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ABSTRACT

Statistical properties of estimated nonisotropic principal vectors [empirical orthogonal functions (EOFs))
are reviewed and discussed. The standard eigenvalue estimator is nonnormally distributed and biased: the
largest one becomes overestimated, the smallest ones underestimated. Generally, the variance of the eigenvalue
estimate is large. The standard eigenvalue estimator may be used to define an unbiased estimator, which,
however, exhibits an increased variance. If a fixed set of EOFs is used, the EOF coefficients are not
stochastically independent. The variances of the low-indexed coefficients become considerably overestimated
by the respective estimated eigenvalues, those of the high-indexed coefficients underestimated. If the ratio of
degrees of freedom to sample size is one-half or even less, these disadvantages are still current as is

demonstrated by an example.

1. Introduction

Empirical orthogonal functions (EOFs) are widely
used in atmospheric and oceanic research following
Lorenz (1956) as an aid for describing climate (e.g.,
Kutzbach, 1967; Fechner, 1975; Barnett, 1977; Hed-
dinghaus and Kung, 1980; Weare, 1982; Storch,
1984), and for comparing simulations of general
circulation models with climate (e.g., Savijdrvi, 1978;
Storch, 1982; Storch and Roeckner, 1983a and b;
Preisendorfer and Barnett, 1983). They are applied
to construct response patterns (Hasselmann, 1979;
Hannoschock, 1984) or a spectral model (Rinne and
Karhila, 1975) and are also applied as an aid for
developing regression forecast techniques (Peagle and
Haslam, 1982a and b).

Their algebraic and geometric properties are re-
ported in detail by ECMWF (1977) and their ability
to represent (meteorological) data is discussed by
Savijirvi (1978).

Preisendorfer et al. (1981) give a variety of proce-
dures to test random eigenvalues against the hypoth-
esis of an isotropic spectrum. Gray (1981) and North
et al. (1982) showed that in the case of small sample
sizes the structure of the estimated eigenvectors be-
comes unstable. Kendall (1980) and Jackson (1981)
report some asymptotic stochastic properties. James
(1960) published a formula of the joint probability
distribution of estimated eigenvalues. However, this
formula seems not to be applicable in practice. Lawley
(1956) derived a number of valuable asymptotic
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formulas for the bias and the variance of the eigen-
value estimator. Because Lawley’s paper seems to be
widely unknown in atmospheric research, we repeat
these formulas in Sections 4 and 5. Apparently the
properties of the variances and covariances of the
expansion coefficients of an a priori fixed set of EOFs
and their estimates have not been discussed so far.
The concept of EOFs is identical to the concept of
principal vectors (Kendall, 1980), which is used in
social and economic sciences, especially. The differ-
ence in application is that in geophysical research we
deal with a larger number of degrees of freedom,
whereas the effective sample size generally is small,
In the following we use the expressions *“principal
vectors” (PVs) for the eigenvectors of the true 2nd-
moment matrix and “empirical orthogonal functions”
(EOFs) for those obtained from an estimated 2nd-
moment matrix. Thus, EOFs are estimated PVs.
Sometimes the view has been expressed that it
should be possible to connect PVs with physical
processes or modes, i.e., to identify the patterns of
the PVs with spatial characteristics of the system
under study. To our knowledge, such attempts have
seldom been successful. This is due to the fact that
PVs are constructed mathematically with the con-
straint of maximum convergence and orthogonality
(see Section 2). If it is possible to connect PVs with
physical processes or modes, these have to be orthog-
onal to each other, too. However, the involved pro-
cesses or modes generally do not fulfil this condition.
Sometimes, the first PV may be interpreted since it
is not bound to orthogonality. An example in which
more than the first EOF could be assigned to physical
modes is given by Fraedrich and Diimmel (1983),
who found that the first EOF of the vertical tropo-
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spheric structure may be identified with the equivalent
barotropic mode and the second with the baroclinic
mode. A number of physical systems whose eigen-
functions coincide with its EOFs are given by North
(1984). These systems are, however, of minor impor-
tance for atmospheric and oceanic problems.

Another difficulty is that the true PVs are not
available but only their estimates. It is well-known
(e.g., Gray, 1981; North et al.,, 1982), and it will be
emphasized in Section 6, that one has to expect these
estimates to be highly dependent on the actual sample
for small and moderate sample sizes. Thus attempts
to connect EOFs and processes or modes often are
condemned to lead to misinterpretations.

One likely approach to overcome the latter difficulty
is the use of the already mentioned procedures to test
to what extent the (true) eigenvalues are “significant”,
and to discuss physically those EOFs belonging to
eigenvalues which have turned out to be “significant”
(e.g., Overland and Pease, 1982). These procedures
(e.g., Overland and Preisendorfer, 1982) are based on
the a priori idea that the large eigenvalues are simple
and the small ones equal to each other. The probability
distributions necessary for the performance of a sta-
tistical test are generated by Monte Carlo simulations
using a white eigenvalue spectrum, i.e., an eigenvalue
with multiplicity equal to the dimension involved in
the problem. Thus, the rejection of the null hypothesis
associated with these Monte Carlo simulations is the
statistical proof that the multiplicity of the first eigen-
value is less than the problem’s dimension. This is
the case if the first eigenvalue is simple, but also if
none but the smallest eigenvalue is simple,’ or if the
largest eigenvalue is double. Further, the rejection of
this null hypothesis gives no information as to whether
the eigenvalue spectrum and, much less, the PVs are
estimated sufficiently well.

In view of these principal difficulties, we recom-
mend renouncing a physical interpretation and using
EOFs only for the purpose of effective data conden-
sation as long as the data base is not large.

The objective of this paper is to collect the most
important properties of PVs (Section 2), to define
their estimator (Section 3), and to show that transfer-
ring the properties of the PVs to the EOFs is ques-
tionable, if the ratio of sample size to degrees of
freedom is not large (Sections 4 and 6). In Section 5,
two methods of constructing unbiased eigenvalue
estimators are presented and discussed in terms of a
Monte Carlo example. '

' The multiplicity of an eigenvalue is the number of linearly
independent eigenvectors associated with it. An eigenvalue is called
simple and double, if its multiplicity is 1 and 2, respectively. Only
eigenvectors belonging to simple eigenvalues are uniquely determined
(besides of a multiplicative constant).
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2. Principal vectors

Let x € R" be a random vector. An ordered
orthonormal basis of vectors y;, ..., y, is called a
system of principal vectors (PVs), if for every k with
I<k<n

k
E(lx — 2 (x, ¥.)y; ”2) = min

i=1

2.1

is valid. In (2.1) E denotes expectation, | - || the least
square norm. The linear form g;(x) = (x+y;) is called
the ith generalized Fourier coefficient or principal
component (of x on y;).2

Let X = E(xx') be the matrix of the second
moments of x, Assume the order of the eigenvalues
r; of X as follows:

212 I

(Note that X is symmetric and positive semidefinite.)
Then the following statements are valid:

e A system of normalized eigenvectors y; of X
ordered like their corresponding eigenvalues forms a
PV-system of the random variable x.

k k n
E(llx - 2 ey = ElxI>) - Zrn= 2 n

i=1 i=1 i=k+1

(2.2)

e Provided E(x) = 0, the generalized Fourier coef-
ficients have zero mean and are uncorrelated, i.e.

Ela;(x)] =0 and covla,(x), ai(x)] = rid;. (2.3)

These properties are well-known (cf. Kendall, 1980;
Jackson, 1981). A straightforward and, as far as we
know, new proof is given in the Appendix.

Assume E(x) = 0. Then Eq. (2.3) means because
of E(||x]|*) = var(x) that

var(x) =. i var[a;(x)] = i ri. 2.4)

i=1 i=1

As the eigenvalues are nonnegative, the Fourier coef-
ficient of the ith PV describes on an average (100#7r;)/
var(x)% of the total variance. Equation (2.3) states
that the expectation (first moment) of the Fourier
coefficients vanishes and that their covariance matrix
(second moment) is a diagonal one with the eigen-
values as diagonal elements. For this reason the first
moments often are estimated beforehand and sub-
tracted from the data.

The above used orthonormality is a question of
geometry, e.g. scaling. With respect to another ge-
ometry given by the dot product (x-:y) = x'Ny with

2 The expression a = b means that the quantity a is defined by
b. (a-b) denotes the dot product of the vectors a and b.
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a symmetric and positive definite matrix N, the PVs
are given by the eigenvalue equation

(XN —rl)y = 0. 2.5)

3. Estimation

In practice, the distribution of x is unknown.
Therefore, one has to estimate the PVs and their
cigenvalues by the eigenvectors and -values of a
second-moment matrix estimated by means of, say,
m samples X;, ..., X, of the random variable x.
These estimated PVs are called empirical orthogonal
functions (EOFs). In the following, the EOFs are
labelled as ¥ and the estimated eigenvalues as 7. Thus
a caret refers to the “standard”™ estimator.

If the number n of components of the random
vector x is large, it may be expensive or even practi-
cally impossible to compute the eigenvalues and
eigenvectors of the sample 2nd moment matrix. But
if the number m of samples is less than »; the
numerical problem may be reduced by a simple
algebraic trick, see Storch and Hannoschock (1984).

The number of resulting EOFs is min(n, m). If the
sample mean is subtracted, the number reduces to
min(n, m — 1).

4. The estimator r

The question arises as to whether the eigenvalues
7 of the sample second-moment matrix are satisfactory
estimators of the eigenvalues r of the true second-
moment matrix. If the number of samples is less than
the number n of degrees of freedom, at least n — m
eigenvalues of the sample second-moment matrix
vanish (see Storch and Hannoschock, 1984).

Lawley (1956) derived approximate formulas for
the bias and the variance of the standard eigenvalue
estimator:

Theorem: Let x be a n-variate normally distributed
random variable with E(x) = 0 and a covariance
.matrix X whose eigenvalues are all different:
n
E(r 1) =r+ E Z

o) e
;1’!“’/

] oft)

Here m is the number of samples available to calculate
the sample covariance matrix.

In order to check the quality of formulas (4.1) and
(4.2) a series of Monte Carlo simulations was done
with a number of seven-dimensional examples. With-
out loss of generality it is assumed that the expectation

wz

J=1

AT
var(r,-)=-’:-—1'-[
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vector vanishes and that the covariance matrix is
diagonal:

E(x)=0, X=diag(r,, +--,r). 4.3)

We used examples in which the relative magnitudes
of the eigenvalues are comparable to what is occurring
in practice. Since the results were essentially un-
changed when different eigenvalue spectra ry, ..., 7y
were used, we report only the detailed results obtained
for one randomly selected example, namely

n= 50, = 25, ry = 13, rqg = 06,
r5=0.3, 'r6=0.2, r7=0.1

and summarize results from other examples.

In Table 1, the sample means (obtained by 500
independent Monte Carlo trials) and the approxi-
mations (4.1) of the expectations of the standard
eigenvalue estimators are listed.

The low-indexed sample eigenvalues are overesti-
mated and the high-indexed underestimated according
to the Monte Carlo study:

E(i:l) > i,
E(f) <,

The first eigenvalue is overestimated and the remain-
ing six underestimated. For the largest sample size
considered in Table 1, m = 128, the bias of the first
eigenvalue is still 2%. That 7, > r, holds for the
largest eigenvalue is reasonable: r; is the largest
amount of the total second moment of the continuous
probability space {x} expressible by just one vector
and 7, the respective number of the finite {x;, - - -
X}. Since the latter set is smaller than the former
set, a bigger portion of its total second moment may
be represented by just one vector, i.e. 7| > 1.

If a flatter spectrum is considered, the biases are
generally smaller and the first few eigenvalue esti-
mators are positively biased. This behavior is not
surprising. The trace of the second-moment matrix,
i.e. the sum of all eigenvalues is an unbiased estimate.
Thus, the positive bias of the first eigenvalue has to
be balanced by negative ones of eigenvalue-estimators
with higher indices. But these negative biases are
bounded by the absolute value of the true eigenvalues,
because the estimators are positive. Thus, if the high-
indexed eigenvalues are small, one needs more of
them to balance the positive biases of the large
eigenvalue(s).

The approximate values (4.1) reproduce the relation
(4.5) very well. For large sample sizes m, the figures
coincide well with the Monte Carlo ones. For small
sample sizes, however, the accuracy of (4.1) is some- |
what worse. For m = 8 and the smallest eigenvalues,
(4.1) yields negative values, which makes no sense
because of the positive definiteness of the sample
covariance matrix.

4.4)

for small i (4.5)

for large i
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TABLE 1. Expectation of the standard eigenvalue estimator # and of the modified, unbiased esti.mators (5.2) and (5.3).
Example (4.4). Monte Carlo or asymptotic estimates of the true eigenvalues listed.

Sample True eigenvalue
size
m Estimator{ MC/af} 5.0 25 1.3 0.6 0.3 0.2 0.1
4 S MC 6.84* 2.21* 0.71* 0.18* 0.0 0.0 0.0
S af (4.1) 7.02 2.29 0.65 0.21 0.07 -0.14 -0.10
J MC 5.37* 2.59* 1.24* 0.73* 0.0 0.0 0.0
L MC 5.78* 2.72* 1.10* 0.34* 0.0 0.0 0.0
8 S MC 6.02* 2.40* 0.97* 0.38* 0.16* 0.06* 0.01*
S af (4.1) 6.01 2.40 0.97 0.40 0.19 0.03 0.00
J MC 5.09* 2.56* 1.26* 0.57* 0.32* 0.16* 0.05*
L MC 5.30* 2.60* 1.21* 0.52* 0.25* 0.10* 0.02*
16 S MC 5.61* 2.45* 1.14* 0.50* 0.23* 0.12* 0.05*
S af (4.1) 5.50 2.45 1.14 0.50 0.24 0.11 0.05
J MC 5.07* 2.53* 1.30* 0.62* 0.30* 0.19* 0.09
L MC 5.19* 2.53* 1.27* 0.59* 0.29* 0.16* 0.07*
32 S MC 5.20* 2.45* 1.22 0.55* 0.27* 0.16* 0.08*
S af (4.1) 5.25 2.47 1.21 0.55 0.27 0.16 0.08
J MC 4.93* 2.47* 1.33* 0.61* 0.30* 0.20* 0.10*
L MC 497* 2.48* 1.30 0.60* 0.30* 0.19 0.09*
64 S MC 5.10 2.49 1.26 0.57* 0.29 0.18 0.09
S af (4.1) 5.13 2.49 1.26 0.58 0.29 0.18 0.09
J MC 4.96 2.51 1.30 0.60* 0.31* 0.20 0.10*
L MC 498 2.51* 1.29 0.60* 0.31 0.20 0.10
128 S MC 5.09 2.49* 1.28 0.58* 0.29 0.19 0.09
S af (4.1) 5.06 2.49 1.28 0.59 0.29 0.19 - 0.09
J MC 5.03 2.50* 1.30 0.60* 0.30 0.20 0.10
L MC 5.03 2.50* 1.30 0.60* 0.30 0.20 0.10

t Either standard 7 (S) or Jackknife correction (J) (5.2) with k = 4 or Lawley correction (5.3) (L). -
i af: asymptotic formula (4.1); MC: Monte Carlo estimate (based on 500 trials). The Monte Carlo estimates were tested by a Lilliefors-
test as to whether the distributions are distributed normally. Significantly (95% level) nonnormal estimates are marked by an asterisk.

The physical significance of the bias (4.5) of the
eigenvalue estimators is that the importance of the
dominating (generally large-scale) structures is over-
estimated and that of the less weighty (generally
small-scale) ones underestimated.

Furthermore, the distributions of the eigenvalue
estimator are tested for normality with the Lilliefors-
test (e.g., Conover, 1971). An asterisk in Table 1
indicates rejection of the null hypothesis at the 95%
level of significance that the estimator is normally
distributed. Note that the lack of an asterisk does not
mean that the distribution is in fact normal. It is
only an indication that the probability to decide
erroneously “accept the alternative” is greater than
5%. Up to m = 32, most of the distributions of the
estimators are significantly nonnormal.

In Table 2, Monte Carlo estimates of the standard
deviations and approximates (4.2) of the standard
eigenvalue estimator 7 are listed for (4.4). Especially
for small sample sizes m, the Monte Carlo estimated
standard deviations are quite large for the low-indexed
eigenvalues, pointing at the strong variability of these
estimators and of the corresponding EOFs. For small
sample sizes, the approximations (4.2) do not coincide

satisfactorily with the Monte Carlo numbers. Often,
(4.2) yields negative variances.

5. Unbiased eigenvalue estimators

There is a possibility of using the biased standard
eigenvalue estimator 7 given in Section 3 to define
unbiased estimators. However, it has to be kept in
mind that it is general experience in statistics that
reduction of bias has to be paid for by increase of
variance.

The first approach, known as “Jackknife”, is based
on an idea of Tukey (cf. Miller, 1968):

Theorem: If A is a parameter and A4,, an estimator
based on m samples q,, ..., a,, with

(5.1

with some constant ¢ which may depend on 4 but
not on m. Then the new estimator

Ay =Kkdp + (k — )Ap-p (5.2)

is unbiased, if m = kp and A-m_,, defined as follows:
Subdivide the total sample of m elements into k
subgroups of length p. Delete for each j, j =1, ...,

bias(d,) = E(d,, — A) = ;;-A
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TABLE 2. Standard deviations of the standard eigenvalue estimator 7 and of the modified, unbiased estimators (5.2) and (5.3). Example
(4.4). Monte Carlo or asymptotic estimates of the standard deviations of the respective eigenvalue estimator belonging to the spectrum

k, the corresponding subgroup of the total data sample
and estimate with the remaining m — p data Ap—p.
. The mean of these k numbers 4,,_, is defined to be
Apn—p- :

Equation (5.2) is obtained by some straightforward
analysis solving the problem E(ad,, + BA,-,) = A
with the constraint « + § = 1.

To obtain a Jackknife corrected eigenvalue estimate,
totally k + 1 eigenvalue problems have to be solved;
k to get A,,—, and 1 for A4,,.

The standard eigenvalue estimator 7 exhibits ac-
cording to (4.1) just the form (5.1) besides an O(1/
m?)-term. Thus, the Jackknife should be suitable for
a correction of 7. In order to check the Jackknife’s
efficiency, its performance is tested by means of two
Monte Carlo experiments of 500 samples each applied
to example (4.4). Once, the sample number m is
varied with a fixed subgrouping k = 4. The results
are given in Tables 1 and 2.

- listed.
Sample Standard deviation of estimated spectrum
size
m Estimator* MC/af** 5.0 2.5 1.3 0.6 0.3 0.2 0.1
4 S MC 3.62 1.18 0.43 0.14 0.0 0.0 0.0
S af (4.2) 2.99 — — — — — —
J MC 3.74 1.98 1.06 0.53 0.0 0.0 0.0
L MC 5.64 2.26 0.81 0.23 0.0 0.0 0.0
L af (5.4) 4.19 1.69 0.65 0.25 0.0 0.0 0.0
8 S MC 2.27 0.94 0.36 0.15 0.07 0.03 0.01
S af (4.2) 2.31 0.73 023 - 0.05 — — —
J MC 2.37 1.50 0.70 0.33 0.20 0.11 0.05
L MC 2.32 1.53 0.65 0.27 0.12 0.05 0.01
L af (5.4) 2.74 1.22 0.56 0.25 0.12 0.04 0.01
16 S MC 1.76 0.74 0.34 0.15 0.07 0.04 0.02
S af (4.2) 1.70 0.72 0.34 0.15 0.05 0.01 0.02
J MC 1.89 1.03 0.56 0.26 0.13 0.09 0.05
L MC 2.12 1.01 0.49 0.22 0.11 0.06 0.02
L af (5.4) 1.85 0.87 0.43 0.19 0.10 0.05 0.03
32 S MC 1.22 0.55 0.28 0.13 0.06 0.03 0.02
S af (4.2) 1.23 0.57 0.29 0.13 0.06 0.04 0.02
J MC 1.29 0.69 0.41 0.19 0.09 0.06 0.03
L MC 1.36 0.67 0.35 0.16 0.08 0.05 0.02
. L af (5.4) 1.28 0.62 0.31 0.14 0.07 0.04 0.02
64 S MC 0.89 0.43 0.22 0.10 0.05 0.03 - 0.02
S af (4.2) 0.88 0.42 0.22 0.10 0.05 0.03 0.02
J MC 091 0.49 0.26 0.12 0.06 0.05 0.02
L MC 0.92 0.47 0.24 0.11 0.06 0.04 0.02
L af (5.4) 0.89 0.44 0.23 0.10 0.05 0.03 0.02
128 'S MC 0.64 0.31 0.14 0.07 0.04 0.02 0.01
S af (4.2) 0.62 0.31 0.16 0.07 0.04 0.02 0.01
J MC 0.65 0.32 0.16 0.08 0.04 0.03 0.01
L MC 0.64 0.32 0.17 0.08 0.04 0.03 0.01
L af (5.4) 0.63 0.31 0.16 0.07 0.04 0.02 0.01
* Either standard 7 (S) or Jackknife correction (J) (5.2) with k = 4 or Lawley correction (5.3) (L).
** af: Asymptotic formulas (4.2) or (5.4); — = negative values; MC: Monte Carlo estimate (based on 500 trials).

For all sample sizes, the bias is in part considerably
reduced compared to that of the standard estimator.
For m = 4, F, overestimates the first eigenvalue by
37%, while the error of the Jackknife estimate is only
7%, on an average. For m = 16, the Jackknife yields
numbers as good as the standard estimator using m
= 128 samples. Again, the distributions are for the
most part significantly nonnormal for m < 32.

The variance of the Jackknife (5.2) estimator is
increased for all indices and sample sizes, which was
to be expected in view of the 'reduced bias. The
deterioration is more serious for small eigenvalues
than for large eigenvalues, e.g., for m = 32, the
standard deviation of (5.2) is increased by 6% for the
largest eigenvalue r, = 5.0, but by 54% for rs = 0.3.
Especially for small sample sizes m, e.g. m = 4, the
substantial decrease of the bias of the largest eigenvalue
is accompanied by only a small increase of the
variance.
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The outcome of a second series of Monte Carlo
experiments using a fixed m and a varying number
of subgroups k is a relative insensitivity to the selection
of k.

Another proposal was given by Lawley (1956). The

estimator
2o 1 2, 7
fi= ,-i[l —_ E: ,.—j‘::]

mj=l ry— I

(5.3)

is unbiased, but its variance is according to the
following asymptotic formula increased:

N 2 n o )\2
var(f) = % [1 + ;1-1 > (r'Tfr) ] + o(-r;lﬁ). (5.4)

j=1 j

Again, we studied the efficiency of (5.3) and the
exactness of (5.4) with a 500-trial Monte Carlo ex-
periment using examples (4.4). The results are in-
cluded in Tables 1 and 2, too.

The success of Lawley’s correction (5.3) is slightly
worse than that of the Jackknife (5.2). For m = 4, r,
= 5.0 is overestimated by 16% through (5.3) compared
to 7% of the Jackknife. To obtain estimates as good
as the standard 7 with m = 128, Lawley’s formula
needs about m = 32, whereas m = 16 are sufficient
for the Jackknife.

With respect to the variance of (5.3), it may be
concluded from Table 2 that formula (5.4) is not
very precise for m < 16, say. According to the Monte
Carlo estimates, the variance is increased compared
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to the standard estimator. However, the increase is
greater than that of the Jackknife (5.2) for the largest,
or the two largest, eigenvalues and less for the minor
ones.

The combined effect of bias and variance of an
estimator may be expressed in terms of the root mean
square (rms) error

{EI(Fi — ry'1}'? = [bias(F)® + var(B)]'2. (5.5)

This quantity is listed for the three estimators for
example (4.4) with varying sample sizes in Table 3.
Apparently, Lawley’s formula yields an uncertainty
larger than do the other two estimators, standard and
Jackknife, for at least small sample sizes m and large
eigenvalues. Lawley’s estimate for r, and m = 4 is
very poor; the rms error is 5.69, i.e. greater than the
positive number r;, = 5 to be estimated. Since the
expectation is 5.78 (Table 1) and the standard devia-
tion 5.64 (Table 2), the estimator (5.3) varies between
0.14 and 11.42. Apparently, this estimator is useless.
On the other hand, the standard estimator and the
Jackknife yield the intervals [3.22; 10.46] and [1.63;
9.11], respectively. The Jackknife is superior to the
standard estimator for the largest eigenvalue, r,, and
m < 8, and inferior for the six minor eigenvalues.
For large sample sizes, m = 64, say, the differences
between the three methods become negligible.

Thus, we may conclude that both correction meth-
ods are appropriate methods to reduce the bias of the
standard eigenvalue estimator. But this advantageous

TABLE 3. Expectation of the root mean square error (5.5) of the standard eigenvalue estimator 7 and of the modified, unbiased estimators
(5.2) and (5.3). Example (4.4). Monte Carlo estimate of the root mean square error of the respective eigenvalue estimator belonging to

the spectrum listed.

Sample rms error of estimated spectrum
size

m Estimator* 5.0 2.5 1.3 0.6 0.3 0.2 0.1
4 S 4.06 1.22 0.72 0.45 0.3 0.2 0.1
J 3.76 1.98 1.06 0.57 0.3 0.2 0.1
L 5.69 227 0.83 0.37 03 0.2 0.1
8 S 2.49 0.94 0.49 0.26 0.14 0.14 0.1
J 2.37 1.50 0.70 0.33 0.2 0.1 0.1
L 333 1.53 0.66 0.28 0.24 0.2 0.1

16 S 1.86 0.74 0.37 0.17 0.1 0.1 0.
J 1.89 1.03 0.56 0.26 0.14 0.1 0.0
L 2.12 1.01 0.49 0.22 0.1 0.1 0.0
32 S 1.42 0.55 0.28 0.14 0.0 0.0 0.0
J 1.29 0.69 0.41 0.2 0.1 0.0 0.0
L 1.36 0.67 0.35 0.17 0.1 0.0 0.0
64 S 0.89 0.44 0.22 0.1 0.0 0.0 0.0
J 091 0.49 0.26 0.1 0.0 0.0 0.0
L 0.92 047 0.24 0.1 0.0 0.0 0.0
128 S 0.64 0.31 0.14 0.1 0.0 0.0 0.0
J 0.64 0.31 0.17 0.1 0.0 0.0 0.0
L 0.64 0.31 0.17 0.1 0.0 0.0 0.0

* Either standard 7 (S) or Jackknife correction (J) (5.2) with k = 4 or Lawley correction (5.3) (L).
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aspect goes along with an increase of the variance.
With respect to the largest eigenvalues, the Jackknife
technique seems to be superior to the correction
proposed by Lawley and the standard estimate.

6. Properties of estimated principal components of x
ony

One problem occurring in atmospheric and oceanic
research is the comparison of different climates, e.g.
of a modeled climate with an observed one or two
modeled ones (say, differing by their forcing boundary
conditions). This is treated by a x>-test (Storch, 1982;
Storch and Roeckner, 1983a; Storch, 1984; Hanno-
schock, 1984; Storch and Kruse, 1985; Frankignoul,
1985) or by a nonparametric two-sample test
(Preisendorfer and Barnett, 1983; Storch and Roeck-
ner, 1983b; Storch and Kruse, 1985). In order to get
a tractable low-dimensional problem, the original
data consisting of sometimes hundreds of components
are a priori expanded into a short EOF series utilizing
(2.1). Often, the applied EOFs are obtained from one
of the two samples to be compared. Then, instead of
the original dataset, the statistical test is applied to
the low-dimensional vector of generalized Fourier-
coefficients (4;,). For this, reliable estimates of the
variances and covariances of the generalized Fourier
coefficients d; of a once fixed set of EOFs ¥y, ..., ¥
are needed. The question is how to estimate these
second moments.

Provided E(x) = 0, an obvious and asymptotically
reasonable (Jackson, 1981) attempt is to use the
properties (2.3) valid for the principal vectors with 7
instead of r, i.e. to estimate the covariances and
variances by

cov[dy(x), d;(x)] = 7id;. 6.1)

In the case of two dimensions
var(d,) < E(f)), var(dy) > E(r)

is valid and one has to be aware of sometimes large
covariances of 4, and d,: We may assume without
loss of generality that X = diag(ry, r,) with r; > r,.
Application of (2.1), (2.5) and (4.5) yields

Var(dl) <n< E(fl)}

. . (6.2)
var(a,) > r, > E(r,) :

In order to get an idea of the magnitude of var(d;)
— F;, a two-dimensional example is examined with r,
= 2 and r, = 1. For a series of numbers m», Monte
Carlo experiments were performed as follows: m
samples of the two dimensional random variable
denoted by x are drawn by chance. These m samples
are used to calculate the sample covariance matrix
X. The eigenvectors of X are taken as a randomly
selected set of EOFs, {¥,, ¥»}. The variance of the
corresponding generalized Fourier coefficients g;

= (x+y) is
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var(d;) = E(¥ixx'y;) = Xy, = > pir;  (6.3)
i

with the true eigenvalues 7;. To test the accuracy of
(6.1), the difference var(d;) — #; is calculated, finally.
The whole procedure is repeated 1000 times. Sample

means var(d;) — #; are computed and listed in Table
4: The overestimation of var(d,) by #, is large. For
eg. m = 8, 8 independent data are available to
estimate the two-dimensional covariance matrix. On
an average, we have: 7, = 2.26 and var(4,) = 1.78. If
7\ is utilized as estimator of var(d,), one has to expect
an overestimation of 27%. On the other hand, var(d),
is underestimated by 7, on an average by 41%. A
comparison of different samples based on these vari-
ance estimators were conservative’ for coefficients of
EOF1 and radical for those of EOF2.

In Table 4 the frequency (of 1000 samples) of
cov(d,, d,) > 0.25 is listed additionally. It turns out
that the covariance of the Fourier coefficients based
on EOFs is not negligible especially for small sample
sizes m.

A closer look at the seven-dimensional example
(4.4) shows that instead of (6.2) the relations

E[var(@)] < r; < E(F) (6.4.1)
for small indices i, and
E(var(a)) > r; > E(F) (6.4.2)

for large -indices i, are valid. As an evidence, the
expectations of var(@g)) — f;, i = 1, ..., 7, were
estimated by 500 independent Monte Carlo trials.
The results are given in Table 5. As in the preceding
two dimensional example, the respective over- and
underestimations of the variances are not negligible.

Another example of this kind is given in the
appendix of Storch and Roeckner (1983a).

As can be deduced from formula (2.3) and property
(2.1) of PVs, instead of (6.4.1-2) is valid:

var(d;)) < E(F)), var(d,) > E(%,). (6.5)

Another attempt to estimate the 2nd moment matrix
could be to use the data x,, . .., Xx,, which have been
already used for computing the EOFs and for esti-
mating the second-moment matrix conventionally,
i.e. by the sample second moments. Unfortunately,
this proceeding is not successful, because the analysis
of Section 2 with finite sums instead of expectations
yields that the resulting estimator is just the standard
estimator.

The significance of (6.4.1-2) and (6.5) is that a test
procedure as outlined in the beginning of this section
will be conservative for low indexed (generally large
scale) EOFs and radical for high indexed (generally
small and medium scale) EOFs.

3 A conservative (radical) statistical test rejects erroneously the
null hypothesis too seldom (too often).
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TABLE 4. Sample means of var(d) — #; and the frequency of
cov(d,, d;) > 0.25 for different sample sizes m to estimate the EOFs
(i=12).

m cov(d,, d2) > 0.25 var(d,) — 7, var(d;) —
4 62.4% —0.69 0.76
6 56.9% —0.64 0.59
8 55.3% —0.48 0.51
12 47.3% -0.32 0.36
50 22.2% —-0.10 0.08
100 7.7% —-0.05 0.04

7. Conclusions

Statistical properties of estimated principal vectors
and eigenvalues have been studied. The following
conclusions may be drawn:

1) The sample eigenvalue Fis a considerably biased
estimator of the true eigenvalue r. For the largest r,
the bias is positive, for the smallest negative: It is of
the order of 1/m, where m is the number of indepen-
dent samples. The variances of 7 is the order of 1/m,
too.

2) By means of correction methods (5.2) and (5.3),
unbiased eigenvalue estimators are constructed. How-
ever, the decrease of the bias is accompanied by an
increase of the estimator’s variance. For the largest
eigenvalue, at least, the Jackknife yields favorable
results.

3) Estimated second moments of generalized Fou-
rier coefficients of a fixed set of EOFs: On average,
for small i (large i) the sample eigenvalue 7; will
overestimate (underestimate) the variance expressed
by the corresponding EOF considerably. The covari-
ances are generally not negligible. This means that
the independence of PV coefficients cannot be trans-
ferred to EOF coeflicients.

Note, however, that the aforementioned problems
become negligible asymptotically.

APPENDIX
Proof of (2.2-4)

a) Lety,..., ybe arbitrary orthonormal vectors:

k
Rk x) = |x — 2 a;(x)yill?

=1

k k
=(x— 2 a(x)y;, x — > ai(x)y)

i=1 i=1

k k
= (x+x) = A2 a(x)xXy) + 2 a:(x)a;(x)yiy;
i=1 ij=1

k k
= [x? -2 2 xy)x'y) + 2 ai(x)?

i=1 i=1
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k k
= [x[? - 2 X yixxyi + 2 (Xy)x'y)

i=1 i=1
k

= [IxlI* = Z yixx)y:.
i=1

Taking expectations gives as “expected deviation”:

k
E(IxI?) ~ 2 yiExX)y;
E[R(k; X)] = "
E(IxI» - 2 yiXy..

i=1

(*)

Assume (2.2) and (2.3) are already proved for the
first kK — 1 principal vectors yi, ..., Yi-1 (1 < k <
n). The kth PV y, can be constructed by adding
Lagrange multipliers to (+) according to the constraints
of orthonormality

Yi=0 (=1,---,k=1); [wl*=1

Setting the derivatives with respect to y zero yields
k-1
2 a(ye, ¥) + gUlyel> — 1)

=1

0= i E[R(k, x)] +
dyi

d k k—1
= v (2 viXy) + 2 qiyi + 28y«
Ye o =y i=1
k-1
==-2X—gDyct+ 2 ayi.
i=1 (*%)

Scalar multiplication by y;, j < k, from the left gives
0 =2yj(X — ghyx + g; = 2[(X — gDyI'vi + g;
=2q — Yyt g =g
Thus, (*%) reduces to the eigenvalue equation

X—-8ghye=0
and (*).turns to
k-1
EQR(k;x) = E(Ix|)— 2 ri—g

i=1

TABLE 5. Sample means of var(d)) — fifor i = 1, ..., 7 for (4.4)
obtained by a series of 500 Monte Carlo trials.

Sample True eigenvalue r;
size
m 5.0 2.5 1.3 0.6 03 0.2 0.1
4 -3.53 -0.10 0.64 067 076 042 0.72
8 —1.89 0.13 048 041 037 033 0.32
16 —1.13 0.04 031 024 0.17 0.16 0.14
32 -0.58 0.01 0.19 0.11 006 009 0.06
64 —0.32 0.03 009 006 003 0.05 003
128 -0.12 001 004 003 002 002 001
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which is minimized by g = r., being the largest
residual eigenvalue. Now, (2.2) and the first part of
2.3)is proved.. It is i

E(IxIP) = trace(X) = 3 7,
i=1

which yields the second statement of (2.3).
b) To establish (2.4), assume E(x) = 0. Then

E(a;(x)) = E(x)y; = 0
and

cov(a;, aj) = E(yixx'y)) = yiXy; = nyiy; = rid;
which had to be shown.
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