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Abstract. The performance of two methods to reconstruct Northern Hemisphere
temperature histories of the past millennium is analyzed by applying them to the
known development of an extended climate model simulation. The MBH-method
underestimates low-frequency variability significantly, whereas Moberg’s method
operates satisfactorily. Some caveats apply.

1. Introduction: Reconstruction
approaches

When reconstructing historical tempera-
tures from proxies, in principle three dif-
ferent approaches are possible:

1. Physical inversion. i.e., inverting
the equations which describe the
process of the proxy formation. The
most prominent example of this
approach is related to the inver-
sion of borehole temperatures (e.g.,
Majorowicz and Skinner (2001))

2. Inflation of time series thought to rep-
resent a magnitude proportional to the
temperature history, so that their vari-
ance/trend during times with instru-
mental data coincides with the vari-
ance/trend of the instrumental data
(Moberg et al. (2005)).

3. Regression, i.e, an empirically de-
termined linear (or possibly even
non-linear) relationship which maps
proxy data on temperature (e.g.,
Briffa et al. (2004))

Of these three, the first is conceptually
the most promising and academically sat-

isfying, as it operates with first principles
and is not loaded with fitting needs and pit-
falls. However, in many cases such inverted
”forward” models can not be constructed,
simply because adequate ”forward” models
do not yet exist.

Therefore, the other two methods, mak-
ing use of empirical knowledge, have to be
used in many cases. The former, favored
by Moberg et al. (2005) assumes that the
variability in the proxy data is entirely re-
lated to the variability of the relevant phys-
ical quantity (in Moberg’s case to temper-
ature). In that case, low-frequency vari-
ability is considered separately.1 During
the instrumental period the low-frequency
variance is more strongly related to the
trend. Statistical support to the assump-
tion that the trends in the proxy data
and in the instrumental data match can
not be given, as there is only one real-
ization of the paired proxy/instrumental

1 Moberg et al. (2005) have constructed two
almost independent temperature histories, one
for short term variations and one for low-
frequency developments. We are concerned
only with the latter.
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trend. Instead physical arguments need to
be invoked. The third method acknowl-
edges that the proxy data do not only in-
clude effects of the varying physical envi-
ronment but possibly other non-negligible
factors. Only part of the proxy-variance
is related to non-local climate variability;
the contamination of the climate signal in
the proxy data in general depends on the
time scale (e.g., Briffa and Osborn (1999)).
Also, only part of the non-local climate
variability is archived in the proxy data;
this part does not need to be stationary in
time (e.g., Schmutz et al. (2000)).

Regression assumes the validity of a
linear equation2

yt = α · xt + ηt. (1)

Here, yt is the it predictand, i.e., the quan-
tity which needs to be reconstructed (e.g.,
northern hemisphere temperature), xt the
predictor, i.e., the quantity used to derive
the temperature, i.e, proxy data. α is a co-
efficient which is to be determined, and ηt is
the part of the predictand, which can not
be described by the predictor – it is usu-
ally considered noise. The link (1) is con-
sidered the correct link between predictand
and predictor.

The coefficient α is obtained by
fitting pairs of samples of yt and
xt so that Var(ŷt − yt) = Var(ηt)
is minimized (least square fit, see
von Storch and Zwiers (2002)), but also
other criteria can be used (e.g., the OLS
algorithm, Thejll and Schmith (2005)).
This fit operates – as always in statistics
– by analyzing time series, which contain
many independent ”events”; by comparing
the synchronous developments in both
yt and xt the existence of a linear link
as in (1) is concluded. To do so in a
reliable way, the presence of many such
independent events is required. Therefore,
low-frequency variations and trends are
usually subtracted before deriving fitting
equation (1) to the data.

2 For the sake of formal simplicity, we argue
here only with one predictor and not with mul-
tiple predictors

Then, this α is used to derive an esti-
mate

ŷt = α · xt (2)

of yt at times when yt is unknown.
The estimator ŷt is favorable in terms
of the error in predicting the predictand
(von Storch (1999)), but the variance of
the estimator ŷt is smaller than the vari-
able yt to be determined. Thus, in general,
there is a loss of variance. This is mean-
ingful, as it reflects the insight that only
part of the variability of the predictand
is related to the variability of the predic-
tor, so that part of the variability of the
predictand is described by the noise unre-
lated to the predictor. For the purpose of
reconstructing past developments, this loss
of variance is an unfortunate but unavoid-
able by-product of this set-up. Of course,
the question is how large this loss of vari-
ability is (Wahl and Ammann (2005)).

In case of inflation, α is determined
so that Var(ŷt) = Var(yt). In this case,
equation (1) is no longer valid. The infla-
tion method enforces that the predicted
series has the same variance as the original
one, i.e., error term in (1) is assumed to be
zero, or insignificant. This is a significant
assumption, which will be valid only under
special conditions. If the error term is not
negligible, the inflation method is associ-
ated with larger errors than regression if
properly fitted (von Storch (1999)).

The Mann, Bradley and Hughes
reconstruction (Mann et al. (1998),
Mann et al. (1998)) of millennial tem-
perature variations is the best known
among a series of different reconstruc-
tions, after it had been acknowledged
by the Third assessment Report of the
Intergovernmental Panel on Climate
Change (IPCC; Houghton et a. (2001))
as a reasonable and useful analysis. The
reconstruction depicts the history of
the Northern Hemisphere temperature,
or global temperature development as
a ”hockey stick”, with a long, weakly
downward bending ”shaft” until about
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1850-1900, and a steeply upward pointing
”blade” in industrial times. Using the
names of the authors, the method is often
referred to as MBH.

The MBH method is a hybrid method,
bringing together elements of multiple
regression and inflation. The regression is
fitted to proxy and instrumental data dur-
ing the industrial times – the fit is done by
inversion of a regression from characteristic
temperature patterns on proxies, and is
then inverted. This procedure improves the
robustness of the estimation. The method
contains also a scaling, which means that
the resulting variance is inflated as to
fit the variance during industrial times.
A-priori it is not clear, how the errors of
the method on different time scales may
look like, as analytical insights are not
easily at hand.

The same is true for the inflation
method (Moberg et al. (2005)). Therefore,
the performance of the methods needs to
be addressed in the virtual laboratory of
a quasi-realistic climate model. In the two
following sections, we will deal with these
assessments.

Figure 1 displays the estimated temper-
ature evolution suggested by MBH and by
Moberg and colleagues for the past 1000
years. MBH reconstructs variations with a
year-to-year resolution, while Moberg aims
only at variations on time scales of 80 years
and longer. Obviously, two different stories
are told about the long-term temperature
history of the Northern Hemisphere.

2. Climate model simulations
- a laboratory for testing the
performance of methods

The success of reconstruction methods de-
pends on many aspects; the quality and
informational contents of the proxy data,
the reconstruction method, the validity of
assumptions about stationarity and repre-
sentativity. Simulations with quasi-realistic
climate models, i.e., models with maximum
complexity, which do not equal reality in

Annual NH T anomalies
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Fig. 1. Reconstruction of Northern
Hemisphere temperature from MBH (solid)
and Moberg et al. (dashed; only low-frequency
part). Note that MBH is estimating the
temperature history with annual resolution,
whereas Moberg et al. low-frequency recon-
structions deals only with time scales of 80
years and longer.

complexity but at least approximate it to
some extent, may serve as a test-bed for
assessing the performance of such methods

The usage of such models
for testing complex reconstruc-
tions methods have been suggested
by Mann and Rutherford (2002),
Zorita et al. (2003) and
von Storch et al. (2004). The general
idea is to construct pseudo-proxies
S(M) from the simulation output M .
Then, the reconstructions method R is
applied to the pseudo proxies. Let us
assume that the reconstruction method
supposedly generates certain statistics
f(M) of M , say the global mean or the
amplitudes of certain EOFs coefficients.
The method is considered admissible if
R[S(M)] = f(M) for all M , or in short, if

RS = f. (3)

We test with the model output – the real
variables M and the pseudo-proxies S(M)
– if equation (3) is fulfilled with f = north-
ern hemisphere mean.

The question is, of course, how to
construct pseudo proxies. What represents
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a contamination of the proxies, which we
need to simulate? Contaminations may
be local weather phenomena not related
to the near-global or continental scale
parameter of interest, i.e., local short
term or regional term weather events,
which are not related to the large scale
feature of interest (for instance, in case
of water accumulation in Greenland ice
cores, Crüger et al. (2004) or in coral
compositions, Crüger et al. (2005)). In
case of tree rings, it can be the competi-
tion of the different species for light and
nutrients; stresses related to fire, insects
and -in modern times- insecticides (cf.
Briffa (1995), Osborn and Briffa (2000)).
On longer scales, the process of filter-
ing out the effects of age-dependent
growth and the fertilization effect of
changing land-use and enhanced at-
mospheric carbon level are getting
significant (e.g., Briffa and Osborn (1999),
Briffa et al. (1998)).

Thus, a variety of different processes
affect the archiving of climate variables
in proxy data, with different outcomes
on different time scales. Modeling the
errors associated with proxy data can
not cover all aspects; only effects of first
order can be take in into account – at
least to some rudimentary extent. If the
regression method exploits year-to-year
variability, the addition of white noise
– as in Mann and Rutherford (2002) or
von Storch et al. (2004) – is adequate. If,
however, low frequency/trend co-variations
in proxy-data and instrumental data are
exploited, then a more complex error
model is needed, which deal with errors on
decadal and centennial time scales as well.

In the following we use the outcome
of a 1000-year simulation with the climate
model ECHO-G as our laboratory to test
the reconstruction methods. The model has
been subject to variable solar and vol-
canic forcing as well as greenhouse gas forc-
ing, which have been estimated from de-
positions in ice cores and sun-spots ob-
servations. The temperature variability of

this simulation is relatively large, with a
downward development from a warm pe-
riod around 1100 to an absolute mini-
mum during the Late Maunder Minimum
at about 1700, and a recovery until mod-
ern times, with accelerating warming in
the last decades. The Northern Hemisphere
temperature difference between the Late
Maunder Minimum and the 1990s is about
1.3K. the model sensitivity (equilibrium
global temperature change under CO2 dou-
bling) is about 2.5K (Figure 2). For further
details refer to Zorita et al. (2005). Also a
control run without any external forcing is
available (Zorita et al. (2003)).

3. Results: The MBH method

The MBH method has been tested in two
versions, one with using detrended data
during the calibration period, and another
one which makes use not only of the year-
to-year variability but also of the trends
in instrumental and proxy data during the
calibration period.

The regression/inflation model of MBH
is trained with proxy and instrumental data
from 1900-1980. Thus, all data are consid-
ered as deviations from the 1900-1980 mean
value, even though this period is not repre-
sentative for the temperature history of the
past millennium. This is, however, part of
the problem of deriving a transfer function
from the limited evidence available in the
20th century.

We have simulated MBH’s approach
by first selecting a set of grid point tem-
perature time series. These are random-
ized (i.e., a noise component is added),
and then the MBH method is trained
with both the local randomized tempera-
ture (the pseudo-proxies)and accurate tem-
perature development in the 20th century
(von Storch et al. (2004)).

Different levels of noise are admin-
istered. For comparison, also the case
without adding noise is considered. Then
Gaussian white and red noise3 are added.

3 ”Red noise” nt is generated by an
auto-regressive process of first order, i.e,
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Fig. 2. Testing the MBH method, without
exploiting the trends during the industrial
period, in the laboratory of ECHO-G.
Shown are different Northern Hemisphere tem-
perature histories - as simulated in ECHO-G,
as reconstructed with non-randomized local
temperatures, with white noise pseudo-proxies
(sn =

√
1/3 for short term variations, sn = 2

for long-term variations) and red noise (de-

correlation time of 4 years; sn =
√

1/3 for
short term variations, sn = 1 for long-term
variations)

The white noise gives rise to a signal-to-
noise ratio sn =

√
1/3 for year-to-year

variations and to sn = 2 for centennial
scales; the red noise, with a de-correlation
time of 4 years, is associated with sn =√

1/3 and 1.
In the first case (Figure 2), we train

the model only the with year-to-year vari-
ability, i.e., the trend is subtracted prior
to the fit of the MBH regression/inflation
model (von Storch et al. (2004)). We think
this is statistically prudent: the inclusion of
trends means to rely on information with
one degree-of-freedom, with no option to
determine the uncertainty of the link be-
tween the trends. It seems, however, that

nt+1 = λ · nt + εt; the de-correlation
time is 1+λ

1−λ
. for further details, refer to

von Storch and Zwiers (2002).
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Fig. 3. Testing the MBH method, with ex-
ploiting the trends during the industrial pe-
riod, in the laboratory of ECHO-G.
Curves as in Figure 2

MBH have exploited the trends; therefore
we deal with the un-detrended case as well
(Figure 3).

In all cases, whether the calibration was
done after de-trending the data or not, the
MBH-method leads to a marked under-
estimation of the real low-frequency vari-
ability (Figures 2, 3). When the data are
not-detrended, the fit during the calibra-
tion period exhibits a too weak upward
trend. With no randomization, the tem-
perature difference between Late Maunder
Minimum and modern times is reduced
0.9K, with white noise to 0.4K and with
red noise to about 0.2K (Figure 2). When
the fit exploits the link between proxy
and instrumental observation trends in the
20th century, the underestimation is a
bit weaker, namely 1.1K, 0.8K and 0.6K.
(Figure 3). The figures demonstrate that
the underestimation is uniform and physi-
cally significant.

Likely, the underestimation is related
to the fact that all data are centered
relative to the 1900-1980 mean, so that
the variations in the training period are
relatively small compared to the num-
bers prior to the instrumental period.
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Fig. 4. Testing the Moberg method in the lab-
oratory of ECHO-G. The inflation is done us-
ing 80-year filtered data.
Solid: Northern Hemisphere temperature sim-
ulated in ECHO-G
Light: Several reconstructions obtained when
feeding Moberg’s method with local temper-
ature records, which have been contaminated
with centennial noise (signal-to-noise ratio: 1)
Dashed: Ensemble average of light lines.

the effects gets considerably smaller, if
the training period considers also data
from, for instance, the Little Ice Age (see
von Storch et al. (2004)).

Obviously, one should not generalize the
results here; there are a number of free pa-
rameters to be chosen, in particular the
level of the noise and the redness of the
noise. Also, it is likely that in the real world
the noise will not behave nicely Gaussian
and stationary.

4. Results: Moberg et al.’s approach

We have simulated Moberg’s low-frequency
approach4 by first selecting a series of grid
point temperature time series co-located

4 We are not exactly reconstructing the
Moberg et al. (2005) method - in their case,
the inflation depends both on the high- and
low-frequency part, whereas here only the low-
frequency variance is inflated; also we have

with the low-frequency proxies used by
Moberg et al. (2005). These time series are
time-filtered so that only variability longer
than 80 years is retained. Then, centennial
noise, with a signal-to-noise ratio of 1 is
added; this is done in the Fourier-domain.
All series are standardized and averaged.
Finally the variance is re-scaled so that the
variance in the period 1856-1990 is set to
be equal to the model North Hemisphere
temperature variance in the same period.
The latter is Fourier-filtered so that only
scales longer than 80 years are retained.

The result of this exercise is shown
in Figure 4 – several random cases as
light lines and an average across all ran-
dom cases as grey line. The reconstruc-
tions do not systematically over- or under-
estimate low-frequency variability; instead
the method operates without obvious bi-
ases and reproduces the low-frequency vari-
ability faithfully. However, in the periods
with lowest temperatures (Late Maunder
Minimum, the method shows a slight over-
estimation of the temperature anomalies.

5. Concluding Remarks and Caveats

Because of lack of space, we have dealt only
with the best guess (conditional expecta-
tions) of the reconstructions, not with the
expected error.

The suggested approach deals only
with the methodological issues of deriving
low-frequency non-local climate variability
from a set of proxies, which are station-
arily related to their climatic environment.
In case of the MBH reconstructions other
problems with the quality and stationarity
of the proxy data may, or may not, prevail
(McIntyre and Mckitrick (2005)).

In our analysis we have tried to simulate
the real situation; this goal has certainly
be achieved only to a limited extent. We
had to assume that both the errors in the

used a Fourier filter whereas in the original
Moberg et al. (2005) a wavelet method was
adopted. We believe that these differences are
insignificant for our major conclusion.



Zorita & von Storch: Historical Temperatures 7

proxy data and the contaminations of the
link with instrumental data take the form
of stationary Gaussian random variables.
Likely, this assumption is not well fulfilled.
It is plausible that the process of archiving
of climate data in proxy data was disturbed
in an irregular, non-random manner by var-
ious factors; also the climatic information
archived in the proxies will quite possibly
have undergone significant variations. This
means, that the skill of the reconstructions
methods is likely overestimated.

Our reconstructions of the past, based
on proxy data, are likely less realistic than
we usually are willing to admit.

The best way to – at least: par-
tially – overcome this problem is to re-
place the statistical methods by inverted
process-based models as in case of bore-
hole temperatures, i.e., the first option
listed at the begin of this article (cf.
Weber and von Storch (1999)).
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Dimitriev, J.F. González-Rouco and S.F.B.
Tett (2004), Reconstructing past climate
from noise data, Science, 306, 679-682.

Wahl, E.R., and C.M. Ammann (2005)
Robustness of the Mann, Bradley and
Hughes reconstruction of surface temper-
atures: examination of criticisms based on
the nature and processing proxy evidence.
(submitted)

Weber, S.L. and H. von Storch, 1999: Climate
Workshop urges interdisciplinary paleo
simulations, analysis. EOS 80, 380

Zorita, E., J. F. González-Rouco and S.
Legutke (2003), Statistical temperature re-
construction in a 1000-year-long control
climate simulation an exercise with Mann’s
et al. (1998) method, J. Climate 16, 1378-
1390.
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