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Abstract 

The role of statistical analysis in the process of establishing and utilising ocean 
and other environmental models is discussed. A general state space model ap-
proach is adopted. In “quasi-realistic models,” statistical thinking is encoded in the 
parameterisations and is required for extracting experimental evidence and for 
validation. Data assimilation techniques are used to systematically combine obser-
vational evidence and quasi-realistic models. While quasi-realistic models serve as 
complex substitute reality, is dynamical knowledge represented through simplified 
models. These “cognitive” idealised models have to be fitted to observational data 
when adapted to real situations. 

 

11.1  Environmental Research 

As outlined in a lecture of this school (von Storch 2000), two fundamentally dif-
ferent types of mathematical models are used in environmental research. One sort 
is “quasi-realistic,” and is supposed to be a substitute reality, within which the 
otherwise impossible experiments can be conducted. A few decades earlier, such 
models were often mechanistic, but most of these apparata have now been re-
placed by mathematical models (Sündermann and Vollmers 1972). They are also 
used to extra- and interpolate in a dynamically consistent manner the sparse ob-
servations, so that spatially and temporally high resolution analyses of the sys-
tem’s state are constructed. A representative of this type are 3-D models of the 
North Sea with a resolution of a few tens of kilometers, simulating explicitly an 
array of processes such as advection, mixing, tides, bottom stress, wind stress, air-
sea interaction and the like (e.g., Kauker 1999). The other type of model, named 
here “cognitive,” is highly simplified and idealised. Because of its reduced com-
plexity, such a model constitutes “knowledge.” An example of this type of model 
is Frankignoul’s model of the variability of the mixed layer depth (Frankignoul 
1979). Both types of modeling require the use of statistical thinking, both in terms 
of design as well as analysis. 

The present paper is a discussion about the different roles of statistics in design-
ing and using these models. Throughout this discussion, we make use of the for-
malism of state space models (Sect. 11.2). In Sect. 11.3, the role of statistics in 
quasi-realistic modeling is considered: parameterisations, forecasting, simulation 
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and numerical experimentation, and data analysis. Several examples, ranging from 
the specification of high frequency wind fluctuations used in wave modeling, 
hindcasting storm surge statistics over 40 years, and simulating the impact of 
increased atmospheric carbon dioxide concentrations on storm surge statistics are 
presented. In Sect. 11.3 the role of statistics for “cognitive” models is discussed; 
first the general concept of Principal Interaction Patterns is introduced, and an 
example of a Principal Oscillation Pattern Model of wave dynamics along the 
Pacific equator is presented. 

 

11.2  State Space Models 

Here, we introduce as a kind of overarching general view the concept of state 
space models. 

We describe our system with a state variable, represented by an m-dimensional 
state vector φt. Often, this state vector can not be observed, sometimes because of 
lack of suitable sensors, but also because space-time continuous observations are 
not doable. The dynamics of this state variable are described by a system of dif-
ference equations with the dynamics F. 

 

  
φt +1 = F φt ,

r 
α ,t)( + ε  (11.1) 

 
The dynamics depend on a set of free parameters  

r 
α  = (α1, α2,…); the fact that 

the dynamics are only approximately known as well as the fact that seemingly 
random effects act upon our system is taken care of by ε . Of course, the dynamics 
may generate internal noise as well. The dynamics F may be derived from theo-
retical arguments, such as the conservation of momentum or mass, or after an 
empirical fit. 

Even if φt  is not observable in its entirety, some empirical evidence will be 
available, for instance at some locations and at some times, or as indirect evidence 
from proxy information such as lake waves. If these observations are combined 
into an observation vector ωt , we have an observation equation that relates the 
state variable to the observed variables 

 
ω t = P(φ t )+ δ  (11.2) 
 
Again, the observation equation is not exactly satisfied; there may be measure-

ment uncertainties with respect to the value or to location and timing; also the link 
may be a bit fuzzy as in case of proxy data. The operator  P  is usually not invert-
ible. 
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11.3  Statistics and Quasi-realistic Models 

In this section we deal with quasi-realistic models, i.e., numerical models that 
incorporate all processes of first, second and sometimes third order. The level of 
complexity of such models is usually limited by the available computer power. 

We discuss the problem of parameterisations, of analysing the output from 
quasi-realistic models and the problem of how to estimate the trajectory of an 
open system with the help of a quasi-realistic model and observational data.  

 

11.3.1 Parameterisations 

In the design of quasi-realistic models, such as GCM-type global or regional 
ocean models, the unavoidable truncation of the basic dynamical equations, neces-
sitates the introduction of parameterisations of sub-grid scale processes (cf. von 
Storch et al. 1999). Such processes, such as the turbulent layers of the ocean at the 
surface and at the bottom, take place on scales too small to be resolved, but have a 
significant impact on the dynamics of the state variables such as the stream func-
tion. Therefore their effect on the resolved scales is considered to be partially de-
termined by the configuration given at grid size scale (von Storch 1997). In the 
state space formalism, the fitting of parameterisations means to specify some of 
the unknown parameters α . 

To allow for formalisation, let us write the state variable φ  as a sum of the 
large-scale resolved component φ  and an unresolved part ′ φ  

 
φ = φ + ′ φ  (11.3) 
 
Then, our basic differential equations 
 
∂φ
∂t   

 =  F(φ)  (11.4) 

 
with the “dynamics”   F  is replaced by 

 
∂φ 
∂t

 =  F∆x(φ)  (11.5) 

 
with a modified operator F∆x resulting from the full operator  F  after introducing a 
truncated spatial resolution ∆x. In general, this operator may be written as 

 
F∆x φ( )= F φ ( )+ ′ F ′ φ ( ) (11.6) 
 

with an operator   ′ F  describing the net effect of the sub grid scale variations rep-
resented by ′ φ . With this set-up, the system (5) is no longer closed and can there-
fore no longer be integrated. For overcoming this problem, conventional ap-
proaches assume that the “nuisance” term ′ F ′ φ ( )is either irrelevant, i.e., 
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′ F ′ φ ( ) = 0  (11.7) 
 

or may be parameterised by 
 

′ F ′ φ ( ) = Q φ ( ) (11.8) 
 

with a dynamically motivated function Q . For the specification of this function, 
usually a number of parameters are to be determined. This is mostly done by sta-
tistically fitting Eq. 11.8 to data from observational campaigns. 

While both specifications (11.7 – 8) return an integrable Eq. 11.5, they both 
have to assume that the local scale acts as a deterministic slave of the resolved 
scales. However, in reality there is variability at local scales unrelated to the re-
solved scales. Thus, Eq. 11.5 should take into account that ′ F ′ φ ( ) can not com-
pletely be specified as a function of φ , but that formulation (11.5) should be re-
placed by  

 

  ′ F ′ φ ( ) ~ S
r 
α ( ) (11.9) 

 
with a random process   S  with parameters  

r 
α  which are conditioned upon the 

resolved state φ : 
 

    
′ F ′ φ ( )~ S R φ ( ))(  (11.10) 

 
When the mean value   µ(φ )  is the only parameter in the vector  

r 
α , which de-

pends on φ , then the distribution S  may be written as 
 
S R φ ( )( )= µ φ ( )+ ′S   (11.11) 
 

with a conditional mean value µ φ ( ) and a random components with zero mean 
value   (E( ′ S ) = 0) and uncertainty unrelated to the resolved scales. Specification 
(11.8) equals specification (11.11) if ′ S = 0  and  µ(φ ) = Q(φ ) . 

The role of statistics here is to first suggest a suitable distribution  S , and later 
to condition the free parameters  

r 
α  in a manner such that observed or otherwise 

physically meaningful relationships are approximately satisfied. These parameters 
often include parameters such as means, variances and lag correlations or spectra. 

A comparison of a randomised parameterisation with a conventional parame-
terisation has been provided by Bauer and Weisse (2000), who ran the ocean wave 
model WAM for an extended period of 6 months with analysed winds. These 
winds are available only every 6 hours. Usually the variability within these 6 
hours, related to various high-frequency meteorological events such as passage of 
fronts and the associated gustiness is disregarded, and the wind is either kept con-
stant or, as in the present case, linearly interpolated. 
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Fig. 11.1. Spectra of wind speeds at Ekofisk; time resolution 20 min (i.e., the abscissa of 9 cor-
responds to 9 x 20 min = 3 hours), units: (m/s) 2 x 20 min. A is the spectrum of the original 
series, B is for the 6 hourly wind speed with randomised interpolation and C with linear interpo-
lation.  
From Weisse and Bauer (pers. comm.) 

In their study, Bauer and Weisse considered the linear interpolation as the 
“conditional expectation” parameterisation (11.8) of short term atmospheric fluc-
tuations. A randomised version was constructed from time series of wind observa-
tions every 20 minutes. It returns for any instantaneous pair of wind speeds 6 
hours apart a consistent series of 20 minutes wind speeds. This constitutes their 
“randomised parameterisation” (11.11). The success of the random number gen-
erator is demonstrated in Fig. 11.1, displaying three auto spectra. One spectrum 
(A) is from the original series observed every 20 min. In the other two spectra, 
first a wind speed was sampled every 6 hours, and then either linearly interpolated 
(C) or random numbers were inserted (B). The spectra are very similar for time 
scales longer than 6 hours (corresponding to an abscissa of 18); the linear interpo-
lation causes a severe underestimation of the high-frequency variance, which is 
entirely recovered by the randomised parameterisation. 

The effect of the two different formulations of high-frequency wind variations 
on the statistics of ocean waves was analysed in terms of the distribution of wave 
heights every 20 minutes within 3 days. For each interval of three days, the 6th 
largest wave height is determined, i.e., the 97% from the sample of 216 wave 
height values within three days. The time series of these 97% quantiles for 60 
consecutive 3-day intervals for the two WAM simulations is displayed in Fig. 
11.2.  Obviously, the two time series are very similar, so that the presence of short 
term fluctuations does not induce significant low-frequency variations; thus, the 
randomised parameterisation is not required for the simulation of the overall sta-
tistics. However, a closer inspection reveals that the distributions are shifted to 
taller waves (not only in terms of 97% quantiles but also 50% quantiles); that is, 
the presence of high-frequency variations may increase the height of extreme 
values by a few decimeters. 

It seems that while a “randomised parameterisation” (11.9) is theoretically at-
tractive, in most applications  the  additional introduction  of variability is inconse- 
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Fig. 11.2. Time series of 97 % quantiles of significant wave height at 30oN, 30oW calculated for 
consecutive 3-day intervals. The solid line is from the run with linearly interpolated winds, and 
the dashed curve from the simulation with a randomised specification. Units: m/s. Abscissa: 
number of 3-day long intervals.  
After Bauer and Weisse (2000) 

quential, because the dissipative mechanisms of the models efficiently remove 
variability on the smallest scales. However, experiments with an Energy Balance 
Model (von Storch et al. 1999), an idealised ocean model (Timmermann 1999) 
and high-frequency wind forcing of a wave model (Bauer and Weisse 2000) dem-
onstrate the potential of this approach. 

 

11.3.2 Analyzing Integrations of Quasi-Realistic Models  

When quasi-realistic models are integrated, the purpose may be forecasting, simu-
lation or executing a numerical experiment. 

 

11.3.2.1 Forecasting  

Forecasts, like the prediction of stream flows in rivers, are made to provide users 
with timely information to allow for adaptation to a changing environment. This 
information is usually a point-value, such as a river level at a given time, or an 
interval, such as a temperature range, or a probability, such as the probability for 
rain on a given day. The information provided by a single forecast is easy to grasp, 
but the information provided of the forecast system needs a statistical analysis of 
the predictive skill, concerning the frequency of hits or the expected error (Mur-
phy and Epstein 1989). Sometimes efforts are made to add to the prediction of 
state variables a prediction of the skill of the forecast itself. 

In terms of the state space model, forecasting means to first determine “initial 
states” by suitably solving the observational Eq. 11.2 and then integrating the state 
space Eq. 11.1 forward in time. From the large-scale forecast, local forecasts are 
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derived from “model output statistics” (Klein and Lahn 1974), which amount to 
invoking another observation model. In most cases, the uncertainty terms ε  and δ  
are disregarded, but not always. 

 

11.3.2.2 Simulations 

Simulations are made to generate a quasi-realistic extended trajectory of the con-
sidered system. Often, it is simply impossible to observe with sufficient spatial 
and temporal resolution the development of the system. For instance, a high reso-
lution current field of the North Sea can not determined from observations, let 
alone for an extended time. Then, it is advisable to run a quasi-realistic model 
instead. However, the result of this model is highly complex, not as complex as 
reality, but in practical terms much too complex to grasp the wide range of phe-
nomena and their dynamics. Thus, the evaluation of a simulation requires the 
skillful statistical analysis of the output of such a model. Without such an analy-
sis, the researcher can only consider a limited number of events, analyse these 
events in terms of the processes involved, and compare them with observations.  

An important aspect with such simulations is the validation of the models. 
There are cases where models have shown sensitivities, mainly because the mod-
els replicate not the real system but somewhat different, overly sensitive systems. 
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Fig. 11.3. Integration area in Langenberg’s study. The black line indicates the location of the 
considered 270 near-coastal water level variations 
From Langenberg et al. (1999) 
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Fig. 11.4. Observations model, relating near coastal water level (horizontal axis) to shore-line 
water level (vertical axis), for Langenberg’s 2-D North Sea model  

In terms of the state-space model, simulations are done by integrating Eq. 11.1, 
mostly by disregarding the ε-term. Confirmation is done by invoking an observa-
tional model (11.2) and comparing the estimated ω-values with observations. 

Examples of such simulations are numerous; one such example is from Lan-
genberg et al. (1999), who ran a model of the hydrodynamics of the North Sea 
over 40 years. They analysed changes in the time-mean and in the intra-annual 
statistics of coastal sea level. Their model F was a 2-D barotropic model of the 
North Sea (Fig. 11.3). This model simulates water levels in the interior of the 
North Sea and in the near-coastal area. Observations, on the other hand, are avail-
able on shore locations only. With help of a tide gauge, an observational model    
was designed (Fig. 11.4). Water levels at the shore-line are for moderate water 
level variations about 1.1 times the off-shore water levels; the amplification in-
creases for water levels larger than 50 cm above normal. 

P

Figure 11.5 displays the result of this simulation. Since observational models 
are available only for a few locations where tide gauges exist off-shore, unproc-
essed sea level trends are shown. The heavy line represents the change in the win-
ter mean, which is of the order of 2 mm/year along the eastern coast and negligible 
along the western coast. Thus, within 1955 – 93, the mean sea level has risen due 
to changing meteorological conditions by about 8 cm. The intramonthly 90% 
quantiles, representative for storm activity, has remained practically stationary. 

 

11.3.2.3 Numerical Experimentation 

Quasi-realistic models, which have been tested in simulations of the historical 
record, may also be used to test the system’s sensitivity to changes of boundary 
conditions, forcing functions and internal processes. One simulation  is  done  with  
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Fig. 11.5. Trends of winter means (heavy line) and winter 90% quantiles (light line) of winter 
high tide levels for 270 near-coastal locations along the North Sea coast (as indicated in Fig. 
11.3) simulated in a 1955 – 93 model integration. Units: cm/year. From Langenberg et al. (1999) 

“control” conditions, and others with a limited number of factors modified in a 
perfectly controlled manner. In this way, the effect of the “treatment” may be 
examined.  Like in medical research, a statistical analysis of the outcome of such 
an experiment is often required because of the inherently noisy character of envi-
ronmental systems. Usually, decision rules are required to reject null hypotheses, 
“treatment has no effect,” with a given risk. 

These “treatments” may be dramatic as the effect of opening the Central 
American Isthmus in Panama (Maier-Reimer et al. 1990), but may also feature 
different parameterisations of the cirrus clouds  (Lohmann and Roeckner 1995), or  
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Fig. 11.6. Change of winter 90% quantiles of winter high tide levels for 270 near-coastal loca-
tions along the North Sea coast (as indicated in Fig. 11.3) from today to the time of expected 
doubling of atmospheric CO2 concentration, in cm. Shaded area: 95% confidence inter-
val for present natural variability; heavy line: expected anthropogenic change. 
From Langenberg et al. (1999) 
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specific aspects such as the effect of an accelerated weather stream on the wave 
statistics (Bauer et al. 2000). 

In the following we briefly sketch the outcome of an experiment with the North 
Sea model mentioned above, dealing with expected changes of coastal sea level 
statistics associated with the expected ongoing increase of atmospheric green-
house gas concentrations (Langenberg et al. 1999). In this case, two atmospheric 
model runs had generated quasi-realistic 5-year sequences of weather, representa-
tive for present day conditions and for the year 2050, when atmospheric CO2 lev-
els are expected to have doubled. These forcing fields were used in two 5-year 
simulations with the above mentioned 2-D North Sea model, and changes in the 
intra-monthly 90% quantiles calculated. These changes were compared with the 
range of variations to be expected (at least in the framework of the model) in the 
present climate regime. For the coastal points displayed in Fig. 11.3, this range of 
variations is displayed as 95% confidence intervals in Fig. 11.6, and the simulated 
change of storm surge statistics as a solid line. Obviously, the simulated change 
varies within the 95% confidence band, indicating that the treatment “modified 
atmospheric composition” has little effect on the statistics of storm surges along 
the North Sea coast.1 

 

11.3.3 Merging Dynamical Knowledge and Observational Evidence 

A standard exercise is the determination of parameters  
r 
α  in the state space Eq. 

11.1. In that case, the observational evidence ω is usually a series of statistics, 
such as spatial variances, and the parameters  are determined  such  that 
 

  
E  ω t +1  –  P F(φ t ,  

r 
α ,  t )( )(  =  min) , (11.12) 

 
where Ε (⋅)  represents the expectation operator. In practical cases, only a limited 
number of observations is available, and the usual statistical assumptions about 
stationarity and ergodicity have to be made before reasonably replacing the expec-
tation operator by a finite sum. The minimisation can be achieved by variational 
methods. Among many others, an example related to the diffusion in the ocean is 
provided by Schröter and Wunsch (1986), for nutrient transports in rivers by 
Bülow et al. (1998). 

Another problem is that of the operational, consecutive analysis of spatial dis-
tributions. This procedure has been developed in weather forecasting, where good 
knowledge about the (initial) state of the atmosphere is mandatory for a good 
weather forecast. Therefore, the routine measurements taken from radio sondes, 
weather stations etc., are blended with a recent forecast. In this way, a complete 3–
D analysis of the state of the atmosphere is obtained, which is then used as the 
initial state for a forecast. The forecast for the next analysis time serves as the 
“first guess” to be blended with the new observations. 

 

                                                           
1 Note that the effect of an overall increase of the ocean’s volume, due to thermal expansion and 

changes of the mass of glaciers and ice sheets is not included in this analysis. 
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A large number of different techniques have been developed in the past; an 
overview, illustrated with examples, is provided by Robinson et al. (1998). The 
above sketched consecutive approach can be seen as a kind of Kalman filter (e.g., 
Honerkamp 1994, or Jones 1985) with a state model (11.1) and an observation 
model (11.2). With the state model a forecast 

 

  
φt

f = F φ t −1,
r 
α ,t − 1)(  (11.13) 

 
is prepared, from which consistent observations ω t

f  are estimated with the help of 
the observation model: 

 
ω t

f = P φ t
f( ) (11.14) 

 
These estimated values are compared with the actual observations ω t  and a fi-

nal “best estimate” φt  is determined as linear combination 
 
φt = φ t

f + K ω t − ω t
f( ) (11.15) 

 
with a suitable operator   K , which depends on the covariance matrices of the 
noise terms ε and δ in Eq. 11.1 – 2. 

 

11.4  Reduced “Cognitive” Models 

As already discussed, are quasi-realistic models are too complex to allow for un-
derstanding, in much the same way that simply looking at environmental phenom-
ena without a-priori theoretical reasoning is rarely a means of understanding the 
underlying mechanisms. Therefore, certain conceptual “models” of the phenom-
ena are usually set up and data are checked to the extent they are consistent with 
the conceptual model. The conceptual model is an idealised description of the real 
situation, stripped down to a few relevant processes and their interaction. When 
supported by empirical evidence, the conceptual model embodies “understand-
ing.” 

“Conceptual model” means that the functional from of dependencies is fixed, 
but that certain parameters are left to be fitted to the data. They may formally 
expressed in terms of Principal Interaction Patterns, as introduced by Hasselmann 
(1988). The concept has been implemented fully only in a few cases (e.g., Kwas-
niok 1996; Achatz and Schmitz 1997), but simpler cases such as Principal Oscil-
lation Patterns (von Storch et al. 1995) and regressions techniques are abundant in 
the literature. 
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11.4.1 Principal Interaction Patterns3  

To formalise the PIP concept, we assume that the full system is represented by a 
state space model (11.1) and a linear observation equation (11.2) for the observed 
variables ω , 

 

  

ω t = Pφ t + noise =
r 
p jφ t

j =1

k

∑ + noise.  (11.16) 

 
with the row vectors    forming the matrix 

r 
p j P  – being the Principal Interaction 

Patterns, spanning a low-dimensional state space. In the state space equation 
  φt +1 = F(φt ,

r 
α ,t )+ ε  the operator F  represents a class of models that may be 

n nlinear in the dynamical variables o φt  and depends on a set of free parameters r 
  α =  (α1,α 2,…).  

Different from the data analysis and model verification problem, the dimension 
k of the state variable φ  is considered to be much smaller than the dimension of 
the observations m. Indeed, k is usually of the order of 20 or much less. Matrix P 
generally has many more columns (m) than rows (k). The system equations 11.1 
therefore describe a dynamical system in a smaller phase space than the space that 
contains   ω t .  

The error-term ε in (11.1) is considered here a noise term. It is often disre-
garded in nonlinear dynamical analyses. However, disregarding the noise in low-
order systems (k < 20) usually changes the dynamics of the system significantly, 
since the low-order system is a closed system without noise (cf. Timmermann 
1999; von Storch et al. 1999). However, components of the climate system, such 
as the tropical troposphere or the thermohaline circulation in the ocean are never 
closed; they continuously respond to “noise” from other parts of the climate sys-
tem, hence the noise term. It is doubtful if the fundamental assumption, namely 
that the low-order system is governed by the same dynamics as the full system, is 
satisfied when the noise is turned off. 

When fitting the state space model from Eq. 11.1, 11.16 to a time series, the 
following must be specified: the class of models F, the patterns P, the free pa-
rameters α  and the dimension of the reduced system m. The class of models F, 
must be selected a priori on the basis of physical reasoning. The number m might 
also be specified a priori. The parameters α  and the patterns P are fitted simulta-
neously to a time series by minimising the mean square error  ε[P;

r 
α ]  of the ap-

proximation of the (discretised) time derivative of the observations ω by the state 
space model:  

 

  
ε P;

r 
α [ ]= E  ω (t + 1)  –  P F φ(t ),

r 
α , t[ ] –  φ(t)(  )

2 
 
  

 
  (11.17) 

 

                                                           
3 Following the presentation in von Storch and Zwiers, 1999, Section 15.5. 
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11.4.2 Principal Oscillation Pattern Analysis4 

A standard “cognitive model” is the identification of normal modes or “waves” in 
geophysical fluid dynamics. In one approach, the basic equations are simplified 
and linearised until they may be formulated as 

 
ω t+1 = Aωt + ε  (11.18) 
 

where A  is the “system’s matrix” and ε the error introduced by the manipulations. 
The eigenvectors of the matrix A are the normal modes. Typical examples for such 
modes are all sorts of “waves”, as for instance Kelvin waves. 

Besides this entirely dynamical approach, there is a statistical variant of Eq. 
11.18, namely when then matrix A is not derived from dynamical reasoning but 
fitted to data. In that case ε is usually considered to be white noise. Then Eq. 11.18 
describes a discrete multivariate first-order autoregressive process.5 The system 
matrix    may be estimated through A

 
A = −1∑1∑  (11.19) 
 

where ∑ and denote ∑1 the lag-0 and lag-1 covariance matrices of ω, which are 
easily calculated from the data. The eigenvectors of this estimated matrix    are 
the Principal Oscillation Pa terns (POPs). Each state ω may then be expanded, or 
approximated by the POPs   

A
tr 

e k . 
 

  ω = φk
r 
e k∑  (11.20) 

 
The φk  are the POP coefficients, and represent the dynamical state of the sys-

tem: 
 
φk,t +1 = λkφk,t + εk  (11.21) 
 

where λk  is the eigenvalue of  bthe subspace spanned by the POPs. elonging to .  is the noise projected into 

                                                          

Note that Eq. 11.20 is an observation equation (11.2) and (11.21) a state equa-
tion (11.1). 

The POP analysis is illustrated by an application to equatorial variability (von  
 

 
4 Following von Storch (1993). 
5 The relation between empirical and dynamical modes has been investigated by Schnur et al. 

(1993), who calculated from quasi-geostrophic theory the dynamical modes describing the 
extratropical atmospheric variability, and also used the POP approach on a long sequence of 
analysed geopotential height data. The spatial and temporal characteristics of the most signifi-
cant POPs were very similar to the most unstable waves in the stability analysis, but the POPs 
also identified modes representative of the evolution of finite-amplitude waves. Thus, the 
POPs appear to be useful descriptors of the variability in cases where the dynamics were 
complex. 
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Fig. 11.7. Amplitude time series of two POP modes identified in the daily intraseasonal variabili-
ty monitored by three Equatorial moorings at 165oE, 140oW and 110oW. The left curve refers to 
the 120 day mode, and the right one to the 65 day mode. The amplitudes are normalised to stan-
dard deviation one. The years are given as May to April intervals (thus “1984” represents the 
time from May 1984 until April 1985). From von Storch (1993) 

Storch 1993). The goal was to investigate the modes of intraseasonal variability in 
7 years of moored measurement in the upper equatorial Pacific ocean (Hayes et al. 
1991). Oscillatory modes were searched for by using a POP analysis of daily aver-
ages of horizontal current at three equatorial locations, 165oE, 140oW and 110oW, 
for various depths. 

The data were first filtered by an EOF analysis to suppress small scale noise, 
and the EOF coefficients filtered in the time domain to eliminate the variability on 
periods larger than about half a year. The POP analysis then yielded two oscillato-
ry modes (complex pairs of eigenvectors with the above properties). The normali-
sed amplitude time series are displayed in Fig. 11.7. 

One oscillatory mode has a period of T = 2π /ω = 65 days and a damping time 
of τ = 73 days. The amplitude time series reveals an annual cycle with a semi-
annual component. The intraseasonal mode activity is strongest during solstice 
conditions and weakest during equinoctial conditions, and it is enhanced during 
warm ENSO conditions (1986/87 and 1990). 

The other oscillatory mode, operating at a period of about 120 days and a 
damping time of about 105 days, is affected by the state of the Southern Oscilla-
tion as well with enhanced activity during warm episodes and reduced activity 
during the cold 1988 event. 

The spatial amplitudes and phases of the two modes, in terms of zonal currents, 
are displayed in Fig. 11.8. Both modes represent eastward traveling signals. 

The 120-day mode has its largest amplitude, with typical maximum values of 
about 16 cm/s, at 50 m depth at 65oE and 160 m depth at 140oW. In contrast, the 
65 day mode has maximum zonal current anomalies at upper levels (50 m and 
above) in the eastern part of the basin, with a typical maximum of 12 cm/s at 
140oW and 19 cm/s at 110oW. The zonal current 120-day signal propagates in 
about 60 days from 165oE to 110oW, so that the phase speed is about  1.8 m/s. The  
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Fig. 11.8. Amplitude and phase distributions of the two eastward propagating oscillatory POPs 
of the zonal currents at three Equatorial moorings at 165oE, 140oW and 110oW. The coefficient 
time series are normalised to unity so that the amplitude pattern represents typical distributions in 
10–4 m/s. The phases are given in days relative to the base period of 120 and 65 days. From von 
Storch (1993) 

phase lines are vertically  tilted,  with  the upper levels lagging the lower levels by 
about 15 days. The phase speed for the 65 day mode is estimated to be 2.1 m/s. At 
the two eastern positions, the phase lines are tilted, with the lower levels leading 
the upper levels by about 8 days. The two modes are not correlated; their time 
coefficients share a correlation of about –0.25. The two modes are, however, pat-
tern-wise similar and are not orthogonal. Indeed, the POP analysis does not re-
quire that the modes be orthogonal. 
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