errors introduced by deriving “analyses”, i.e., by de-
riving from many irregularly distributed point observations a complete map.
But in most cases the noise is made up of well-organized processes whose
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details are unimportant for the “signal”. In many cases the noise is not a
nuisance but its statistics are relevant for the understanding of the dynamics
of the signal (see also Chapter 3). Generally the signal has longer scales in
time and space than the noise, and the signal has fewer degrees of freedom
than the noise.

An example is oceanic heat transport - this signal is low frequent and large
in spatial scale. The extratropical storms are in this context noise, since the
individual storms do not matter, but the ensemble of the storms, or the storm
track is of utmost importance as this ensemble controls the energy exchange
at the interface of atmosphere and ocean. Thus, for some oceanographers
the individual storms are noise. For a synoptic meteorologist an individual
storm is the object of interest, and thus the signal. But to understand an
individual storm does not require the detailed knowledge of each cloud within
the storm, so the clouds are noise in this context.

The purpose of this chapter is to discuss how the “signal” subspace may be
represented by characteristic patterns. The specification of such character-
istic patterns can be done in various ways, ranging from purely subjectively
defined patterns, patterns with favorable geometric properties like a powerful
representation of prescribed spatial scales (such as spherical harmonics) to
patterns which are defined to optimize statistical parameters. Empirical Or-
thogonal Functions (EOFs) are optimal in representing variance; Canonical
Correlation Patterns (CCPs) maximize the correlation between two simul-
taneously observed fields); others such as PIPs and POPs (see Chapter 15)
satisfy certain dynamical constraints.

In this contribution we first represent the general idea of projecting large
fields on a few “guess patterns” (Section 13.2). Then EOFs are defined as
those patterns which are most powerful in explaining variance of a random
field �X (Section 13.3). In Section 13.4 the Canonical Correlation Analysis of
two simultaneously observed random fields (�X, �Y) is introduced. In Section
13.5 two methods of determining patterns optimized to represent maxima
of variance are sketched, namely Empirical Orthogonal Teleconnections and
Redundancy Analysis.

13.2 Expansion into a Few Guess Patterns

13.2.1 Guess Patterns, Expansion Coefficients
and Explained Variance

The aforementioned separation of the full phase space into a “signal” sub-
space, spanned by a few patterns �p k and a “noise” subspace may be formally
written as

�Xt =
K∑

k=1

αk(t)�p k + �nt (13.1)
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with t representing in most cases time. The K “guess patterns” �p k and
time coefficients αk(t) are supposed to describe the dynamics in the signal
subspace, and the vector �nt represents the “noise subspace”. When dealing
with the expressions “signal” and “noise” one has to keep in mind that “noise
subspace” is implicitly defined as that space which does not contain the
“signal”. Also, since the noise prevails everywhere in the phase space, a
complete separation between “signal” and “noise” is impossible. Indeed, the
“signal subspace” contains an often considerable amount of noise.

The truncated vector of state �X
S

t =
∑K

k=1 αk(t)�p k is the projection of the

full vector of state on the signal subspace. The residual vector �nt = �Xt− �X
S

t

represents the contribution from the noise subspace.
The vector �X is conveniently interpreted as a random vector with expec-

tation E
(

�X
)

= �μ, covariance matrix Σ = E
(
(�X− �μ)(�X− �μ)T

)
and the

variance Var
(

�X
)

=
∑

i E
(
(Xi − μi)2

)
. Then, the expansion coefficients αk

are univariate random variables whereas the patterns are constant vectors.
In the case of EOFs, CCA and similar techniques the patterns are derived
from �X so that they represent parameters of the random vector �X.

The expansion coefficients1 �α = (α1, α2 . . . αK)T are determined as those
numbers which minimize

ε(�α) = 〈�X−∑k αk�p k, �X−∑k αk�p k〉 (13.2)

with the “dot product’ 〈�a,�b〉 =
∑

j ajbj . The optimal vector of expansion
coefficients is obtained as a zero of the first derivative of ε:
K∑

i=1

�p kT
�p iαi = �p kT �X (13.3)

After introduction of the notation A =
(
�a|�b · · ·

)
for a matrix A with the first

column given by the vector �a and the second column by a vector �b, (13.3)
may be rewritten as

P�α =
(
�p 1| · · · |�p K

)T �X (13.4)

with the symmetric K × K-matrix P =
(
�p kT

�p i
)
. In all but pathological

cases the matrix P will be invertible such that a unique solution of (13.3)
exists:

�α = P−1
(
�p 1| · · · |�p K

)T �X (13.5)

Finally, if we define K vectors �p 1
A . . . �pK

A so that(
�p 1

A| · · · |�pK
A

)
=
(
�p 1| · · · |�p K

)P−1 (13.6)

1The expansion coefficients may be seen as the transformed coordinates after introduc-
ing the guess patterns as new basis of the phase space.
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Then the k-th expansion coefficient αk is given as the dot product of the
vector of state �X and the “adjoint pattern” �p k

A:

αk = 〈�p k
A, �X〉 (13.7)

In some cases, and in particular in case of EOFs, the patterns �p k are or-
thogonal such that P is the identity matrix and �p k = �p k

A. In this case (13.7)
reads

αk = 〈�p k, �X〉 (13.8)

A convenient measure to quantify the relative importance of one pattern
or of a set of patterns {�p k} is the “amount of explained variance”, or, more
precisely, the “proportion of variance accounted for by the {�p k}” [formally
similar to the “Brier-based score” β introduced in (10.6)]:

η =
Var

(
�X
)
−Var

(
�X−∑k αk�p k

)
Var

(
�X
) (13.9)

where we have assumed that the random vector �X would have zero mean
(E
(

�X
)

= 0). If the data are not centered then one may replace the variance-

operator in (13.9) by the sum of second moments E
(

�X
T �X

)
and refer to the

explained second moment.
The numerical value of the explained variance is bounded by −∞ < η ≤ 1.2

If η = 0 then Var
(

�X−∑k αk�p k
)

= Var
(

�X
)

and the representation of �X
by the patterns is useless since the same result, in terms of explained variance,
would have been obtained by arbitrary patterns and αk = 0. On the other
end of the scale we have η = 1 which implies Var

(
�X−∑k αk�p k

)
= 0 and

thus a perfect representation of �X by the guess patterns �p k.
The amount of explained variance, or, sloppily formulated, “the explained

variance”, can also be defined locally for each component j:

η(j) = 1− Var
(
Xj −

∑
k αkpk

j

)
Var(Xj)

(13.10)

If the considered random vector �X can be displayed as a map then also the
amount of explained variance η can be visualized as a map.

2The number η can indeed be negative, for instance when
∑

k
αk�p k = −�Xt. Then,

η = −3.
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13.2.2 Example: Temperature Distribution in the
Mediterranean Sea

As an example3, we present here an expansion (13.1) of a time-dependent
3-dimensional temperature field of the Mediterranean Sea. The output of a
9-year run of an OGCM, forced by monthly mean atmospheric conditions as
analysed by the US-NMC for the years 1980 to 1988, was decomposed such
that

�T(�r, z, t) =
∑

k

αk(z, t)�p k
�r (13.11)

with �r representing the horizontal coordinates, z the vertical coordinate and t
the time. The temperature field is given on a (�r, z)-grid with better resolution
in the upper levels. In the representation (13.11), coefficients αk depend on
depth and time. The orthogonal patterns �p k depend only on the horizontal
distribution and are independent of the depth z and of the time t. The
decomposition was determined by a “Singular Value Decomposition” but the
technical aspects are not relevant for the present discussion.

Prior to the analysis, the data have been processed. For each depth z
the horizontal spatial mean and standard deviation have been calculated.
Then, the temperature values at each depth are normalized by subtracting
the (spatial) mean and dividing by the (spatial) standard deviation of the
respective depth. The annual cycle is not subtracted so that the time series
are not stationary (but cyclo-stationary) with an annual cycle of the time
mean and of the temporal standard deviation.

The first two patterns are shown in Figure 13.1. The first one, which
represents 57% of the total second moment of the normalized temperature,
exhibits a dipole, with about half of the basin being warmer than average and
the other half being cooler than average. The second mode, which represents
32% of the second moment, is relatively uniform throughout the Mediter-
ranean Sea. The relative importance of the two modes for different layers
of the ocean is described by the amount of the 2nd moment accounted for
by the two modes (Figure 13.2). The second mode explains most of the 2nd
moment above 100 m, whereas the first mode dominates below the top 4
layers. An inspection of the time series αk(z, t) for different depths z re-
veals that the two modes represent different aspects of the climatology of the
Mediterranean Sea. The time series α1(z, t) is always positive with irregular
variations superimposed. Such a behavior is indicative that the first mode
describes mostly the overall mean and its interannual variability. The time
series α2(z, t) describe a regular annual cycle (with a negative minimum in
winter so that α2�p

1
�r is a negative distribution; and a positive maximum in

3This material was presented by Gerrasimos Korres in a “student paper” during the
Autumn School. It will be available as a regular paper co-authored by Korres and Pinardi
in 1994.
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Figure 13.1: First two characteristic horizontal distributions �p k
�r of normalized

temperature in the Mediterranean Sea, as inferred from the output of a 9-year
run with a numerical ocean model. (From Korres and Pinardi).

summer - indicating warmer than average conditions) plus a slight upward
trend (gradual warming).

13.2.3 Specification of Guess Patterns

There are various ways to define the patterns �p k:4

• The very general approach is Hasselmann’s “Principal Interaction Pat-
terns” formulation (PIP; Hasselmann, 1988). The patterns are implicitly
defined such that their coefficients αk(t) approximate certain dynamical
equations, which feature unknown parameters.

• A simplified version of the PIPs are the “Principal Oscillation Patterns”
(POPs, H. von Storch et al., 1988, 1993), which model linear dynam-
ics and which have been successfully applied for the analysis of various
processes (see Chapter 15).

• A standard statistical exercise in climate research aims at the identifica-
tion of expected signals, such as the atmospheric response to enhanced
greenhouse gas concentrations or to anomalous sea-surface temperature
conditions (see Chapter 8). This identification is often facilitated by the
specification of patterns determined in experiments with general circula-
tion models (H. von Storch, 1987; Santer et al., 1993, Hegerl et al., 1996).

4See also Section 8.3.2.
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Figure 13.2: Vertical distribution of the percentage of the 2nd moment of
the normalized temperature accounted for by the first and second patterns
shown in Figure 13.1.
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Also patterns “predicted” by simplified dynamical theory (for instance,
linear barotropic equations) are in use (Hannoschöck and Frankignoul,
1985; Hense et al., 1990).

• A frequently used class of patterns are orthogonal functions such as
trigonometric functions or spherical harmonics. In all “spectral” at-
mospheric general circulation models the horizontal fields are expanded
according to (13.1) with spherical harmonics as guess patterns. In the
spectral analysis of time series the trigonometric functions are used to
efficiently represent fields.

• The Empirical Orthogonal Functions (EOFs) and Canonical Correlation
Patterns (CCPs) are very widely used guess patterns. These choices will
be discussed in some length in the next two Sections 13.3 and 13.4. Off-
springs of these techniques are Extended EOFs (EEOFs) and Complex
EOFs (CEOFs). In the EEOFs (Weare and Nasstrom, 1982; see also
Chapter 14) the same vector at different times is concatenated; in the
CEOF (Wallace and Dickinson, 1972; Barnett, 1983; also Section 15.3.4)
the original vector real-valued time series is made complex by adding
its Hilbert transform as imaginary component. The Hilbert transform
may be seen as a kind of “momentum”. Both techniques are success-
fully applied in climate research but we will not go into details in the
present review. They are presented in more detail in H. von Storch and
Zwiers (1999). A variant of Canonical Correlation Analysis is Redun-
dancy Analysis and was proposed by Tyler (1982). It identifies pairs of
patterns, so that a maximum of variance of the predictand is obtained
through regression from the predictor. We will briefly introduce this
technique in Section 13.5.2.

• A new approach named Empirical Orthogonal Teleconnections (EOTs),
proposed by van den Dool et al. (2000), constructs stepwise orthogonal
patterns by determining points with maximum skill in linearly specifying
all other data points. This technique is sketched in Section 13.5.1. EOTs
may be seen as a variant of conventional teleconnections patterns (see
Chapter 12), which allows to split up the total variance into a sum of
contributions from a limited number of patterns.

• The “wavelet” analysis is a technique which projects a given time series
on a set of patterns, which are controlled by a location and a dispersion
parameter. See Meyers et al. (1993) or Farge et al. (1993).

13.2.4 Rotation of Guess Patterns

For EOFs there exists a widely used variant named Rotated EOFs (for in-
stance, Barnston and Livezey, 1987). The name is somewhat misleading as it
indicates that the “rotation” would exploit properties special to the EOFs.
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This is not the case. Instead, the general concept of “rotation” is to replace
the patterns �p k in (13.1) by “nicer” patterns �p k

R:

K∑
k=1

αk�p k =
K∑

k=1

αR
k �p k

R (13.12)

The patterns �p k
R are determined such that they minimize a certain (nonlin-

ear) functional of “simplicity” FR and that they span the same space as the
original set of vectors {�p k}. Constraints like unit length (�p k

R

T
�p k

R = 1) and,
sometimes, orthogonality (�p k

R

T
�p i

R = 0) are invoked. Richman (1986) lists
five vague criteria for patterns being “simple” and there are many propos-
als of “simplicity” functionals. If the patterns are not orthogonal the term
oblique is used. The minimization of functionals such as (13.13) is in general
non-trivial since the functionals are nonlinear. Numerical algorithms to ap-
proximate the solutions require the number of involved dimensions K to be
not too large.

A widely used method is the “varimax”, which generates a set of orthogonal
patterns which minimize the joint “simplicity” measure

FR(�p 1
R · · · �pK

R ) =
K∑

k=1

fR(�p k
R) (13.13)

with functions fR such as

fR(�p) =
1
m

m∑
i=1

(
p2

i

)2 − 1
m2

(
m∑

i=1

p2
i

)2

or, (13.14)

fR(�p) =
1
m

m∑
i=1

[(
pi

si

)2
]2

− 1
m2

[
m∑

i=1

(
pi

si

)2
]2

(13.15)

The number pi is the ith component of a m-dimensional vector �p , si is the
standard deviation of the ith component of �X

S
, which is the projection of

the original full random vector �X in the signal subspace spanned by the K
vectors {�p 1 · · · �p K}.

Both definitions (13.14,13.15) have the form of a variance: in the “raw
varimax” set-up (13.14) it is the (spatial) variance of the squares of the com-
ponents of the pattern �p and in the “normal varimax” (13.15) it is the same
variance of a normalized version �p ′ = (pi/si) with (s2

1 · · · s2
m)T = Var

(
XS

i

)
=∑K

k=1 αkpk
i . Minimizing (13.13) implies therefore finding a set of K patterns

�p k
R such that their squared patterns have (absolute or relative) minimum spa-

tial variance. The functions fR are always positive and are zero if all pi = 0
or 1 (13.14) or if all pi = si (13.15).

The results of a rotation exercise depend on the number K and on the
choice of the measure of simplicity. The opinion in the community is divided
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on the subject of rotation. Part of the community advocates the use of
rotation fervently as a means to define physically meaningful, statistically
stable patterns whereas others are less convinced because of the hand-waving
character of specifying the simplicity functions, and the implications of this
specification for the interpretation of the result. The successful application
of the rotation techniques needs some experience and it might be a good idea
for the novice to have a look into Richman’s (1986) review paper on that
topic. Interesting examples are offered by, among many others, Barnston and
Livezey (1987) and Chelliah and Arkin (1992). Cheng et al. (1995) found
that a conventional EOF analysis yields statistically less stable patterns than
a rotated EOF analysis.

In the present volume, Section 6.3.5 is dealing with a varimax-rotation
(13.14) of a subset of EOFs.

13.3 Empirical Orthogonal Functions

For the sake of simplicity we assume in this Section that the expectation of
the considered random vector �X is zero: �μ = 0. Then the covariance matrix
of �X is given by Σ = E

(
�X�X

T
)
.

The vector �X may represent very different sets of numbers, such as

• Observations of different parameters at one location (such as daily mean
temperature, sunshine, wind speed etc.)

• Grid-point values of a continuous field which was spatially discretized
on a regular grid (as is often the case for horizontal distributions) or on
an irregular grid (such as the vertical discretization in GCMs).

• Observations of the same parameter (such as temperature) at irregularly
distributed stations (see the example of Central European temperature
in Section 13.3.4; also Briffa dealt with this case in Section 5.6.1 when
he considered tree ring data from different sites).

There is some confusion with the terms, since several alternative sets of
expressions are in use for the same object. What is labeled an EOF here
is also named a principal vector or a loading, whereas EOF coefficients are
sometimes principal components (for instance in Chapter 8) or scores.5

13.3.1 Definition of EOFs

Empirical Orthogonal Functions are defined as that set of K orthogonal vec-
tors (i.e., �p kT

�p i = δki) which minimize the variance of the residual �n in
5The expressions “principal vector” stems from the geometrical interpretation that these

vectors are the principal vectors of an ellipsoid described by the covariance matrix. The
terms “loading” and “scores” come from factor analysis, a technique widely used in social
sciences. The term “EOF” seems to be in use only in meteorology and oceanography.
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(13.1).6 Because of the enforced orthogonality the coefficients �α are given by
(13.8).

The EOFs are constructed consecutively: In a first step the pattern �p 1 of
unit length (�p 1T

�p 1 = 1) is identified which minimizes

E

((
�X− α1�p

1
)T (

�X− α1�p
1
))

= ε1 (13.16)

After the first EOF �p 1 is determined, the second EOF is derived as the
pattern minimizing

E

([(
�X− α1�p

1
)
− α2�p

2
]T [(

�X− α1�p
1
)
− α2�p

2
])

= ε2 (13.17)

with the constraints �p 1T
�p 2 = 0 and �p 2T

�p 2 = 1. In similar steps the remain-
ing EOFs are determined. A K-dimensional field has in general K EOFs but
we will see below that in practical situations the number of EOFs is limited
by the number of samples.

We demonstrate now how to get the first EOF. The derivation of the other
EOFs is more complicated but does not offer additional significant insights
(for details, see H. von Storch and Hannoschöck, 1986). Because of the
orthogonality we may use (13.8) and reformulate (13.16) such that

ε1 = E
(

�X
T �X

)
− 2E

((
�X

T
�p 1
)

�p 1T �X
)

+ E
(

�X
T
�p 1 �X

T
�p 1
)

= Var
(

�X
)
− �p 1T Σ�p 1 (13.18)

To find the minimum, a Lagrange multiplier λ is added to enforce the con-
straint �p 1T

�p 1 = 1. Then the expression is differentiated with respect to �p 1

and set to zero:

Σ�p 1 − λ�p 1 = 0 (13.19)

Thus, the first (and all further) EOF must be an eigenvector of the covariance
matrix Σ. Insertion of (13.19) into (13.18) gives

ε1 = Var
(

�X
)
− λ (13.20)

so that a minimum ε1 is obtained for the eigenvector �p 1 with the largest
eigenvalue λ.

More generally, we may formulate the Theorem:
6The approach of minimizing the variance of the residual has a mathematical back-

ground: the variance of the residual is a measure of the “misfit” of �X by
∑K

k=1
αk(t)�p k.

Other such measures of misfit could be chosen but this quadratic form allows for a simple
mathematical solution of the minimization problem.
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The first K eigenvectors �p k, for any K ≤ m, of the covariance matrix
Σ = E

(
�X�X

T
)

of the m-variate random vector �X form a set of pairwise
orthogonal patterns. They minimize the variance

εK = E

((
�X−∑K

k=1 αk�p k
)2
)

= Var
(

�X
)
−

K∑
k=1

λk (13.21)

with αk = �X
T
�p k and �p kT

�p k = 1. The patterns are named “Empirical Or-
thogonal Function”.

From the construction of the EOFs it becomes clear the patterns represent
an optimal potential to compress data into a minimum number of patterns.
Sometimes the first EOF of the first few EOFs represent a meaningful physical
summary of relevant processes, which go with characteristic patterns. For
further discussion see Section 13.3.2

Favorable aspects of the EOFs are the geometrical orthogonality of the pat-
terns and the statistical independence, or, more correctly, the zero-correlation
of the “EOF coefficients” αi:

E(αiαk) = �p iT E
(

�X�X
T
)
�p k = �p iT Σ�p k = λk�p iT �p k = λkδk,i (13.22)

A byproduct of the calculation (13.22) is Var(αk) = λk.
EOFs are parameters of the random vector �X. If �X is a Gaussian dis-

tributed random vector then the set of coefficients αk form a set of univari-
ate normally distributed independent random variables (with zero means and
standard deviations given by the square root of the respective eigenvalues, if
the mean of �X is zero.)

The relative importance of the EOFs may be measured by their capability
to “explain” �X-variance. This amount of explained variance η can be cal-
culated for individual EOFs or for sets of EOFs, for the complete m-variate
vector �X or for its components separately [see (13.9, 13.10)]. For the first K
EOFS, we find with the help of (13.21).

η{1...K} = 1− εK

Var
(

�X
) = 1−

∑m
k=K+1 λk∑m

k=1 λk
=
∑K

k=1 λk∑M
k=1 λk

(13.23)

If ηj and ηk are the explained variances by two single EOFs �p k and �p j

with indices j > k such that λj ≤ λk, then the following inequality holds:
0 < ηj ≤ ηk ≤ η{j,k} ≤ 1, with ηjk representing the variance explained by
both EOFs �p j and �p k).

If the original vector �X has m components - what is an adequate trunca-
tion K in (13.1)? There is no general answer to this problem which could
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also be phrased “Which are the (physically) significant7 EOFs?” A good
answer will depend on the physical problem pursued. One relevant piece of
information is the amount of explained variance. One might select K so that
the percentage of �X-variance explained by the first K EOFs, η(1...K), passes
a certain threshold. Or such that the last kept EOF accounts for a certain
minimum variance:

η(1...K) ≤ κ1 < η(1...K+1) or ηK > κ2 > ηK+1 (13.24)

Typical values for κ1 are 80% or 90% whereas choices of κ2 = 5% or 1% are
often seen.

We have introduced EOFs as patterns which minimize the variance of the
residual (13.21). The variance depends on the chosen geometry, and we could
replace in (13.21) the square by a scalar product 〈·, ·〉 such that

εK = E
(
〈�X−∑K

k=1 αk�p k, �X−∑K
k=1 αk�p k〉

)
(13.25)

The EOF coefficients are then also given as dot products

αk(t) = 〈�Xt, �p
k〉

Obviously the result of the analysis depends on the choice of the dot product,
which is to some extend arbitrary.

13.3.2 What EOFs are Not Designed for . . .

There are some words of caution required when dealing with EOFs. These
patterns are constructed to represent in an optimal manner variance and co-
variance (in the sense of joint variance), not physical connections or maximum
correlation (see Chen and Harr, 1993). Therefore they are excellent tools to
compress data into a few variance-wise significant components. Sometimes
people expect more from EOFs, for instance a description of the “coherent
structures” (as, for instance, teleconnections). This goal can be achieved
only when the data are normalized to variance one, i.e., if the correlation
matrix instead of the covariance matrix is considered (see Wallace and Gut-
zler, 1981). Another expectation is that EOFs would tell us something about
the structure of an underlying continuous field from which the data vector �X
is sampled. Also often EOFs are thought to represent modes of “natural” or
“forced” variability. We will discuss these expectations in the following.

7Note that the word “significant” used here has nothing to do with “statistical sig-
nificance” as in the context of testing null hypotheses (see Chapters 8 and 9). Instead,
the word “significance” is used in a colloquial manner. We will return to the buzz-word
“significance” in Section 13.3.3.



244 Chapter 13: Spatial Patterns: EOFs and CCA

• To demonstrate the limits of an EOF analysis to identify coherent struc-
tures let us consider the following example with a two-dimensional ran-
dom vector �X = (X1,X2)T . The covariance matrix Σ and the correla-
tion matrix Σ′ of �X is assumed to be

Σ =
(

1 ρa
ρa a2

)
and Σ′ =

(
1 ρ
ρ 1

)
(13.26)

The correlation matrix Σ′ is the covariance matrix of the normalized

random vector �X
′

= A�X with the diagonal matrix A =
(

1 0
0 1/a

)
.

Obviously both random vectors, �X and �X
′
, represent the same correla-

tion structure. The relative distribution of variances in the two compo-
nents X1 and X2 depends on the choice of a. Also the eigen-structures
of Σ and Σ′ differ from each other since the transformation matrix A is
not orthogonal, i.e., it does not satisfy AT = A−1.

We will now calculate these eigen-structures for two different standard
deviations a of X2. The eigenvalues of Σ are given by

λ1,2 =
1
2

[
1 + a2 ±

√
1− 2a2 + a4 + 4(ρa)2

]
(13.27)

and the eigenvectors are, apart from proper normalization, given by

�p 1 =
(

1
λ1−1

ρa

)
and �p 2 =

(
1−λ1

ρa

1

)
(13.28)

because of the orthogonality constraint.

In the case of a2 � 1 we find

λ ≈ 1
2

[
1 + a2 ±

√
1− 2a2 + 4(ρa)2

]
≈ 1

2

[
1 + a2 ±

(
1− a2 − 2(ρa)2

2

)]
=
{

1 + (ρa)2

a2(1− ρ2) (13.29)

If the two components X1 and X2 are perfectly correlated with ρ = 1
then the first EOF represents the full variance Var

(
�X
)

= Var(X1) +

Var(X2) = 1 + a2 = λ1 and the second EOF represents no variance
(λ2 = 0). If, on the other hand, the two components are independent,
then λ1 = Var(X1) = 1 and λ2 = Var(X2) = a2.

The first EOF is �p 1 ≈
(

1
ρa

)
≈
(

1
0

)
, which is reasonable since

the first component represents almost all variance in the case of a2 �
1. Because of the orthogonality constraint the second EOF is �p 2 ≈
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1

)
≈
(

0
1

)
. Thus in the case a � 1 the EOFs are the unit

vectors independently of the size of ρ.

If we deal with the correlation matrix Σ′ the difference of relative im-
portance of the two components is erased. The eigenvalues are given by
(13.27) with a = 1:

λ′ =
1
2

[
2±

√
4ρ2

]
= 1± ρ (13.30)

The eigenvectors are given by (13.28): If ρ = 0 then the eigenvalue
(13.30) is double and no unique eigenvectors can be determined. If ρ > 0,
then the non-normalized EOFs are

�p 1 =
(

1
1

)
and �p 2 =

(
1
−1

)
(13.31)

Because of the positive correlation, the first EOF describes in-phase
variations of X1 and X2. The orthogonality constraint leaves the second
pattern with the representation of the out-of-phase variations.

The “patterns” (13.31) are markedly different from the eigenvectors of
the a � 1-covariance matrix calculated above. Thus, the result of the
EOF analyses of two random vectors with the same correlation structure
depends strongly on the allocation of the variance within the vector �X.

This example demonstrates also the impact of using vectors �X which
carry numbers subjective to different units. If air pressure from midlat-
itudes is put together with pressure from low latitudes then the EOFs
will favor the high-variance midlatitude areas. If a vector is made up of
temperatures in units of K and of precipitation in m/sec8, then patterns
of the EOFs will concentrate on the temperature entries.

• An EOF analysis deals with a vector of observations �X. This vector may
entertain physically very different entries, as outlined at the beginning
of this Section. The EOF analysis does not know what type of vector
it is analyzing. Instead all components of �X are considered as equally
relevant, independently if they represent a small or a large grid box in
case of a longitude × latitude grid, or a thin or a thick layer (in case of
ocean general circulation model output). If we study Scandinavian tem-
perature as given by 10 stations in Denmark and one station in the other
Scandinavian states, then the first EOFs will invariably concentrate on
Denmark.

If we deal with a relatively uniform distribution of variance, and if we
know that the characteristic spatial scale of the considered variable, such

8The unit mm/sec is, admittedly, not widely used for precipitation. But precipitation
is a rate, often given in mm/day - which is in standard units expressible as m/sec.



246 Chapter 13: Spatial Patterns: EOFs and CCA

as temperature, is comparable to the considered area, then the first EOF
will in most cases be a pattern with the same sign at all points - simply
because of the system’s tendency to create anomalies with the same sign
in the entire domain. The need to be orthogonal to the first EOF then
creates a second EOF with a dipole pattern (which is the largest-scale
pattern orthogonal to the uniform-sign first EOF). Our 2-dimensional
(a = 1, ρ > 0)-case, discussed above, mimics this situation. If, however,
the characteristic spatial scale is smaller than the analysis domain then
often the first EOF is not a monopole [see, for instance, the SST analysis
of Zorita et al. (1992)].

• Do EOFs represent modes or processes of the physical system from which
the data are sampled? In many cases the first EOF may be identified
with such a mode or process. For the second and higher indexed EOFs,
however, such an association is possible only under very special circum-
stances (see North, 1984). A severe limitation to this end is the imposed
spatial orthogonality of the patterns and the resulting temporal inde-
pendence of the coefficients (13.22). Thus EOFs can represent only such
physical modes which operate independently, and with orthogonal pat-
terns. In most real-world cases, however, processes are interrelated.

13.3.3 Estimating EOFs

The EOFs are parameters of the covariance matrix Σ of a random variable
�X. In practical situations, this covariance matrix Σ is unknown. Therefore,
the EOFs have to be estimated from a finite sample {�x(1) . . . �x(n)}. In the
following, estimations are denoted by .̂ We assume that the observations
represent anomalies, i.e., deviations from the true mean or from the sample
mean. However, the analysis can be done in the same way also with data
without prior subtraction of the mean.

To estimate EOFs from the finite sample {�x(1) . . . �x(n)} two different
strategies may be pursued. One strategy considers the finite sample as a
finite random variable and calculates orthogonal patterns �̂p k which minimize

n∑
l=1

[
�x(l)−

K∑
k=1

α̂k(l)�̂p k

]2

= ε̂K (13.32)

with coefficients α̂k(l) =
∑n

j=1 �x(l)j p̂k
j given by (13.8).

An alternative approach is via the Theorem of Section 13.2, namely to use
the eigenvectors �̂p k of the estimated covariance matrix

Σ̂ =
1
n

n∑
l=1

�x(l)�x(l)T =
1
n

[
n∑

l=1

xi(l)xj(l)

]
i,j

(13.33)
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as estimators of the true EOFs �p k. Interestingly, both approaches result in
the same patterns (H. von Storch and Hannoschöck, 1986).

For the actual computation the following comments might be helpful:

• The samples, which determine the estimated EOFs, enter the procedure
only in (13.33) - and in this equation the ordering of the samples is
obviously irrelevant. The estimated covariance matrix Σ̂ and thus the
estimated EOFs, are invariant to the order of the samples.

• When m is the dimension of the analyzed vector �X the true covariance
matrix Σ as well as the estimated covariance matrix Σ̂ have dimension
m×m. Therefore the numerical task of calculating the eigenvectors and
eigenvalues of a sometimes huge m×m matrix is difficult or even impos-
sible. A wholesale alternative is based on the following little algebraic
trick (H. von Storch and Hannoschöck, 1984): If Y is a n ×m matrix,
then A = YYT and AT = YTY are n × n- and m ×m matrices which
share the same nonzero eigenvalues. If Y�q (or �r) is an eigenvector of A
to the eigenvalue λ �= 0 then �q (or YT�r) is an eigenvector of AT to the
same eigenvalue λ.
The estimated covariance matrix Σ̂ may be written as Σ̂ = 1

nXX T with
the data matrix

X =

⎛⎜⎜⎜⎝
x1(1) x1(2) . . . x1(n)
x2(1) x2(2) . . . x2(n)

...
...

. . .
...

xm(1) xm(2) . . . xm(n)

⎞⎟⎟⎟⎠ = (�x(1)| . . . |�x(n)) (13.34)

The n columns of the n × m data matrix X are the sample vectors
�x(j), j = 1, . . . n; the rows mark the m coordinates in the original space.
The matrix product XX T is a quadratic m×m matrix even if X itself
is not quadratic. The product X TX , on the other hand, is a n × n-
matrix. The above mentioned trick tells us that one should calculate
the eigenvalues and eigenvectors of the smaller of the two matrices X TX
and XX T . In practical situations we often have the number of samples
n being much smaller than the number of components m.

A byproduct of the “trick” is the finding that we can estimate only the
first n EOFs (or n − 1 if we have subtracted the overall mean to get
anomalies) of the m EOFs of the m-variate random variable.

• Numerically, the EOF analysis of a finite set of observed vectors may by
done by a Singular Value Decomposition (SVD, see Chapter 14).

X T =

⎛⎜⎜⎜⎝
α̃1(1) α̃2(1) . . . α̃n(1)
α̃1(2) α̃2(2) . . . α̃n(2)

...
...

...
α̃1(n) α̃2(n) . . . α̃n(n)

⎞⎟⎟⎟⎠D (�̂p 1| . . . | ˆ�p m
)T

(13.35)



248 Chapter 13: Spatial Patterns: EOFs and CCA

with a rectangular n ×m matrix D with zero elements outside the di-
agonal and positive elements on the diagonal: dij = siδij ≥ 0. The
quadratic n × n and m × m matrices to the right and left of D are
orthogonal.

The eigenvalues of the estimated covariance matrix are λ̂i = s2
i . The

coefficients of the estimated EOFs are given by α̂i = siα̃i. Again, there
is a maximum of min(n,m) nonzero si-values so that at most min(n,m)
useful EOFs can be determined.

• The choice of the numerical algorithm is irrelevant for the mathematical
character of the product - EOFs are the eigenvectors of the estimated
covariance matrix independently if the number crunching has been done
via the eigenvector problem or via SVD.

As always, when estimating parameters of a random variable from a finite
sample of observations, one may ask how accurate the estimation probably
is:

• Biases
If λ̂k is an estimate of the true eigenvalue λk and α̂k the EOF coefficient
of the kth estimated EOF the equality of eigenvalues and variance of
EOF coefficients is biased (cf. H. von Storch and Hannoschöck, 1986):

– For the largest eigenvalues λk:

E
(
λ̂k

)
> λk = Var(αk) > E(Var(α̂k)) (13.36)

– for the smallest eigenvalues λk:

E
(
λ̂k

)
< λk = Var(αk) < E(Var(α̂k)) (13.37)

The relation (13.36,13.37) means that the large (small) eigenvalues
are systematically over-(under)estimated, and that the variance of the
random variable α̂k = 〈�X, �̂p k〉 which are expansion coefficients when
projecting �X on the random variable “estimated EOFs” is systemat-
ically over- or underestimated by the sample variance ̂Var(α̂k) = λ̂k

derived from the sample {�x(1) . . . �x(n)}. Similarly, Cov(α̂k, α̂j) �=̂Cov(α̂k, α̂j) = 0.

• “Selection Rules”
So-called selection rules have been proposed. One often used is named
“Rule N”(Preisendorfer and Overland, 1982), which is supposed to deter-
mine the physically “significant” EOFs. The basic concept is that the full
phase space is the sum of a subset in which all variations are purely noise
and of a subset whose variability is given by dynamical processes. The
signal-subspace is spanned by well-defined EOFs whereas in the noise-
subspace no preferred directions exist. For the eigenvalue-spectrum this
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assumption implies that the eigenvalues of the EOFs spanning the signal-
subspace are unequal and that the eigenvalues in the noise-subspace are
all identical.

The selection rules compare the distributions of sample eigenvalue-
spectra, representative for the situation that all or the m −K smallest
true eigenvalues (K being specified a-priori or determined recursively)
are all alike, with the actually observed sample eigenvalue spectrum.
All those estimated eigenvalues which are larger than the, say, 95%-
percentile of the (marginal) distribution of the reference “noise spectra”,
are selected as significant at the 5%-level.

The problem with this approach is that this selection rule is claimed
to be a statistical test which supposedly is capable of accepting, with
a given risk, the alternative hypothesis that all EOFs with an index
smaller than some number m−K represent “signals” of the analyzed data
field. The null hypothesis tested would be “all eigenvalues are equal”,
and the rejection of this null hypothesis would be the acceptance of
the alternative “not all eigenvalues are equal”. The connection between
this alternative and the determination of a “signal subspace” is vague.
Also the above sketched approach does not consider the quality of the
estimation of the patterns; instead the selection rules are concerned with
the eigenvalues only.

I recommend forgetting about the identification of “significant” EOFs
by means of selection rules and resorting to more honest approaches like
North’s rule-of-thumb outlined in the next paragraph.

• North’s Rule-of-Thumb
Using a scale argument North et al. (1982) found as the “typical errors”

Δλk ≈
√

2
n

λk (13.38)

Δ�̂p k ∼ Δλk

λj − λk
�p j (13.39)

with λj being the eigenvalue closest to λi and n being the number of
independent samples. Approximation (13.39) compares patterns, and
not the lengths of vectors, since we are dealing with normalized vectors.

– The first order error Δ�̂p k is of the order of
√

1
n . The convergence

to zero is slow.
– The first order error Δ�̂p k is orthogonal to the true EOF �p k.
– The estimation of the EOF �p k is most contaminated by the patterns

of those other EOFs �p j which belong to eigenvalues λj closest to
λk. The contamination will be the more severe the smaller the
difference λj − λk is.
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North et al. (1982) finally formulated the following “rule-of-thumb”:

“If the sampling error of a particular eigenvalue Δλ is compa-
rable or larger than the spacing between λ and a neighboring
eigenvalue, then the sampling error Δ�p of the EOF will be
comparable to the size of the neighboring EOF.”

When using this rule-of-thumb one should be careful not to oversee the
condition of independent samples - in most geophysical data this as-
sumption is not valid.

13.3.4 Example: Central European Temperature

As an example we consider the covariance structure of the winter mean tem-
perature anomalies (i.e., deviations from the overall winter mean) at eleven
Central European stations (Werner and H. von Storch, 1993). Thus m = 11.
Relatively homogeneous time series were available for eighty winters from
1901 to 1980. For both of the 40-year interval before and after 1940 an EOF
analysis was performed. The results of the analysis are very similar in the
two intervals - as a demonstration we show in Figure 13.3 the first two EOFs
for both periods. The representation of the patterns deviates from the defini-
tion introduced above: The contribution of the k-th EOF to the full signal is
given by αk(t)�p k. According to our definitions the variance of the coefficient
is given by the k-th eigenvalue λk and the vector has unit length. For a bet-
ter display of the results sometimes a different normalization is convenient,
namely αk�p k = (αk/

√
λk)×(�p k

√
λk) = α′k�p

′k. In this normalization the co-
efficient time series has variance one for all indices k and the relative strength
of the signal is in the patterns �p

′
. A typical coefficient is α′ = 1 so that the

typical reconstructed signal is �p
′
. In this format the first two EOFs and

their time coefficients obtained in the analysis of Central European winter
temperature are shown in Figures 13.3 and 13.4.

In both time periods the first EOF has a positive sign at all locations,
represents about 90% of the total variance and exhibits “typical anomalies”
of the order of 1 − 2K. The second EOF represents a northeast-southwest
gradient, with typical anomalies of ±0.5K, and accounts for 6% and 7% of
the variance in the two time periods. The remaining 9 EOFs are left to
represent together the variance of mere 5%.

In Figure 13.4 the EOF coefficients are shown. As mentioned above, they
are normalized to variance one. The first coefficient α1(t) varies most of the
time between ±1 but exhibits a number of spiky excursions to large negative
values < −2. Together with the information provided by the patterns (Figure
13.3) such large negative coefficients represent extremely cold winters, such
as 1940 and 1941, with mean negative anomalies of the order of < −4K. The
distribution of the first EOF coefficient is markedly skewed (Figure 13.5)
whereas the distribution of the second coefficient is fairly symmetric. The
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Figure 13.3: First two EOFs of January-February mean temperature at 11
Central European stations derived from the winters 1901-40 (left) and from
the winters 1941-80 (right). The percentage of explained variance is given in
the upper left corner of the diagrams. The contour lines are added to help the
reader to understand the distribution of numbers. Units: 10−2 oC. (From
Werner and H. von Storch, 1993)
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Figure 13.4: EOF coefficient time series α1(t) and α2(t) of the first two EOFs
of winter mean temperature at 11 Central European stations. Note that the
time series have been normalized to one so that the information about the
strength of the variation is carried by the patterns. (From Werner and H.
von Storch, 1993).

time series of the 2nd coefficient, depicted in Figure 13.4 shows no dramatic
outliers but, interestingly, an upward trend translates at the stations with
a slow warming of the Alpine region (≈ 0.005K/yr) and a gradual cooling
(≈ 0.01K/yr) in the lowlands.

This is about all that the EOFs can tell us about the evolution of winter
mean temperature in Central Europe in the years 1901-80. We will come
back to this example in Section 13.4.4.

13.4 Canonical Correlation Analysis

We assume for this section again that the expectations of the considered
random vectors �X and �Y vanish: �μX = �μY = 0.

13.4.1 Definition of Canonical Correlation Patterns

In the Canonical Correlation Analysis [CCA, proposed by Hotelling (1936)
and introduced into climate research by, among others, Barnett and Prei-
sendorfer (1987)] not one random vector �X is expanded into a finite set of
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Figure 13.5: Frequency distribution of the EOF coefficient time series shown
in Figure 13.4. (From Werner and H. von Storch, 1993)
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vectors but a pair of two simultaneously observed vectors �X and �Y:

�Xt =
K∑

k=1

αX
k (t)�p k

X and �Yt =
K∑

k=1

αY
k (t)�p k

Y (13.40)

with the same number K. The dimensions mX and mY of the vectors �p k
X

and �p k
Y will in general be different. The expansion is done in such a manner

that

1. The coefficients αX
k (t) and αY

k (t) in (13.40) are optimal in a
least square sense [i.e., for given patterns �p k

X and �p k
Y the norms

‖ �Xt −
∑K

k=1 αX
k (t)�p k

X ‖ and ‖ �Yt −
∑K

k=1 αY
k (t)�p k

Y ‖ are minimized, as
in (13.2)]. This condition implies (see Section 13.2.1) that

αX
k = 〈(�p k

X)A, �X〉 and αY
k = 〈(�p k

Y )A, �Y〉 (13.41)

with certain adjoint patterns (�p k
X)A and (�p k

Y )A given by (13.6).

2. The correlations

• between αX
k and αX

l

• between αY
k and αY

l

• between αX
k and αY

l

are zero for all k �= l.

3. The correlation between αX
1 and αY

1 is maximum.

4. The correlation between αX
2 and αY

2 is the maximum under the con-
straints of 2) and 3). The correlations for the higher indexed pairs of
coefficients satisfy similar constraints (namely of being maximum while
being independent with all previously determined coefficients.)

It can be shown (see, for instance, Zorita et al., 1992) that the adjoint patterns
are the eigenvectors of somewhat complicated looking matrices, namely:

AX = Σ−1
X ΣXY Σ−1

Y ΣT
XY and AY = Σ−1

Y ΣT
XY Σ−1

X ΣXY (13.42)

Here ΣX and ΣY are the covariance matrices of �X and �Y. ΣXY is the cross-
covariance matrix of �X and �Y, i.e., ΣXY = E

(
�X�Y

T
)

if E
(

�X
)

= E
(

�Y
)

= 0.
The matrix AX is a mX ×mX matrix and AY is a mY ×mY matrix. The
two matrices AX and AY may be written as products B1B2 and B2B1 with
two matrices B1 and B2. Therefore the two matrices share the same nonzero
eigenvalues, and if �p k

X is an eigenvector of AX with an eigenvalue λ �= 0 then
Σ−1

Y ΣT
XY �p k

X is an eigenvector of AY with the same eigenvalue.
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Note that for univariate random variables �X = X and �Y = Y the two
matrices AX and AY in (13.42) reduce to the squared correlations between
X and Y.

The k-adjoint pattern is given by the eigenvector with the k-largest eigen-
value of A. The correlation between αX

k and αY
k is given by the k-th largest

nonzero eigenvalue of AX or AY .
The covariance between the “Canonical Correlation Coefficients” αX

k and
the original vector �X is given by

E
(
αX

k
�X
)

= E
(
αX

k

∑
i αX

i �p i
X

)
= �p k

X (13.43)

so that, because of αX
k = �X

T
(�p k

X)A:

�p k
X = ΣX(�p k

X)A and �p k
Y = ΣY (�p k

Y )A (13.44)

Thus, to determine the “Canonical Correlation Patterns” (CCP) and the
canonical correlation coefficients one has first to calculate the covariance ma-
trices and cross covariance matrices. From products of these matrices (13.42)
the adjoint patterns are derived as eigenvectors. With the adjoint pattern the
CCPs are calculated via (13.44) and the coefficients through (13.41). Because
of the specific form of the matrices, it is advisable to solve the eigenvector
problem for the smaller one of the two matrices.

13.4.2 CCA in EOF Coordinates

A simplification of the mathematics may be obtained by first transforming
the random vectors �X and �Y into a low-dimensional EOF-space, i.e., by
expanding

�X ≈ �X
S

=
K∑

i=1

(βX
i )(

√
νX

i �e i
X) and �Y ≈ �Y

S
=

K∑
i=1

(βY
i )(

√
νY

i �e i
Y ) (13.45)

with EOFs �e i
X of �X and �e i

Y of �Y. The numbers νX
i and νY

i , which are the
eigenvalues associated with the EOFs, are introduced to enforce Var

(
βX

i

)
=

Var
(
βY

i

)
= 1. Equations (13.45) may be written more compactly with the

help of matrices E = (�e 1| . . . |�e K) with the EOFs in their columns (so that
EET = 1 and ETE = 1) and diagonal matrices S = (diag

√
νi):

�X
S

= EXSX
�βX and �Y

S
= EY SY

�βY (13.46)

When we operate with objects in the EOF coordinates we add a tilde .̃ In
these coordinates we have Σ̃X = 1 and Σ̃Y = 1 and the CCA matrices (13.42)
are of the simpler and symmetric form

ÃX = Σ̃XY Σ̃XY

T
and ÃY = Σ̃XY

T
Σ̃XY (13.47)
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In the EOF coordinates the CCA patterns are orthogonal, so that in these
coordinates �̃p k

X = ˜(�p k
X)A. The procedure to get the CC patterns and the

adjoints in the original Euclidean-space is the same for �X and �Y, so that we
consider only the �X-case and drop the index “X” as well as the index “i”
in the following for convenience. Also we identify the full representation �X

with the truncated presentation �X
S
.

• The CCA coefficients α at any given time should be independent of the
coordinates. Thus, if �β(t) is the state of �X in the EOF coordinates
(13.45) and �x(t) in the original Euclidean coordinates, then the CCA
coefficients shall be given as the dot product of this vector of state with
adjoint patterns �pA and �̃pA:

α(t) = �̃pA

T
�β = �pA

T �x(t) (13.48)

• The initial transformation (13.45), �x = ES�β, describes the transforma-
tion of the CC patterns from the EOF coordinates to the Euclidean
coordinates:

�p k = ES �̃p k (13.49)

• To get the back transformation of the adjoints we insert (13.45) into

(13.48) and get �pA
T �x = �̃pA

T
�β = �̃pA

TS−1ET �x and

�p k
A = ES−1�̃p k

A (13.50)

In general we have S �= S−1 so that neither the property “self adjoint”, i.e,

�̃p k
A = �̃p k, nor the property “orthogonal”, i.e. �̃p k

T

�̃p l = 0 if k �= l, are valid
after the back transformation into the Euclidean space.

In the EOF coordinates we can establish a connection to the EOF calculus
(Vautard; pers. communication). For convenience we drop now the ˜ marking
objects given in the EOF coordinates. First we concatenate the two vectors
�X and �Y to one vector �Z = (�X, �Y) and calculate the EOFs �e i of this new
random vector. These EOFs are the eigenvectors of the joint covariance
matrix

ΣZ =
(

ΣX ΣXY

ΣT
XY ΣY

)
=
(

1 ΣXY

ΣT
XY 1

)
(13.51)

A vector �p = (�pX , �pY ) is an eigenvector of ΣZ if

1
λ− 1

ΣXY �pY = �pX and
1

λ− 1
ΣT

XY �pX = �pY (13.52)

so that �pX and �pY have to satisfy

ΣXY ΣT
XY �pX = (λ− 1)2�pX and ΣT

XY ΣXY �pY = (λ− 1)2�pY (13.53)
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Thus the two components �pX and �pY of the joint “extended” EOF of �X and
�Y form a pair of canonical correlation patterns of �X and �Y. Note that this
statement depends crucially on the nontrivial assumption ΣX = ΣY = 1.

13.4.3 Estimation: CCA of Finite Samples

The estimation of CC patterns, adjoints and CC coefficients is made in a
straightforward manner by estimating the required matrices ΣX , ΣY and
ΣXY in the conventional way [as in (13.33)], and multiply the matrices to
get estimates ÂX and ÂY of AX and AY . The calculation is simplified if the
data are first transformed (13.45) into EOF coordinates.

In the case of EOFs we had seen that the first eigenvalues of the estimated
covariance matrix over estimate the variance which is accounted for by the
first EOFs. This overestimation makes sense if one considers the fact that
the EOFs must represent a certain amount of variance of the full (infinite)
random variable �X, whereas the estimated EOF represents a fraction of vari-
ance in the finite sub-space given by the samples. In the case of the CCA
we have a similar problem: The correlations are over estimated - since they
are fitted to describe similar behavior only in a finite subspace, given by the
samples, of the infinite space of possible random realizations of �X and �Y.
This overestimation decreases with increasing sample size and increases with
the number of EOFs used in the a-priori compression (13.45).

Zwiers (1993) discusses the problem of estimating the correlations. Follow-
ing Glynn and Muirhad (1978) he proposes to improve the straightforward
estimator ρ̂k by using the formula

θ̂k = Zk − 1
2nρ̂k

⎡⎣mX + my − 2 + ρ̂2
k + 2(1− ρ̂2

k)
∑
j �=k

ρ̂2
j

ρ̂2
k − ρ̂2

j

⎤⎦ (13.54)

with Zk = tanh−1(ρ̂k) and θ = tanh−1(ρk). Glynn and Muirhead show
that θ̂k is an unbiased estimator of θk up to O(n−2) and that Var

(
θ̂
)

= 1
n

up to order O(n−2). An approximate 95% confidence interval for the k−th
canonical correlation is then given by tanh(θ̂k)± 2√

n
. However, Zwiers (1993)

found in Monte Carlo experiments that the correction (13.54) represents an
improvement over the straightforward approach but that substantial bias
remains when the sample size is small.

13.4.4 Example: Central European Temperature

We return now to the Central European temperature in winter, with which
we have dealt already in Section 13.3.4. Werner and H. von Storch (1993)
analysed simultaneously the large-scale circulation, as given by the seasonal
mean sea-level air-pressure (SLP) anomaly over the North Atlantic and Eu-
rope, and the Central European temperature given at mT = 11 locations.
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The objective of this exercise was to determine to what extent the regional
temperature is controlled by large-scale circulation anomalies.9

With first 40 years of the full 1901-1980 data set the CCA was done. The
data were first projected on EOFs as given by (13.45). The number of EOFs
retained was determined in such a way that an increase by one EOF would
change the canonical correlations only little. The first pair of patterns goes
with a correlation of 70%. The patterns (Figure 13.6), which are plotted here
as a “typical simultaneously appearing pair of pattern” (by normalizing the
canonical correlation coefficients to variance one) indicate a simple physically
plausible mechanism: In winters with a persistent anomalous southwesterly
flow, anomalous warm maritime air is advected into Europe so that the win-
ter mean temperatures are everywhere in central Europe above normal, with
typical anomalies of the 1o − 2oC. If, however, an anomalous high pressure
system is placed south of Iceland, then the climatological transport of mar-
itime air into Central Europe is less efficient, and temperature drops by one
or two degrees.

With the full data set, from 1901-80 the correlation of the coefficients
αT

1 and αSLP
1 is recalculated and found to be only 0.64 compared to 0.70

derived from the “fitting” interval 1901-40. Also the percentage η of tem-
perature variance at the eleven Central European locations accounted for by
the temperature-pattern �p 1

T is computed from the full data set. The results,
shown as lower numbers in the top panel of Figure 13.6, vary between 22%
(at the northernmost station Fanø) to 58% (at the northern slope of the Alps,
at station Hohenpeissenberg).

With two CCA pairs a “downscaling model” was designed to estimate
the temperature variations only from the SLP variations without any local
information. The result of this exercise is shown for the station Hamburg in
Figure 13.7: The year-to-year variations are nicely reproduced - and more
than 60% of the 80-year variance is represented by the statistical model - but
the long-term (downward) trend is captured only partly by the CCA model:
the SLP variations allude to a decrease by −2.6oC whereas the real decrease
has only been −1.0oC.

Finally, the output of a climate GCM has been analysed whether it repro-
duces the connection represented by the CCA-pairs. The regional tempera-
ture from a GCM output is given at grid points (the proper interpretation
of what these grid points represent is not clear). Therefore the 11 Central
European stations are replaced by 6 grid points. The first pair of CC pat-
terns, derived from 100 years of simulated data, is shown in Figure 13.8.
The patterns are similar to the patterns derived from observed data, with
an anomalous southwesterly flow being associated with an overall warming

9In any kind of correlation-based analysis a positive result (i.e., the identification of a
high correlation) is no proof that the two considered time series are connected through
a cause-effect relationship. It can very well be that a third (unknown) is controlling
both analysed time series. In the present case the physical concept that the large-scale
circulation affects regional temperatures is invoked to allow for the interpretation “control”.
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Figure 13.6: First pair of canonical correlation patterns �p 1
T of Central Eu-

ropean temperature (top panel, upper numbers; in 10−2 oC) and �p 1
SLP of

North Atlantic/European sea-level air-pressure (in hPa) in winter. The pat-
terns are normalized such that the coefficients αT

1 and αSLP
1 have variance

one. Therefore the patterns represent a pair of typical simultaneously ap-
pearing anomalies.
The (lower) percentage numbers in the top panel are the amount η of tem-
perature variance accounted for by the �p 1

T -pattern. (From Werner and H.
von Storch, 1993)
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Figure 13.7: Time series of winter mean temperature in Hamburg (deviations
from the 1901-40 mean) as derived from in-situ observations (dotted) and as
derived indirectly from large-scale SLP patterns by means of CC patterns
(solid line). (From Werner and H. von Storch, 1993).

Figure 13.8: First pair of CC patterns derived from the output of a climate
model. Left: SLP pattern; right: regional temperature at 6 grid points
located in central Europe. (From Werner and H. von Storch, 1993).
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of the order of one to two degrees. The details, however, do not fit. First,
the correlation is only 0.53 compared to 0.64 in the real world. Second, the
structure within Central Europe is not reproduced: Maximum temperature
anomalies are at the westernmost grid points and minimum values at the
easternmost. The local explained variances η are much higher for the GCM
output (with a maximum of 96% and a minimum of 50% compared to 58%
and 22% in the real world).

13.5 Optimal Regression Patterns

In the past years, two new techniques for the derivation of spatial patterns
have been introduced. Both techniques are based on the idea of optimizing
linear regression equations. In the following we sketch both approaches.

13.5.1 Empirical Orthogonal Teleconnections

In the this technique, proposed by van den Dool et al. (2000), a random
vector �Xt is expanded into a series (13.1): �Xt =

∑K
k=1 αk(t)�p k + �nt. The

patterns, named Orthogonal Empirical Teleconnections (EOTs), are deter-
mined sequentially.

To do so, we label the random vector �Xt as �X
(0)

t and its components as as
X(0)

i;t . Then regression equations are derived, mapping the time series X(0)
i;t at

a component i on all other components. If the regression from component i

on component j is called r
(0)
i;j then the total proportion of variance explained

by these regressions, given by

V
(0)
i =

∑
j

Var
(
r
(0)
i;j X(0)

i;t −X(0)
j;t

)
(13.55)

measures how representative the point i is for the full vector. As first EOT
is chosen the vector of regression coefficients r

(0)
i;j with the index i1 with

maximum Vi1 . That is �p 1 = (r(0)
i1;j

)j , and α1(t) = X(0)
i1;t

.
In a second step, and in all further steps, the “already explained” part is

subtracted, i.e.,

�X
(1)

t = �X
(0)

t − α1(t)�p 1 (13.56)

is formed, and again regression equations for all points calculated. The second
pattern �p 2 is then the vector of regression coefficients r

(1)
i;j with maximum

V
(1)
i . Of course, r

(1)
i2;i1

= 0 and r
(1)
i2;i2

= 1. The time series α2(t) is the reduced

component time series i2, i.e., α2(t) = X(1)
i2;t

. Because of the construction
with regression equations and the subtraction (13.56), the coefficient time
series are uncorrelated: Cov(α1, α2) = 0.
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In this way, a series of pattern �p are constructed, with uncorrelated co-
efficient time series and specified skill in specifying the random vector as a
whole. Since the coefficients are uncorrelated, the total variance of �X is the
sum of the variances of the α’s. When the data �X can be displayed as a map,
then also the EOTs may be represented as maps.

In a number of cases, presented by van den Dool et al. (2000), the EOTs
were almost as good in specifying variance as EOFs were. Van den Dool
et al. (2000) note a number of advantages of their approach, among others
that the patters are linked to specific geographical points (when �X is made
up of spatially distributed variables). In that sense, EOTs are automatically
“regionalized” and may therefore serve as an alternative to Rotated EOFs.
They may help to identify “important” sampling locations. For instance,
when analysing January mean temperature of the contiguous US, they found
as first two EOTs a location in West Kentucky, representing 38% of the total
variance, and at another location in East Wyoming, representing 31%.

An interesting variant of this method concerns the choice of the indices i1
etc. There is no need to maximize V

(0)
i ; instead a component could be chosen

independently of the variance for dynamical reasons, for instead a center of
action of a teleconnection pattern.

Another variant is to reverse the role of space and time; then the EOTs
are regression patterns relating the same point at some time with itself for
all other times. The series α is then a spatial distribution at a certain fixed
time. In the example mentioned above, van den Dool et al. (2000) identified
Januaries 1977 and 1937 as such “characteristic” times.

13.5.2 Redundancy Analysis

Redundancy Analysis (RDA) is a variant of Canonical Correlation Analysis.
CCA determines in a pair of random vectors patters whose coefficients share
a maximum of correlation,; thus for CCA the two random vectors may be
swapped without changing the result. In contrast, in RDA the two random
vectors �X and �Y play different roles, with one, say �X, being a predictor, and
the other, say �Y, being the predictand.10 Patterns are determined so that
a maximum proportion of variance of �Y is accounted for by regressing “the
�X-patterns” on �Y.

The concept was invented by Tyler (1982), and worked out for climate
applications by H. von Storch and Zwiers (1999). Since the mathematics are
a bit involved, we limit ourselves here to a short heuristic introduction.

We begin with the same formalism as in case of CCA, i.e., with expansion
(13.40). For a given number K RDA determines a set of �X-patterns �p j

X , j =
1 . . . k, so that the regression of the time coefficients αX

k on �Y is maximum.

10The use of the conventional expressions “predictor” and “predictand” does not imply
that forecasts in time are made; indeed the terms “specificator” and “specificand” would
be more precise.



Section 13.5: Optimal Regression Patterns 263

This regression maps the pattern �p j
X on the �Y-pattern �p j

Y . These pattern
can be chosen so that the �Y-patterns form a set of orthonormal patterns,
whereas the �X-patterns are linearly independent.

The �X-patterns are invariant under non-singular transformations; this is
meaningful as the regression should not depend on the units of the predictor;
however, since the �p j

Y -patterns are constructed for an optimal representation
of �Y-variance, these patterns are invariant only under orthonormal transfor-
mation - since the variance would otherwise be changed.

The patterns are given as solutions of eigen-problems, namely[
Σ−1

xx ΣxyΣyx

]
�p j

X = λj�p
j
X (13.57)[

ΣyxΣ−1
xx Σxy

]
�p j

Y = λj�p
j
Y (13.58)

The eigenvalues λj represent the proportion of �Y-variance accounted for
through the regression from �p j

X on �p j
Y .

The technique has been used for the purpose of empirical downscaling, for
instance for estimating wave height statistics from monthly mean air pressure
distributions (WASA, 1998).
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