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The Stochastic Climate Model helps reveal the role
of memory in internal variability in the Bohai and
Yellow Sea
Lin Lin 1,2, Hans von Storch 2✉ & Xueen Chen1

Hasselmann’s theory elucidates how short-term random noise leads to longer-term unpro-

voked variations, i.e., red spectra. Here, we study ensembles of numerical model simulations

of the hydrodynamics of the Bohai and Yellow Sea concerning internal variability formation.

Short(/long) term variations are associated with small(/large) spatial scales, and the internal

variability of long-term temporal and large-scale variations is markedly enhanced, even

without external forcing on these scales, when the tides are turned off. This pattern is well

explained by Hasselmann’s theory. A critical element in this theory is the concept of memory,

which in our ensembles exhibits a scale dependence that aligns with the scale-dependent

nature of redness. Additionally, this framework clarifies why there is a significant reduction of

long-term fluctuations during winter and when tides are active: the system’s memory is

notably diminished under these conditions.
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The behavior of oceans and atmospheres is characterized by
the turbulent flow of fluids that exhibit chaotic properties
across a wide range of scales, ranging from short scales of a

few centimeters to large scales of hundreds of kilometers1. This
turbulent nature results in the emergence of unpredictable,
internally generated variability, commonly referred to as noise.

It is common for terms to have varying interpretations across
different fields, and in this context, the terms noise, internal
variability, and unprovoked variability are used interchangeably.
This definition aligns with the terminology used by Penduff
et al.2,3, Hasselmann’s terminology4, and it is used in predict-
ability research of climate and oceanic systems.

Previous studies have shown that internal variability can be
analyzed in ensemble simulations with slightly different but
consistent initial conditions, the introduction of small random
values (well below the level of the analyzed variable)5–8.

While the existence of internally generated variability was
acknowledged in models of atmospheric dynamics as early as the
1970s, it was not until a few decades later that the ocean science
community began to take notice of this phenomenon9–13. Global
ocean studies, for instance, have identified mesoscale eddies and
internal waves as potential sources of internal variability14–16.
Internal variability in the Gulf of Lyon was demonstrated17, and
the results suggested that baroclinic instability was the cause.
Scholars researched the South China Sea’s internal variability
climatology7,18.

The hypothesis that the lateral boundary may suppress the
generation of internal variability, may explain that the internal
variability of marginal seas has drawn less attention over a long
period. Until recently, researchers understood that shallow area
internal variability is also important3,5. The signal-to-noise ratio
of sea level trends (ensemble mean divided by the ensemble
standard deviation) in the Northwest Pacific, which includes the
Bohai and Yellow Sea, was calculated (Fig. 3 in Penduff et al.’s
publication3). The variability is mostly caused by external forcing
where the signal-to-noise ratio is >2; while if the signal-to-noise
ratio is <2, then the variability is mostly attributed by internal
forcing. The previous work found out that3 in the Bohai and
Yellow Sea the sea level longer timescale variations may be
blurred by internal variability, because the whole Bohai and
Yellow Sea signal-to-noise ratio is <2. Based on the above
research, the internal variability analysis in the Bohai and Yellow
Sea is an issue of scientific interest.

The tidal forcing is a key factor in the Bohai and Yellow Sea,
which influences the temperature, salinity, and current
distribution19–22. Meanwhile, our previous work found that the
tides have an important impact on the formation of internal
variability at large and medium scales when simulating the
dynamics of the Bohai and Yellow Sea23. To the best of our
knowledge, no previous research has explored why tides influence
the internal variability in the Bohai and Yellow Sea. Thus, we
reckon the active tides, especially their effect on internal varia-
bility is an important scientific problem.

To understand the changes in system properties rather than the
chain of mechanisms through which the tides affect internal
variability, we use Hasselmann’s ansatz, namely that of the Sto-
chastic Climate Model (SCM)4: We anticipate observing natural
variability with greater internal variability on longer timescales as
compared to short term variations.

The simplest, and purest form of the Stochastic Climate Model
is an autoregressive process of first-order. An introduction to the
SCM with more background information is given in the Methods
section. Here we briefly express the concept of SCM from the
physical and numerical aspects. Physically, the SCM is based on
the assumption that the two distinct times scales exist and can be
distinguished in a system, one for long-term trends and another

for short-term fluctuations. The long-term variations are con-
strained by memory, and forced by short-term variations, per-
mitting transformations from short-scale (white noise) forcing
into long-term variation (a red spectrum) with enhanced var-
iance. The memory of the system decides the strength of such
transformation. Mathematically, the system is well approximated
by an autoregressive process of the first order:

ytþ1 ¼ αyt þ εt ð1Þ
with ytþ1 and yt representing the value of the slow y at the time
step t þ 1 and t, a memory parameter α, and white noise εt ,
representing the impact of the short-term fluctuations. The
spectrum of y is red, even if no long-term forcing is present. We
will come back to the SCM-associated concepts, such as memory,
in the Methods section.

A recent application of the SCM is that of Shi et al.24, who
suggested that a decline in ocean memory in recent years is
related to the decrease of the upper-ocean mixed layer depth
related to global surface warming, based on a simple stochastic
model of sea surface temperature variability. A major difference
between our work and Shi et al.24. is that we separate the changes
into different spatial, and thus temporal, scales by EOF-
decomposition and discuss the tidally and seasonally induced
changes in ocean memory at different scales.

This paper examines numerical experiment results not by
screening a variety of processes, but by examining the output on
the system level to explore why internal variability decrease when
tidal forcing is considered and in wintertime. An analysis on the
process level would also be useful, meanwhile, we believe that our
concept of studying the experiment in terms of system properties
may need to attract attention. An important insight is the need
for significant statistical hypothesis-testing, or similar methods,
when evaluating numerical experiments on, say, the effect of
using different parameterizations.

Specifically, first, this paper demonstrates the potential of using
the SCM for evaluating numerical experiments, namely the
change of the memory of the system as a key property, to examine
the impact of tides on the Bohai and Yellow Sea, based on scale
separation method using the EOF-decomposition. Second, except
for the decrease of the internal variability resulting from an
activated tidal forcing, which is associated with reduced memory,
we demonstrate another case to validate the memory of the sys-
tem: the seasonal changes of the internal variability in the Bohai
and Yellow Sea, with larger memory and internal variability in
summer, and less so in winter.

In this paper, we first construct a kind of spectra, to determine
if the internal variability is red. This is done by using spatial
patterns, namely EOFs, which go with both spatial and temporal
scales (see Result sections), in consistency with the well-known
general correlation of such scales in atmospheric and oceanic
dynamics25, and determine that the variance increases with
increasing spatial (and thus temporal) scale. As shown in our
previous work23 this expectation is fulfilled in an ensemble of
simulations of the hydrodynamics of the Yellow Sea without tides.

We interpret this scale-dependent internal variability intensity
as a trace of a low-dimensional dynamical core within which the
internal variability is formed. We find evidence of an underlying
low-dimensional dynamical core which is accumulating short-
term, small-scale unprovoked variability, and which dominates
the whole system in the spirit of the SCM. We test the validity of
this assumption by checking if the memory of the system, which
is the only relevant parameter in this context, is smaller when less
low-frequency noise is formed in the same simulation with active
tides compared to the simulations without tides, and in summer
and winter. Here, we find that the memory, represented by the
decay of the autocorrelation function, is strongly reduced in the
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presence of tides, and in winter. The issue of identifying the
specific mechanism of dynamic processes within the equations of
motion that result in the loss of memory remains unresolved and
will be addressed separately. The outcome supports our original
hypothesis that the spectrum level of internal variability may be
understood conceptually in the framework of the Stochastic Cli-
mate Model, with memory being the key parameter.

Results
The intensity of the internal variability is mathematically defined
as the time average of the daily standard deviation across all days
of the ensemble. When we refer to spectra in the following dis-
cussion, we refer to a distribution of variance across time or
spatial scales, rather than Fourier spectra.

The Stochastic Climate Model is a model of minimum com-
plexity, intended to describe the fundamental factors involved in
generating internal variability within a system. Conversely, the
numerical model of the hydrodynamics of the Yellow Sea is a
model of maximum complexity, enabling experimental analysis
but not providing direct insight into the dynamics of generating
internal variability. Our task is to merge these two models in the
current analysis, to arrive at a simple understanding.

Scales. Note that the EOFs are derived from the deviations of the
ensemble mean, they allow for a decomposition of the internal
variability part (see the scale separation based on the EOF ana-
lysis portion in the Methods section).

Our previous findings23 indicated that spatial scales decrease
almost monotonously with the EOF rank, even though not in a
strict decline, which may be associated with the fact that both, the
EOFs themselves and the scales are estimated and subject to
random variations.

To establish a connection between spatial and temporal scales,
we analyzed each EOF separately and calculated the autocorrela-
tion function for each corresponding coefficient time series. Based
on these results, we determined a time scale, represented by the
characteristic time. (The definition of the characteristic time is in
the Stochastic Climate Model portion of the Methods section). As
illustrated in Fig. 1, without tides simulation, the larger the spatial
scales, the longer the characteristic time. Such a relationship is
evident in the ensemble without tides, but in the ensemble with

tides, such a correlation between spatial and temporal scales exists
but is weaker. Consequently, in consistence with the conclusion
of previous work7,23, we find the spatial scales decrease with the
EOF index increase. Both spatial and temporal scales decreased in
parallel and mostly monotonically with the rank for the EOFs.

Change of intensity of internal variations. We establish a con-
nection between the intensity and temporal scales of internal
variability when tides are active and passive, by examining the
slope of the time spectra, or the degree of redness. In terms of the
Stochastic Climate Model and its associated AR(1)-process, a
smaller negative slope (with a larger absolute value) indicates a
greater accumulation of variance from short-term variability,
leading to greater generation of internal variability on larger
scales. We calculate the spectra of each EOF time coefficient.

Figure 2 illustrates the variance frequency spectra of scale
81 km (based on the time coefficient of EOF 1), scale 66 (EOF 30),
and scale 20 (EOF 2000) to better characterize the internal
variability and the slope. The green lines shown in Fig. 2a–c are
the fitted slopes of scale 81, 66, and 20 km, from which we can see
that the slopes vary from a steeper one to an almost horizontal
line. Here, we take scales 81, 66, and 20 km for examples, if we
chose scales close to the chosen 81, 66, and 20 km, the spectra are
mostly the same and the slopes are mostly the same. In Fig. 2a,
the variance of scale 81 km shows a larger value over the period
>10 days; the same pattern exists in scale 66 km. But the slope is
deeper in scale 81 km, compared with scale 66 km, which means
the spectra are redder in larger scales. From Fig. 2a, b, we find
that the spectra of large and medium scales are red. By contrast,
the spectrum of scale 20 km is almost white, with almost the same
variance at different frequencies (Fig. 2c). The scales equal to or
<30 km are considered to small spatial scales; they hardly have
any memory, thus, the spectra are white (the white noise
spectrum is a horizontal line, as introduced in the Stochastic
Climate Model of the Methods section).

To establish a connection between the internal variability
intensity and the slope of the time spectra, we present the slopes
for both ensembles for spatial scales >30 km (Fig. 3). In Fig. 3, the
blue cloud representing the slopes in with-tides simulations is
above the red cloud representing the slopes in without-tide
simulations. For small scales, say 30 km and less, the spectra are
almost white (Fig. 2c), so scales <30 km are not considered in the
Figs. 3 and 4. The time spectra of the large-scale EOF coefficients
are considerably redder in the no tide case compared to the
simulations with the activated tide. In general, larger absolute
values of slopes appear in the without-tides simulations than
with-tides simulations.

Memory changes. In order to relate qualitatively the slopes with
the memories of the EOF coefficients, we plot Fig. 4, scatter
diagrams of the slopes or redness, and of the characteristic time
scales (memory), as derived from the autocorrelation functions.

Figure 4 illustrates a co-variation of the growth of the intensity
of the internal variability and of times scales, i.e., the slope of the
spectra, and the memory in the no tides case. A more negative
slope corresponds to a steeper spectrum, which means that more
high-frequency disturbances are accumulated into low-frequency
variability. However, when tides are active, this correlation
becomes much weaker. This observation provides evidence that
the hydrodynamical system of the Yellow Sea may possess a
Stochastic-Climate-Model-like dynamical core.

The above results explain the tidal forcing effects from the
redness of the spectra. We further explore the time scales and the
scale-dependent memory of anomalies in the system by
autocorrelation functions for each EOF time series, averaged

Fig. 1 Scatter diagram of the spatial scales of joint EOFs and their time
scales τ in the with tides and without tides ensembles. The blue circles
and the red stars represent the characteristic times for the with-tide and
no-tide ensembles, respectively.

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-01018-7 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:347 | https://doi.org/10.1038/s43247-023-01018-7 | www.nature.com/commsenv 3

www.nature.com/commsenv
www.nature.com/commsenv


across all members of the ensembles (Fig. 5) for the first 50 large
and medium scales EOFs23. The differences in large-scale (long-
term) variance are associated with a difference in temporal
autocorrelation. When tides are turned off, then the autocorrela-
tion function decays slower compared to the case with tides. Note
that EOF analysis was conducted of depth-averaged velocity
anomalies, which represent the internal variability part. Thus, we
conclude that larger anomalous patterns prevail longer than
smaller anomalous patterns—and that this tendency is much
stronger for the case without tide.

To sum up, memory is described by the redness of the
spectrum given by the slope of the spectrum. The steeper the
slope, the redder the spectrum. From both the autocorrelation
and the steepness of the spectrum, we find that for large scales
(low-frequency part), the autocorrelation is larger in no-tide and
the steepness of the spectrum is steep in the no-tide ensemble,
which corresponds to a redder spectrum compared with the
ensemble with tidal forcing. Hence, we conclude that the memory
of low-frequency noise is stronger in no-tide simulation. Thus, in
the no-tide simulation, if an anomaly generates, it will last for a

longer period of time. The internal variability level increase with
the memory of anomalies.

In addition, the internal variability is shown as the spatial mean
standard deviation of depth-averaged velocity anomalies for both
configurations, with and without tides in Fig. 6. In both cases, the
internal variability is weak in winter, starting to grow in spring, being
strongest in summer, and receding gradually in autumn. We further
analyze the memory of the system for February (when internal
variability is at minimum) and August (when internal variability is at
maximum) separately (Fig. 7). Consistently, we find that the
memory of the system is smaller in winter, and greater in summer.
This is another piece of evidence pointing the co-variation of
memory of the system low-frequency internal variability is formed.

Conclusions
In this paper, we apply the concept of the Stochastic Climate
Model to evaluate numerical experiments in the Bohai and Yellow
Sea with and without tidal forcing by looking at it on the system

Fig. 2 Variance frequency spectra of the principal components in without tides ensemble. a Variance frequency spectra of the principle component for
EOF1, which is corresponding to scales 81 km in spatial scale. b For EOF30, which is corresping to scale 66 km in spatial scales. c For EOF2000, which is
corresponding to scale 20 km in spatial scale. The principle components are derived from the EOF results of the depth average velocity anomalies. The
black solid lines show the spectra, and the green lines represent the slope of the spectra.

Fig. 3 Slope of the spectrum (steepness of linear fit of the time spectrum
in log-log presentation) of spatial scales larger or equal to 30 km. The
blue stars and the red crosses represent the slope of the spectrum from
with-tide and no-tide ensembles, respectively.

Fig. 4 Scatter diagrams of the slopes of the coefficient times series of
EOFs with a spatial scale of 30 km and more and of the memories of the
time series. In red: the ensemble without tides, in blue, with tides. The
coefficient time series are derived for the internal variations only, i.e., after
subtracting the daily ensemble means.
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level, and to explain why tidal forcing depresses the generation of
internal variability. Up to this point, the SCM4 has been
employed to comprehend recorded spectra26, 27. Over time, the
idea has been broadened to encompass additional degrees of
freedom to distinguish and define patterns of variability.

Here, we are not examining the specific processes involved in
the hydrodynamics of a marginal sea. Instead, we are studying the
system properties, specifically the scale-dependent memory, to
understand a change in the system’s statistics.

Our study yields two primary outcomes. Firstly, we find indi-
cations of an underlying low-dimensional dynamical core with
relatively sluggish fluctuations, which facilitates the transfer of
short-term internal variability to longer timescales, in the Bohai
and Yellow Sea. This aligns with Hasselmann’s concepts of both
the Stochastic Climate model (SCM) and PIPS-and-POPs (see the
Methods section). Second, as predicted by the SCM, a modifica-
tion in memory is associated with a corresponding adjustment in

the long-term variance, particularly on a large-scale basis. We
find that active tides, as well as winter conditions, limit the
generation of low-frequency internal variability by decreasing the
memory of the system.

While these are general results, on the dynamics of internal
variability of the relatively shallow marginal seas of the Bohai and
Yellow Sea, we are also able to explain the result of the numerical
experiment. Specifically, we find that the incorporation of tides
reduces the system’s memory, which could be due to more efficient
damping or a decrease in baroclinic instabilities. While previous
work suggested that the latter is the dominant or at least an
important factor17, it is not to say that changes in damping are
irrelevant. We plan to explore this further in a separate paper.

The primary finding of the Stochastic Climate Model is the
recognition that all hydrodynamic systems, including the atmo-
sphere, the ocean, or the climate system, generate variations on all
temporal and spatial scales that are not a response to external

Fig. 5 Autocorrelation functions of with- and without- tidal forcing for lags 1-20 and PCs of EOFs 1-50. a With tidal forcing; b without tidal forcing (the
middle panel); and c differences of autocorrelation functions of with tidal forcing ensemble minus without tidal forcing ensemble.

Fig. 6 The time variation of the spatial-mean internal variability intensities. The pink and blue lines are for with-tide and no-tide ensembles, respectively.
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drivers but are internally generated. Our analysis affirms this
general observation and demonstrates that tides limit this gen-
eration by decreasing the system’s memory in the hydrodynamics
of a marginal sea. This inclination to produce spontaneous
variability implies that numerical experiments evaluating sce-
narios of climate change require a statistical hypothesis test before
detection of the effect of an altered configuration can be
claimed28.

Methods
Ocean model setup. The Finite-Volume Community Ocean
Model (FVCOM) was adopted in this paper29,30. The simulations
had a horizontal resolution of about 4 km and 8 km for Bohai and
the Yellow Sea, respectively, with 30 sigma layers vertically. The
open boundary ranged from Qidong along the Chinese coast to the
southern end of the Korean Peninsula, and the simulations were
forced by surface forcing, consisting of wind, sea-level pressure, air
temperature, precipitation, evaporation, relative humidity, and heat
fluxes from the NCEP’s Climate Forecast System Version 2. The
tidal forcings, which included M2; S2;N2;K2;K1;O1;P1;Q1, were
obtained from TPXO 831. At the open boundary, the tidal forcing is
considered by using a time-dependent elevation. The Huanghe,
Huaihe, and Haihe are considered and the river discharges are from
the “China Sediment Bulletin (2019)”. To have a slightly different
but generally consistent initial condition for each simulation within
the ensemble, an independent 9-year climatological simulation was
carried out. The model start time will be shown in the following
ensemble design section.

Ensemble design. To explore the impact of tides on hydro-
dynamics, and the seasonal contrast in the Bohai and Yellow Sea,
we considered the same set of two ensembles of numerical
simulations: one set included tidal forcing, while the other did
not, but both sets had the same other forcing inputs. Each
ensemble consisted of 4 simulations of the year 2019, initialized at
different months earlier (The model time setup is sketched in
Fig. 8). The initial conditions of the four simulations in each

ensemble were taken from Nov. 1st of the 7th year, Jan 1st of the
8th year, Mar. 1st of the 8th year, and Nov. 1st of the 8th year of
the separate 9-year climatological simulation.

In the no-tide simulations, the tidal elevations at the open
boundary were turned off. The results showed that the activation
of tidal forcing led to a substantial reduction in internal variability
at large and medium scales but not at small scales23.

Scale separation based on EOF analysis. We utilized an alter-
native orthogonal linear basis—the EOFs basis—to describe the
fields of depth-averaged velocity. This method, introduced by
Tang et al.7. and further developed by Lin et al.23, allowed us to
decompose the fields according to both spatial and temporal
scales. As we focused on the component of internal variability,
which was determined by the difference between ensemble
members and the ensemble means, we retrieved EOFs from the
daily mean depth-averaged velocity anomalies data (after having
subtracted daily ensemble means) of all members of the tide
ensemble and no-tide ensemble in 2019. Note that we combined
the tide ensemble and no-tide ensemble for EOF analysis, to make
sure that the projection is based on identical basic functions and
the scales of the same EOF index are identical, representing the
same variance. If we do EOF separately for with and without tidal
forcing ensembles, there will be some bias because the result will
be an optimal decomposition for only the with tidal forcing or
only the without tidal forcing ensemble.

To gain the scales involved for the whole 8 simulations from
ensembles with and without tidal forcing, the EOF analysis was
conducted as follows:

B x; y; t
� � ¼ ∑

p

j¼1
Qj tð Þej x; y

� � ð2Þ

where B represents the depth-averaged velocity anomalies across
all 8 simulations, t is the days in 8 simulations, and x and y
represent the regular grid points, after interpolation from the
unstructured grid points from FVCOM original model results, in
zonal and meridional directions; ej x; y

� �
is the jth EOF, and Qj tð Þ

are the jth principle components, and j represents the EOF index.
For each simulation, there are 365 days, so these resulted in 2920
non-zero orthogonal eigenvectors, of which the last one was
discarded due to lack of accuracy. Thus, we have 2919 non-zero
orthogonal eigenvectors in the end (p= 2919).

Using a geostatistical method7, we determined a spatial scale
for each EOF pattern. Such geostatistical method, which is based
on spatial autocorrelation, is computed as

Fig. 7 The characteristic time scales for the first 50 EOF in August
(summer) and February (winter). The sold lines with squares are for no-
tide ensembles; solid lines with circles are for with-tide ensembles.

Fig. 8 Schematic diagram of the numerical simulation setup. N1, N2, N3,
and N4 are the first, second, third, and fourth members in the ensemble,
respectively.

cjðkÞ ¼
f∑ðx;yÞ2Gkz ej x þ k4; y

� �� �ej
h i

ej x; y
� �� �ej

h i
þ∑ðx;yÞ2Gkm ej x; y þ k4� �� �ej

h i
½ejðx; yÞ � �ej�g= Gkz

�� ��þ Gkm
�� ��� �

∑ðx;yÞ2G ej x; y
� �� �ej

h i
=jGj

ð3Þ
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where G represents all the grid points within the model domain;
ej x þ k4; y
� �

and ej x; y þ k4� �
are ej x; y

� �
at lag k grid points in

spatial in zonal and meridional direction on the condition that
both grid points ðx; yÞ and x þ k4; y

� �
(or x; y þ k4� �

) are in the
model domain G. Gkz ¼ fðx; yÞ 2 Gjðx þ k4; yÞ 2 Gg includes all
grid points with k grid points to the right in zonal direction, Gkm

is the same as Gkz, but in the meridional direction. �ej denotes the

spatial average of the jth EOF. jGj, Gkz
�� ��, Gkm

�� �� are the numbers
of grid points in G, Gkz, and Gkz.

We calculate a spatial autocorrelation function cjðkÞ varied with
spatial lag k grid points for each EOF. To determine the scale of
each EOF, we chose a threshold of 0.14. When the spatial
autocorrelation function cjðkÞ is <0.14, the corresponding scale
length is set to be that length for the jth EOF.

Fitting method. For Figs. 2, 3, and 4, the slopes of the spectra are
estimated by a linear fit in the log-log presentation of the spectra.

The Stochastic Climate Model. Hasselmann’s concept, of which
he gave a summary in his Nobel speech (Klaus Hasselmann—
Nobel Prize lecture. NobelPrize.org. Nobel Prize Outreach AB
2023. Tue. 4 Jul 2023. https://www.nobelprize.org/prizes/physics/
2021/hasselmann/lecture/). He was confronted with two chal-
lenges, if low-frequency variability in the climate system is only
reflecting low-frequency forcing, and if part of the very large
phase space of the climate system may be considered as a sig-
nificant core of the dynamics, while the rest may be para-
meterized stochastically. The answer to the first challenge is the
Stochastic Climate Model4, and to the second is the concept of
PIPs and POPs (Principal Interaction Patterns and Principal
Oscillation Patterns)32,33. In the following, we sketch these ideas,
without going into mathematical detail. However, it may be good
to visit the original publication, which gave Klaus Hasselmann his
Nobel Prize in Physics in 2021.

Low-frequency variability in a system could be the integrated
response of a linear (or nonlinear) system forced by short-term
variations4. For doing so, he referred to the Brownian motion as a
good analogy: the climate variables Y and weather variables X
may be interpreted in the analogous particle picture as the
(position and momentum) coordinates of a few large and slow,
and many small and fast particles, respectively.

The short-term variations are treated as random. In short: the
white noise of the short-term variation transforms into red noise
variations. The naming noise refers to the understanding that
these variations cannot be traced back to specific events, and are
unprovoked by anything in the external forcing or details of the
initial state. It is based on the separation of time scales and on
linearization not violating the nonlinearities of the system too
strongly.

To formulate, a system can be divided into two sub-systems
Z ¼ X þ Y with strongly different characteristic time scales. X
goes with a short timescale τx and Y with a long timescale τy.
Thus, X goes with short-term variations, while Y with long-term
variations. For Y we have a differential equation

dY
dt

¼ <V X;Yð Þ>þ f ð4Þ

where <¼> represents the time mean across τy, when Y varies
little, or an average of trajectories; V represents the dynamical
link between X and Y; f is the external forcing. Since we consider
the dynamics of internal variability, we set f ¼ 0. If a linearization
is permitted, then < X;Yð Þ> ¼ �βY þ εt , is a suitable approx-
imation, because of the time-separation of X and Y: X varies on
short times scales τx << τy and has the effect of a white noise

random variable εt after averaging across τy. After discretization,
we arrive at

ytþ1 ¼ αyt þ εt with α ¼ 1� β ð5Þ

assuming a time step of 1 for simplicity. With y representing a
state variable, ytþ1 and yt mean the value of y at the time step
t þ 1 and t, respectively, and εt represents external short-term
random fluctuations (white noise)25. This is an autoregressive
process of first-order (usually called by statisitcians). Since the
system is assumed to behave stationary, α<1 is required.

The (discretized) Ornstein-Uhlenbeck format of Eq. (5)
(usually called by physicists) is

dy
dt

¼ λ y þ εt ð6Þ

While εt represents external short-term random fluctuations,
which has a white spectrum, with equal variance across all scales,
y is a stationary variable, which has a red spectrum, with the
largest variance for long time scales and the smallest variance
with short time scales, λy is a feedback term.

In this simplest form, the spectrum of X is white, i.e., uniform
across all scales; in practical situations, it may also be red, or a
mix of red processes. In all cases, the spectrum of Y is redder than
that of X, i.e., the process of accumulating short-term variations
leads to enhanced variability of Y on longer time scales.

The increase of the intensity of the spectrum at the longest time
scales of Y is given by α, which may be understood as a memory.
An α close to 1 means that once an anomaly has formed, this will
persist for a long time, while an α close to zero will be damped out
quickly.

The relation between λ in Ornstein-Uhlenbeck process
expression and α in the auto-regressive process of the first-
order is 1� λj j ¼ α. If λ ¼ �0:1, then α ¼ 0:9; if λ ¼ �0:3, then
α ¼ 0:7, if we, for simplicity, use a time step of unitless 1 in the
discretization.

In the following and Result section, we keep the discussion in
the framework of the first-order auto-regressive process, accord-
ing to which the value of a state variable ytþ1 at time step t+ 1 is
determined by a memory term (αyt) and short-term external
random fluctuations (εt). Then, ( | α |−1)yt is a typical feedback
term. Stationarity requires |α | < 1, so that αy represents negative
feedback. The value of α determines the memory of the system,
with a large α indicating an extended memory (slowly decaying
autocorrelation), and a small α a short memory. With α ¼ 1, y is
a random walk, and with α ¼ 0; y is white noise. As the memory
of the system increases, the spectrum of the system becomes
redder meaning that the relative increase in variance at long time
scales compared to short time scales increase. This increase in
memory is a key factor in ocean dynamics and can impact
predictability at time scales beyond weather forecasts24.

White noise is an infinite sequence of zero mean independent
normal random. It means, for each t, element xt does not depend
on the state at any other time. Thus, the autocovariance function
is zero for all lags.

The spectra of the 1st-order auto-regressive process with α1
(lag-1 correlation coefficient) is

Γ ωð Þ � σ2z
1þ α21 � 2α1 þ α1 2πωð Þ2 ¼

c1σ
2
Z

c2 þ ω2 ð7Þ

Thus, the spectra of 1st auto-regressive processes follow the
linear gradient of −2 in log-log format for ω>0. When α1>0, the
‘spectral peak’ is located at the frequency ω ¼ 0. Such processes
are usually called red noise processes.
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The spectrum of the white noise is a horizontal line, suggesting
that no time scale of variation is preferred, therefore it is an
allusion to white light.

Figure 9 shows two 1st auto-regressive process spectra in log-
log format with two different α, α ¼ 0:3; 0:9. As mentioned
before, the relative increase of variance at long time scales
compared to that at short time scales depends on α: an α close to
1 has a large increase, and an α close to 0 has a small increase.

There are several methods available to quantify the memory of
a system. A common approach is to use autocorrelation27, 34,35.
To measure the memory of a stochastic process, we can use the
characteristic time, τ, which is defined as the limit of the ratio of
sample size and its equivalent sample size25.

For a 1st order auto-regressive process with parameter α, the
time scale is τ= (1+ α)/(1− α). If α= 0, representing white
noise, the process has a memory of 1 time step of the time
discretization and is considered memoryless. As α approaches 1,
the memory becomes stronger with larger τ, while negative values
of α do not make sense for this definition.

PIPs and POPs. Originally, the SCM was in most cases used in
univariate applications, i.e., Z, as well as X and Y were given by
one variable. Of course, one could use several variables, so that
Z, as well as X and Y, become vectors, and α a matrix. Then Y
may be transformed into a linear basis of eigenvectors of the
matrix α, and sorted according to their eigenvalues, which are all
real or come in conjugate complex pairs, at least when α is
estimated from data. Real eigenvectors go with a red spectrum;
when the eigenvectors are conjugate complex, their spectra may
be peaked spectra. When α is given by theory, then they are
named normal modes; when they are estimated, they are named
Principal Oscillation Patterns32,33. The concept has been
implemented in many applications36, but because of the enor-
mous size of the phase space of the atmospheric/climate
dynamics, before the analysis a reduction of degrees of freedom
is needed. A particularly impressive example is in the
publication37, which made the Southern Ocean wobble on
time scales of 300 years, when disturbances, which were white in
time and space, were added to their stationary freshwater flux
forcings.

The significant dynamics of the Z-system for the problem
considered take place within that POP-part of the phase space,
which is spanned by the most inert eigenvectors. Compared to the
original SCM analysis, this concept has the advantage that it may

be applied to a subspace of Z which is believed to contain the
relevant long-term dynamics.

The POPs concept may be seen as a generalization of the SCM,
but also as a simplification of the rather general concept of
Principal Interaction Patterns (PIPs)33, which asks for the
determination of a few patterns, whose coefficients allow an
optimal prediction of the slow variations of the considered
system. Unfortunately, the PIP ansatz has not (yet) been
successfully implemented, and thus serves more as a thought-
guiding concept, namely of separation of the full system into a
slowly varying core (Y), within a dynamical environment (X) with
very many short-term fluctuations.

Data availability
The code and data used in the paper are available at: https://doi.org/10.5281/zenodo.
8301348. The surface forcing data from the database NCEP’s Climate Forecast System
Version2 is downloaded from: https://rda.ucar.edu/lookfordata/. The TPXO 8 database is
downloaded from: http://g.hyyb.org/archive/Tide/TPXO/TPXO_WEB/tpxo8_atlas.html.
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The source code of the used ocean model FVCOM is available at https://github.com/
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