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1. Introduction

Climate is largely determined by the fluid flows in the atmosphere and oceans.
These flows are governed by the laws of fluid dynamics and thermodynamics.
These laws are partial differential equations that represent the conservation
of mass, momentum, energy and other quantities.1 If we could solve these
equations, with the right initial and boundary conditions, then we would have
the answers to all the pressing questions of the current climate debate. This,
however, is not possible. Even if there were a unique set of such equations
the only consensus about them is that they are highly and multiply nonlinear.
They couple processes across all scales, from the planetary scales of wind and
current systems to the micro-scales of molecular diffusion. The resulting flow
is turbulent, with everything depending on everything else. It is also impossible
to know the exact initial and boundary conditions, such as the exact shape of
the continents or the details of human land use.

The climate system is thus a complex system. Another example of a complex
system is the Brownian ink particle suspended in a fluid and subjected to the
constant bombardment of fluid molecules. Complex systems can be described
on different levels. On the micro level one tries to trace the exact time evolution
of the system. In case of the Brownian ink particle one tries to follow its exact
position. In the case of the climate system one tries to predict the actual weather.
On the macro level one is only interested in the typical behavior of the system and
considers coarse-grained or averaged quantities. The displacement variance of
the Brownian ink particle is such an averaged (and time-independent) quantity.
Statistics, like time means and extreme values of temperature and velocity fields
in the atmosphere and ocean are such quantities for the climate system. If only a
macroscopic description of the system is sought one often replaces the original
deterministic system by a stochastic system. The hope is that time averages of
the original system are equivalent to ensemble averages of the stochastic system.
If this is the case, the system is called ergodic. Probability concepts thus become
part of the macroscopic description of complex system. This replacement does

1 There is, however, a caveat. The differential equations are a limit of discretely for-
mulated principles. It appears questionable that these principles, formulated with con-
tinuously distributed variables, such as temperature and velocity, are meaningful for
almost infinitely small boxes. Thus, one may argue the differential equations are an
approximation of the “real” discrete equations, and not, as is usually perceived by
mathematicians, the other way around.
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not imply that the original system is random in any sense but only that it can be
described as random for certain purposes.

figure 1
Two time series, one of which is gener-
ated by a normal random number gen-
erator (solid line), and the other as a
sum of 20 chaotic deterministic pro-
cesses (dashed). The first two moments
of the random process are fitted to match
the sum of the 20 nonlinear processes
(H. von Storch et al., 1999)

figure 2
Histogram of the time series generated
as sum of chaotic processes, shown in
Figure 1 (H. von Storch et al., 1999)

The transition from a deterministic description to a stochastic description
is motivated by the observation that the behavior of a complex deterministic
system is often not distinguishable from the behavior of a stochastic process.
This fact is demonstrated in Figure 1. It shows two time series. One represents
the sum of 20 chaotic but purely deterministic processes. The other series is
a realization of a normal random process, which first two moments match the
deterministic time series. While the two series are different at any time instant,
their overall character is very similar. The histogram (Figure 1) of the determin-
istic time series is indeed close to a normal distribution, as a consequence of the
Central Limit Theorem. The similarity is usually rationalized by asserting that
the evolution of the deterministic system is caused by independent impacts and
equating independent impacts with random impacts. Randomness models inde-
pendence. The exact meaning of these statements is pursued in the foundations
of complex system theories. In climate studies, the application of probabilistic
concepts has turned out of permitting a suitable description of observed and
numerically modeled phenomena.

In climate science, as in many other environmental sciences, two species of
models are used: maximum and minimum complexity models (H. von Storch,
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2000). They serve different purposes. Maximum complexity models attempt to
describe the climate system by treating explicitly as many processes as possible
– with limits given by the computational facilities. Such models are also labeled
simulation models or, in climate sciences, general circulation models (GCMs;
see Section 2). They are (almost always) deterministic by construction, but ex-
hibit markedly stochastic behaviour, reflecting the presence of many nonlinear
processes. They allow for numerical experimentation and detailed simulation
but they do not represent scientific understanding of climate dynamics and cli-
mate sensitivity. Instead they produce numbers which need interpretation with
the other species of models, namely minimum complexity models. In such cog-
nitive or reduced models only the most relevant processes are considered, while
myriads of processes of minor importance are either disregarded or summarily
described by random processes. In their attempt to reduce the complex dy-
namics to a minimum number of interacting processes, such models represent
scientific understanding, even if they are unsuited for explaining all details as
needed in management decisions. Reduced models may be of dynamical char-
acter, like the stochastic climate model (Section 3) or of descriptive character as
in the detection problem (Section 4). Stochasticity is invoked in these models
to represent the effects of the large variety of disregarded processes which in
themselves are rather unimportant but which contribute as a whole significantly
to the overall dynamics.

Various sub disciplines get involved in the probabilistic description of the
climate system: stochastic differential equations which ignore the detailed struc-
ture of the micro-processes and replace them by stochastic processes; and statis-
tics which makes inferences about underlying processes by assuming that the
observed climate record or the output of climate simulation models can be
treated as a realization of a stationary (or cyclo-stationary) ergodic stochastic
process. Standard methods in these sub disciplines, however, often fail to cope
with the complexity and heterogeneity of the climate system. New methods,
specifically designed for application to the climate system have been and must
further be developed.

We illustrate these new developments by two examples: stochastic climate
models and the climate change detection problem. Stochastic climate models
presume that weather fluctuations drive climate variability in much the same
way that fluid molecules drive Brownian particles (Hasselmann, 1976). The de-
tection problem addresses the question whether the observed increase in surface
temperature, or changes in the statistics of other climate variables, is part of the
natural climate variability or alternatively related to human activities (Zwiers,
1999).

Before we present our two cases in Sections 3 and 4 in some detail, we
briefly review some basic facts about the climate system.

2. Climate System and Climate Models

The fluid flows in the atmosphere and oceans are described by variables like
temperature, velocity and density. Climate is described by time averages or
ensemble averages of these quantities. Weather represents the time evolutions
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of the variables themselves. In this sense, weather is a particular realization of
climate.

figure 3
Space and time scales of relevant atmo-
spheric and oceanic dynamics processes
(H. von Storch and Zwiers, 1999).

The climate system does not only consist of the lower part of the atmo-
sphere where we humans live but also includes the upper atmosphere and the
oceans. It is a complex and open system. A myriad of processes interact in an
open heterogeneous setting, resulting in complex spatial structures and complex
temporal evolutions. This is demonstrated by Figure 3 which displays spatial
and temporal scales of relevant atmospheric and oceanic processes. In both flu-
ids, dynamical processes generate variability on all time and space scales, while
the dynamics depend heavily on the scales.

A large variety of climate models have been developed to study the climate
system. Their design and complexity depends on the goal and on the time
scales considered. One distinguishes between cognitive (minimum complexity)
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models and simulation (maximum complexity) models (H. von Storch, 2000).
Cognitive models aim at understanding of climate dynamics. They ought to
be as simple as possible. They describe specific processes of a few degrees of
freedom. Energy balance models, featuring incoming and outgoing radiation
and their reflection and interception by surfaces, gases and particles, are an
example of such cognitive models. The stochastic climate model is another
example (Section 3). Simulation models aim at scenarios and prognoses. They
ought to comprise our current knowledge of climate dynamics as completely
as possible. Simulation models do not give immediate insight. Extraction of
knowledge requires analysis by statistical methods, cognitive models, and other
tools.

Simulation models are numerical models. Current computers allow models
with up to 107 degrees of freedom. Most simulation models are global coupled
Atmosphere Ocean General Circulation Models (AOGCMs). They consist of
circulation models for the atmosphere and the ocean. Representations of other
components, such as sea-ice, soil and vegetation, are in most cases added. Each
model is based on conservation equations for mass, momentum and energy.
These equations are solved numerically, using a spatial discretization either in
terms of a limited number of spherical harmonics or a limited number of grid
points. The models are integrated with a time step of the order of one hour or
less for a few days up to hundreds of years at special national and international
research centers with access to powerful computing facilities.

A special problem with simulation models is that because of the heterogene-
ity displayed in Figure 3 no “natural” truncation scale exists. Any truncation
disregards processes on scales smaller than the truncation scale: a truncation in
an ocean model at 100 km disregards fronts, at 10 km internal waves, and a trun-
cation at 100 m disregards boundary layer turbulence. On the other hand, these
disregarded processes have a significant impact on the dynamics of the resolved
scales. Therefore the unresolved processes are parameterized, i.e., their net ef-
fect on the resolved dynamics is taken into account by adding terms describing
the impact of the unresolved scales, assuming that this impact on average de-
pends only on the resolved scales. Simulation models feature a large number of
such parameterizations, for instance for mixing, convection, and clouds (Wash-
ington and Parkinson, 1986). The functional forms of these parameterizations
depend on the resolution. They are based on knowledge about processes, em-
pirical evidence and practical considerations. They are very much a subjective
choice. Thus, the limiting process, that the mesh sizes converges towards zero,
is not defined. The concept of “consistency”, fundamental in numerical mathe-
matics, does not apply in this context.

3. Concept of Stochastic Climate Models

The stochastic climate model (Hasselmann, 1976) is a cognitive model, designed
not to explain the details of the climate system but to explain the roles of the
small number of dominate processes in the formation of climate variability.
The concept asserts that weather noise is a constitutive element essential for the
formation of internal variability of the slow climate components. Stimulated
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by the analysis of Brownian motions, Hasselmann suggested that, as molecular
fluctuations can supply a Brownian particle with energy, weather noise can
supply slow components of the climate system with energy. If this energy supply
is turned off, variations of the slow components will eventually die out.

An important result of the analysis of Brownian motions is the fluctuation-
dissipation relation, which is expressed in the Langevin equation:

dv

dt
= − 1

τ
v + ζ (1)

where v is the velocity of a one-dimensional Brownian particle, ζ is a white
noise that characterizes the molecular fluctuations, and τ the characteristic time
scale at which dissipation occurs. The time-scale depends on the mobility and
mass of the particle.

When the Brownian particle has gained enough energy to move, it will
experience friction. The associated energy loss to the molecules prevents the
energy of the particle to grow indefinitely. The fluctuation-dissipation relation
states that the energy gained from molecular fluctuations is directly related to the
energy lost to molecules. The stronger the fluctuations, the sooner the Brownian
particle will gain enough energy to move (corresponding to a smaller τ ), and
the stronger will be the dissipation experienced by the particle.

The Langevin equation is a stationary stochastic differential equation. The
velocity v has an Ornstein-Uhlenbeck spectrum (or a spectrum of a first-order
auto regressive process when Eq. (1) is discretized):

Γv(ω) = Γζ (ω)

1/τ 2 + (2πω)2
(2)

where Γv and Γζ are the spectra of v and ζ , and ω is the frequency.2

The velocity spectrum Γv increases with decreasing frequency at the rate of
1/ω2 for ω � 1/(2πτ). This high-frequency spectral increase reflects the fact
that the time scale at which energy is gained is much shorter than the time scale
at which energy is dissipated. The separation of these two time scales is a key
feature of the mechanism. It generates the motion of the Brownian particle.

In their simplest form, stochastic climate models are Langevin equations
tailored to the climate system. In this case, v represents a slow degree of freedom
of the climate system. ζ describes the fast components that interact with the
considered slow components. τ characterizes the time scale at which the slow
component has gained enough energy and starts to “move”, thereby experiencing
friction.

The importance of the above mechanism in generating climate variations is
documented by climate spectra which have a 1/ω2 shape at high frequencies.
Such spectra are often observed in the climate system (J. S. von Storch et al.,
2000b).

A slightly more complex version is introduced when eigenmodes are excited
by the noise. In this case a complex version of (1) is considered with a complex

2 Equation (2) may be derived by calculating the autocovariance function of v and by
Fourier transforming the autocovariance function.
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coefficient λ = 1/τ − i2πωo. ωo represents the eigen frequency. It can be
considered as a general case of (1) in which the eigen frequency is zero. The
spectrum of v then takes the form

Γv(ω) = Γζ (ω)

1/τ 2 + (2π [ω − ωo])2
(3)

figure 4
Time series of monthly 30-hPa zonal
wind for the period 1953–1989 along the
equator. The x-axis represents months,
beginning with 1 = January 1953 and
120 = December 1962, 240 = December
1972 and 360 = December 1982. Units
in m/sec.

figure 5
Time series of monthly sea surface tem-
perature anomalies averaged over an
area in the eastern equatorial Pacific for
the period 1903–1994. The x-axis rep-
resents months, the units are K.

If the time scale 1/ωo is much longer than the time scale of the fluctuations,
the spectrum will be proportional to 1/ω2 at high frequencies and will have
a peak at ωo. In general, the weaker the dissipation (i.e. the smaller 1/τ ), the
more pronounced the peak. If there is no dissipation, i.e. 1/τ = 0, a resonance
peak will be obtained.

Two important large-scale modes3 of the climate are the quasi-biennial os-
cillation (QBO) in the lower stratosphere and the El Niño – Southern Oscillation
(ENSO) in the tropical Pacific. QBO is related to the downward propagation of
the easterlies and westerlies from about 10 hPa to about 100 hPa. This leads to the
oscillatory behavior of zonal wind at 30 hPa shown in Figure 4. ENSO is a cou-
pled atmosphere-ocean phenomenon. The warming and cooling in the central
and eastern tropical Pacific is associated with the weakening and strengthen-
ing of the trade winds and a west-east seesaw behavior of surface pressure in
the tropical Indian Ocean and the Pacific. The time series of sea surface tem-
perature shown in Figure 5 characterizes the time evolution of ENSO over the
past ninety years. The oscillatory behavior of ENSO is not as pronounced as in
the case of the QBO. Figure 6 shows the spectra for the two phenomena. The
high-frequency 1/ω2 shape (indicated by the straight line) suggests that both
modes can be considered as being excited by short-term fluctuations. In the
case of QBO, the fluctuations originate from degrees of freedom representing
vertically propagating waves. In the case of ENSO, the fluctuations are mainly
related to weather disturbances. The dissipation in the stratosphere seems to be
much weaker than that at the air-sea interface, leading to a pronounced peak at
the eigen frequency of the QBO, which is about 1 cycle every 28 months, but

3 A mode represents a motion with well-described spatial structure.
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a much weaker peak at the eigen frequency of ENSO, which is about 1 cycle
every 3–4 years.

The Ornstein-Uhlenbeck spectrum represents only one type of climate spec-
tra. Being a highly heterogeneous system, the climate system is expected to have
variations generated by mechanisms different from those describable by Eq. (1).
No matter what mechanisms are operating, fast components represent an im-
portant energy source of slow components and must properly be incorporated.
An insufficient representation of this source can lead to a different climate vari-
ability. This point can be demonstrated by the variability of the deep ocean. The
deep ocean is one of the slowest climate components, and can substantially con-
tribute to long-term climate variations. Due to the lack of observational data, the
simulation models discussed in Section 2 are the main tool for studying its vari-
ations. We will show below that models, which represent the fast components
(i.e., the eddies) differently, produce distinctly different oceanic variations.

figure 6
Spectra of the QBO and ENSO ob-
tained from the observations shown in
Figures 4 (top) and 5 (bottom). Periods
in months.

Due to the smaller density differences in the ocean, the spatial scale of the
most energetic eddies is about one order of magnitude smaller in the ocean
than in the atmosphere. Both the atmospheric and oceanic eddies influence
variations of the ocean. The atmospheric eddies have their largest effect at or
near the surface through the fluxes of momentum, fresh water and heat into the
ocean. The oceanic eddies play a crucial role for the generation of variations
in the ocean interior. Most ocean models do not resolve eddies. In order to
produce a realistic mean circulation, strong horizontal diffusion is invoked in
these models. When integrating an oceanic model with prescribed mean vertical
fluxes of momentum, heat and fresh water at the surface (with constant annual
cycles superimposed on them) but without the fluctuating components of these
fluxes, then the resulting state shows simple spatial structures with little or no
variations. When the effect of atmospheric eddies is included by coupling an
oceanic GCM to an eddy-resolving atmospheric GCM with a resolution of a
few degrees then the situation changes dramatically. This is demonstrated by
an integration of an AOGCM (J.-S. von Storch et al., 1997) over a time period
of one thousand years.

In contrast to integrations with ocean-only models driven by mean fluxes,
the ocean simulated by the coupled atmosphere-ocean model exhibits significant
variations. Figure 7 displays these variations in terms of spectra of the meridional
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velocity at a grid point in the subtropical South Atlantic at various depths.
By coupling the ocean model to an atmospheric model, strong variations are
induced.

figure 7
Spectra of time series of meridional
velocity at (28◦ W, 18◦ S) at various
depths. The time series are derived
from an integration with an AOGCM.
The straight lines indicate the spectral
slopes. Frequency is in cycles per year.

In the upper few hundred meters of the ocean, the spectra are comparable
to an Ornstein-Uhlenbeck spectrum, indicating that the variations are generated
in a way similar to that described by the Langevin equation. At greater depth,
the tropical and subtropical ocean is stably stratified. The stability efficiently
shields the deep ocean from the fluctuating surface fluxes. The variations must be
generated in a way different from that of the upper ocean. Indeed, the spectrum at
750 meter depth starts to deviate from an Ornstein-Uhlenbeck spectrum. Below
1000 meter depth, the high-frequency slope reduces to about zero and the low-
frequency slope is about minus one to minus two. A new type of spectrum
emerges. The variations can no longer be described by the simple Langevin

Page: 9 job: math4 Engquist/Schmid (eds.) Mathematics Unlimited – 2001 and Beyond date: 4-Oct-2000



10 H. von Storch · J.-S. von Storch · P. Müller

equation. This new type of spectra is also obtained from millennium integrations
with other coupled AOGCMs (J.-S. von Storch et al. 2000a).

The variations shown in Figure 7 are obtained with a model not resolving
oceanic eddies. It is conceivable that oceanic eddies are so strong that they
supply energy to the large-scale oceanic motions and alter their behavior. In
this case, variations of the deep ocean circulation may be different from those
shown in Figure 7.

4. Filtering Anthropogenic Climate Change
from Natural Variability

In the previous section, the stochasticity of the climate system appeared as a
constitutive element essential for the formation of internal climate variability
unrelated to external forcing factors. However, when climate data are analyzed
then the noise appears as concealing the “signals”. For instance, Hansen and
Sutera (1986) have suggested that the atmospheric circulation in the North At-
lantic Sector has a bimodal distribution, with a “zonal” regime bringing storms
to Europe, and a “blocked” regime rerouting these storms. However, because of
the strong inherent variability of any circulation index, data of about 140 years
would be needed to reject the null hypothesis that bi-modality of the distribution
would not be a sample coincidence (Nitsche at al., 1994). Thus, in such cases,
noise conceals the structure, and statistical techniques are required to filter the
signal from the “sea of climatic noise”.

The problem of discriminating structures of interest (“signals”) from a large
number of other, mostly unrelated processes (“noise”) is a standard problem in
atmospheric and other environmental sciences. Of course, “interest” is chang-
ing among different studies and applications so that a process (like ENSO)
may sometimes be a signal (for seasonal climate predictions) or noise (for
anthropogenic climate change). The separation of signal and noise is usually
approached with the classical arsenal of statistical inference, like hypothesis test-
ing, analysis of variance, time filtering, or pattern recognition (for an overview,
refer to H. von Storch and Zwiers, 1999).

While statistical inference was in the past a methodical aspect within climate
science, it entered the public debate in the early 1990s. The “detection”-question
was raised whether the observational record provides evidence about recent
climate changes being inconsistent with natural variability. The “attribution”-
question was whether such a change could be traced back to specific anthro-
pogenic causes, like the ongoing human emission of greenhouse gases into the
atmosphere.

In the following we demonstrate how the detection problem may be ad-
dressed (Hegerl et al., 1996). The question is cast as a statistical test with the
null hypothesis that the observed recent climate change is entirely within the
range of natural climate variability. The alternative hypothesis, then, is that the
recent climate change is not entirely within this range, or, in other words, part
of the recent change is anthropogenic. The alternative hypothesis is not, that
this is due to enhanced greenhouse gas concentrations. This is the attribution
problem.
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The observational record features a wide range of variables, such as air
temperatures near the surface and throughout the troposphere, ocean tempera-
ture at the surface and in the deep ocean, wind and currents, relative humidity
and salinity, cloudiness and ice coverage etc. Inclusion of all these variables
would be unreasonable for a number of reasons. Some of the variables have
been monitored only for a limited time and with limited spatial coverage; the
measurements may have undergone changing quality standards (homogeneity
problem), introducing artificial trends into the data record.

figure 8
Guess pattern of temperature trend
caused by increasing greenhouse gas,
determined as the difference between
present and future climate conditions
simulated by a climate model. No units.
(Courtesy: Gabriele Hegerl).

The air temperature at the surface is a data set that extends more than 100
years back in time, has adequate (but certainly not ideal) spatial coverage and
controlled quality. The decision to deal with surface air temperature reduces the
dimensionality of the problem considerably.

Because of the spatial heterogeneity of the temperature field, the dimension
of variable is still large – too large for discriminating between noise and the
signal of global warming. We demonstrate this problem with a simple exam-
ple. Consider a n-dimensional random vector with components independent of
each other, with Gaussian distribution, zero mean and unit standard deviation.
Furthermore, assume that the first component includes a signal so that its expec-
tation is s. Then, the expected squared length of the vector is T = s2 + n. For
the null hypothesis of s = 0 the squared length would be n, so that the signal-
to-noise ratio is s2/n. The larger the dimension n, the smaller the chances of
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figure 9

Thirty year trend in observed surface
temperature in K for 1965–1994 (top)
and 1916–1945 (bottom). Units: K.
(Courtesy: Gabriele Hegerl).
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detecting an s 	= 0. Thus, a-priori reduction of the dimension is mandatory
(Hasselmann, 1979).

This reduction is accomplished by projecting the spatial distribution of the
temperature T onto a limited number of “patterns” ei : T ≈ ∑

i αie
i . Then, the

analysis is done in the linear space spanned by the first few αi coefficients.
Usually less than 10 of these coefficients are used, in many cases even just
one.

figure 10
Projection of the time series of observed
trends on e1 (a solid line). The projec-
tion of temperature trends simulated in a
climate change computation are shown
for comparison as dotted line. The time,
given at the horizontal axis represents
the end-year of 20-year intervals for
which the temporal trends are calcu-
lated. The horizontal bands are 2σ con-
fidence intervals of natural variability
derived from observed data and two
climate model simulations. (H. von
Storch et al., 1999)

The patterns may be chosen in different manners. Candidates are vectors
constructed to efficiently represent the variability (“Empirical Orthogonal Func-
tions”, known as “principal vectors” in other disciplines), or “guess patterns”
considered likely to carry the signal. Such patterns can be derived from climate
models. For instance, experiments with climate models (e.g., Cubasch et al.,
1995) indicate that the ongoing increase of greenhouse gas concentrations in
the atmosphere will lead to a general warming of the air near to the surface,
with stronger warming over the continents and delayed warming over the ocean;
the delay is, according to the model, particularly evident over the northwestern
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part of the North Atlantic. Figure 8 displays the warming as calculated by the
climate model after 100 years of continuous increase (about 1% per year) of
the CO2 concentration. The moving 20-year temperature trend Ttr is projected
on to this pattern e1. Two such trends are displayed in Figure 9. Areas with
insufficient data coverage are blanked out. The guess pattern in Figure 8 is also
left blank in data sparse areas, for consistency.

figure 11
Optimized “fingerprint” q1 = e1Σ−1.
No units. (Courtesy: Gabriele Hegerl).

The projection of the observed trends on e1 is displayed in the top diagram
of Figure 11 as a solid line. The horizontal bands represent approximately 95%
confidence intervals derived from observations and two extended simulations.
For the most recent time, the detection variable Ttr · e1 leaves the 95% confi-
dence limit as determined from observations and from one climate model. This
behavior is to be expected. When the procedure is applied to the simulated cli-
matic response to increasing greenhouse gas concentrations, the dashed curve
emerges. It exhibits the same irregular behavior with a general tendency of
leaving the confidence interval and large swings, reflecting natural variations.
Because of the ubiquitous noise in the climate system, the timing of leaving the
confidence interval becomes a random variable itself.

The chances for successfully discriminating between natural variations and
systematic changes due to human activities can be enhanced by a formalism to
increase the signal to noise ratio. To do so, an educated guess of the signal e1,
like Figure 8, and of the covariance structure Σ are needed. It can be shown
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(Hasselmann, 1979, 1993) that the “fingerprint” q1 = e1Σ−1 optimizes the
signal-to-noise ratio, conditional upon the quality of the estimated quantities
e1 and Σ . In the present example, the covariance matrix Σ is estimated with
data from one of the model simulations, which then no longer provides data for
an unbiased estimation of the 95% confidence band. The fingerprint pattern is
shown in Figure 10, and the optimized detection variable Ttr · q1 in the lower
panel of Figure 11. The optimized fingerprint is not very different from the
raw guess pattern; the land-sea contrast is a bit enhanced, but the minimum
in the NW Atlantic is unchanged. The optimization has in fact improved the
signal-to-noise ratio, even if only slightly.

The procedure just discussed is compromised by the fact that the hypothesis
to be tested -that the recent temperature trend is not entirely natural- is in part
based on the same data, which is used to test the hypothesis (the “Mexican-Hat”
problem, cf. H. von Storch and Zwiers, 1999). To make this subjective element
explicit, it is worthwhile to formulate the problem in a Bayesian manner, as
suggested by Hasselmann (1998) and Risbey et al. (2000).

5. Conclusion and Outlook

We have discussed the constructive and the concealing role of “noise” in cli-
mate dynamics. In a strict sense, the climate system is deterministic, but the
practically infinite number of non-linear processes transform the omnipresent
small uncertainties into a cacophony indistinguishable from the mathematical
construct of random noise. The “noise” is ubiquitous in the climate system; it
emerges at all locations and times, at all scales. Our understanding of climate
dynamics and our interpretation of the climate record must therefore take into
account this peculiarity of the climate system. Climate must be considered a
stochastic system, and our climate simulation models as random number gen-
erators.

For that reason, climate research is an academic environment which has
been abundant in generating stochastic ideas and statistical techniques. The
two cases discussed in some details in this paper, the stochastic climate model
and the detection problem, are just examples. Other examples of stochastic or
statistical methods specific to climate research are: principal oscillation and
interaction patterns (POPs and PIPs) which attempt an optimal representation
of climate variability (H. von Storch and Zwiers, 1999); data assimilation which
attempts to optimally combine data and dynamical models for hind-, now-, and
forecasts (Robinson et al., 1998); “potential predictability” which attempts to
discriminate low frequency variability arising from the integration of day-to-day
noise from genuinely low frequency dynamics (H. von Storch and Zwiers, 1999).
So far, most of the statistical analysis done in climate research is “frequentist”
in character, while Bayesian views are now understood of being particularly
valuable for the specification of parameterizations of sub-grid-scale processes
in climate models and for data assimilation.

Acknowledgements. Gabriele Hegerl supplied us with several diagrams.
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