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Abstract The performance of statistical climate recon-

struction methods in the pre-instrumental period is

uncertain, as they are calibrated in a short instrumental

period but applied to much longer reconstructions time

spans. Here, the virtual reality created by a climate simu-

lation of the past millennium with the model ECHO-G is

used as a test bed of three methods to reconstruct the

annual Northern Hemisphere temperature. The methods are

Composite plus Scaling, the inverse regression method of

Mann et al. (Nature 392:779–787, 1998) and a direct

principal-components regression method. The testing

methodology is based on the construction of pseudo-

proxies derived from the climate model output, the appli-

cation of each of these methods to pseudo-proxy

timeseries, and the comparison of their result with the

simulated mean temperature. Different structures of the

noise have been used to construct pseudo-proxies, ranging

from the simulated grid-point precipitation. Also, one

sparse and one denser pseudo-proxy network, co-located

with two real networks, have been considered. All three

methods underestimate the simulated variations of the

Northern Hemisphere temperature, but the Composite plus

Scaling method clearly displays a better performance and is

robust against the different noise models and network

size. The most relevant factor determining the skill of the

reconstruction appears to be the network size, whereas the

different noise models tend to yield similar results.
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Introduction

Climate reconstructions of the past few millennia may

provide useful information of the amplitude of climate

variations at centennial timescales, help to put the recent

20th century global warming into the perspective of natural

climate variations (Briffa and Osborn 2002; Jones and

Mann 2004; National Research Council 2006), and help to

identify with a larger degree of certainty the influence on

global climate of anthropogenic emissions of greenhouse

gases. Climate models of varying complexities, from

energy balance models (EBM) to three-dimensional ocean–

atmosphere general circulation models (AOGCMs) offer a

powerful laboratory in which to test the response of

atmospheric thermodynamics and dynamics to available

estimates of past external forcing levels (Jones and Mann

2004). Integrated assessment of climate reconstructions of

past climate and forcing variations in combination with

model simulations of the past climate evolution provides a

basis for a variety of scientific aims like detection and

attribution studies of human influences on climate (e.g.

Crowley 2000), narrowing estimations of climate sensi-

tivity (e.g. Hegerl et al. 2007), validation of climate

reconstruction strategies (e.g. von Storch et al. 2004).

The amplitude of variations of the past Northern

Hemisphere temperature is being intensely debated. On one

hand, some proxy-based reconstructions (Mann et al. 1999;

Jones et al. 1998) show relatively small amplitude of

variations of the order of 0.2 K. On the other hand, more

recent reconstructions indicate that the amplitude of vari-

ations may have been larger, lying in the range 0.6–0.8 K
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(Esper et al. 2002; Moberg et al. 2005; Hegerl et al. 2007).

Temperature reconstruction based on borehole temperature

profiles seems to support a large temperature change

between present and about 500 years ago. Other evidence

against small temperature variations in the past millennium

is provided by the reconstructed concentrations of atmo-

spheric CO2 concentrations (Scheffer et al. 2006). These

authors argue that small temperature variations would

imply a too large sensitivity of CO2 to temperature changes

(of the order of 42 ppm/K), whereas evidence from the

Last Glacial Maximum and from carbon-cycle models

converges to values closer to 10 ppm/K (Friedlingstein

et al. 2006).

The methods applied in the proxy-based reconstructions

also vary. Some of them make use of regression-based

methodology and others use different variants of a simple

proxy-averaging (Jones and Mann 2004; National Research

Council 2006). After calibration with data from the

instrumental period, these methods are then applied to

estimate past temperature variations from the longer proxy

time series. The design of the statistical model is usually

subject to some means of validation based on the use of

independent data. This step is intended to support the

application of the reconstruction model to a time interval

different from that used for calibration. For this purpose,

a portion of the available instrumental data is used for

calibration and a portion is set aside for validation

with independent instrumental data. Exceptions for this

approach are the reconstructions methods by Hegerl et al.

(2007) and Moberg et al. (2005) who involve among others

decadally resolved proxy records in their analysis. The

number of degrees of freedom (effective sample size) is

considerably reduced in such situations of lower temporal

resolution. Thus, isolation of a short independent period

becomes sometimes difficult, and other means of validation

have to be undertaken. This problem is not only typical of

situations making use of low resolution proxies but also of

situations in which even if higher resolution (i.e. yearly)

data are available, the methodologies place their emphasis

on the low frequency (decadal, multi-decadal and centen-

nial) time scales present in the data. The idealized limit of

such a situation would be the case of time series with a

very large linear trend (relative to the interannual vari-

ability) in which the strong autocorrelation would virtually

reduce the effective sample size to one. The nature of some

of the proxies used for climate reconstructions may distort

the retrieval of the centennial climate variability. Tree-ring

width, and perhaps also tree ring density, depends also on

tree age. This effect has to be filtered out to retrieve the

climatic signal, but methods for doing may introduce sta-

tistical uncertainties at timescales of the typical tree

lifespan. Documentary information, when not anchored on

the reporting of physical phenomena such as onset of lake

freezing, is subject to the subjective interpretation of the

chronist about the likelihood of a certain observations in a

time framework longer than a typical human lifespan.

Therefore, there is a need for testing statistical methods in

timescales much longer than the calibration period.

The availability of model paleo-simulations allows for

the application of the so-called pseudo-proxy approach to

by-pass the limitations mentioned above. In this type of

methodological validation, the statistical reconstruction

method is applied in the virtual reality of simulations with

coupled climate models (Mann and Rutherford 2002; Mann

et al. 2005; von Storch et al. 2004; Hegerl et al. 2007). In

this set-up, all variables are perfectly known and the output

of the statistical method can be directly compared to the

true (simulated) target temperature (e.g. the Northern

Hemisphere temperature), and the bias and associated

uncertainties of the method can be evaluated. In the case of

multi-century long simulations, this technique offers the

possibility of scanning the performance of the model at

lower frequencies (multidecadal and centennial) than could

be possible by the use of roughly a century of instrumental

data. The main problem in this approach is, however, the

need for timeseries that play the role of the real proxies. So

far, the pseudo-proxies have been produced in this virtual

reality simply as a combination of grid-point simulated

temperature with the addition of statistical noise with some

previously defined properties. The studies mentioned above

have used quite simple models of the noise contained in the

pseudo-proxies, namely just white noise or red noise gen-

erated by an autoregressive process. This is certainly a first

step in this line of research and more efforts are needed to

quantify and characterise the structure of the noise present

in the different types of proxy records. This is, however,

not an easy task, since it requires a deep knowledge of the

behaviour of the proxy indicators at low frequencies and

their link to the local temperatures.

The pseudo-proxy approach provides a test ground for

evaluating the validity of a variety of problems and

hypothesis related to the methodology, the statistical

properties of proxies or their distribution. An example of

this is the influence of a shrinking coverage of the proxy

network backward in time (Küttel et al. 2007). Normally,

not all proxy indicators are available for the whole period of

interest. For instance, in the study by Mann et al. (1999), the

network of proxy indicators comprises 112 time series in

the most recent period (1820–1980), whereas the first

400 years of the past millennium are covered by only 12

indicators. Some authors prefer to use a proxy network of

constant size, thereby considering only indicators that

possess a complete, or almost complete, record in the period

of interests (Crowley and Lowery 2000). However, it should

be kept in mind that the quality of a single record may

diminish backwards in time, if , for instance, the number of
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individual trees comprised in a chronology also diminishes,

or if the time resolution of the proxy becomes coarser.

In the present study, we intend to address some meth-

odological aspects of the climate reconstruction in the past

millennium using the pseudo-proxy approach. The focus

lies in three different methods: the inverse-regression

method proposed by Mann et al. (1998); the direct prin-

cipal-components regression method, exemplified by

Luterbacher et al. (2004) in their reconstructions of past

European temperatures and more frequently used in a

number of other studies focused on regional temperature

reconstructions; and the so called Composite plus Scaling

(CPS) method (sometimes denoted also as Composite

Matching Variance) used by Crowley and Lowery (2000).

Note that Moberg et al. (2005) applied a somewhat more

sophisticated variant of the CPS method combined with a

wavelet analysis.

The present analysis is therefore not exhaustive. Alto-

gether, these three methods have been extensively used in

the paleoclimate literature, but other more recent methods

have been recently introduced. This is the case of Regu-

larized Expectation Maximization (RegEM), which

originally was aimed at filling missing values in a set of

observations (Schneider 2001). RegEM is a relatively more

complex iterative imputation method with a linear regres-

sion in its core. It has recently been also applied for proxy-

based climate reconstructions with different variants for the

regression core, either ridge regression (Mann et al. 2005;

Rutherford et al. 2005) or truncated total least-squares

(Mann et al. 2007). The variants used for the core regres-

sion seem to have a strong influence on the final results.

The code for the ridge-regression variant has been recently

revised to avoid a too strong sensitivity to the length of the

calibration period (Mann et al. 2005, supplementary

information). However, the latest variants of RegEM seem

to yield better results than previous methods (Mann et al.

2007; Riedwyl, personal communication, manuscript sub-

mitted to Climate Dynamics).

These three methods are tested here with two different

pseudo-proxy networks. To keep the results comparable to

one another, we have not used the locations of the real

proxy networks used by the different authors in the

respective studies with real proxies. Here, only the loca-

tions of the complete network used in Mann et al. (1999)

and the locations of the smallest network used by Mann

et al. (1999) have been considered to define the location of

a common pseudo-proxy network for all methods.

The noise models to construct the pseudo-proxies are in a

first step a simple white-noise and red-noise model with

spatially constant autocorrelation. Additionally, somewhat

more sophisticated noise models have been implemented.

The pseudo-proxies have been constructed by contamina-

tion with grid-point precipitation simulated by the climate

model itself. The rationale for this noise model is that some

proxy indicators, tree-rings, speleothems, and ice-cores may

be representing not only temperature but also precipitation

variability as well. This noise model has been included in

our analysis not as a outright realistic test of the statistical

methods, but just as an scenario to find out what could be

the potential influence on the final reconstructions of a

certain contamination by a precipitation signal in an attempt

to reconstruct temperature. A related caveat is the possible

seasonality in the climate response of a particular proxy.

Most biological systems preferably record environmental

conditions of a growing season, yet the proxy is used to

reconstruct annual mean temperature. This is statistically

reflected in additional noise in the proxy indicator. Finally,

the noise component of the pseudo-proxies has been mod-

elled by spatially varying autoregressive process and by

spatially varying long-range time-autocorrelation process.

For these type of processes, the time-autocorrelation does

not decay exponentially with time-lag, as in autoregressive

processes, but decays more slowly following a power-law.

Processes of this type have been identified in real records

(Koutsoyiannis 2003; Bunde et al. 2005), in particular in

hydrological timeseries, although the question whether they

are ubiquitous in nature is still debated. Again, this noise

model is included here not as a claim that it may represent

noise in real proxy indicators, for which there would be no

empirical justification, but just to test its consequences for

empirical reconstruction methods. Note that the fact that

such processes may have been identified in climatic records

does not imply that they may also be able to represent non-

climatic noise in proxies.

All these pseudo-reconstructions exercises have been

performed in a climate simulation of the past millennium

with the model ECHO-G. This is not the same simula-

tion used by von Storch et al. (2004) in their pseudo-

proxy analysis of the Mann et al. (1998) reconstruction

method, but a simulation with the same model using

different initial conditions. It has been alleged that the

von Storch et al. (2004) simulation is affected in the

initial centuries of the millennium by an artificial drift

due to a lack of equilibrium of the global temperature

with the external forcing at the start of the simulation in

year 1000 AD (Osborn et al. 2006). Although the effect

of this drift is essentially observed in roughly the first

three hundred simulation years, the relevance of this drift

for the purpose of testing reconstruction methods is

debated. We use here a second simulation with the same

model started with initial conditions taken from a time-

step of the first ECHO-G simulation, after the model has

had five centuries to accommodate to the varying external

forcing.

A broad description of the model and the simulation

used herein is presented in next section. ‘‘Statistical
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reconstruction methods’’ addresses the details of the three

evaluated reconstruction methods as well as other meth-

odological aspects like the design of the pseudo-proxies

and uncertainty treatment. Finally results are presented in

‘‘Results’’ section and discussed along with the conclusions

in ‘‘Discussion and conclusion’’ section.

Description of model and simulation

The global coupled climate model ECHO-G consists of the

spectral atmospheric model ECHAM4 (Roeckner et al.

1999) and the ocean thermodynamic/dynamic sea ice

model HOPE-G (Wolf et al. 1997). Both sub-models were

developed at the Max-Planck-Institute of Meteorology

in Hamburg. In the present setup, the atmospheric model

has a horizontal resolution of T30 (approximately

3.75� 9 3.75�) and 19 vertical levels. The ocean model

HOPE-G has an effective horizontal resolution of approx-

imately 2.8� 9 2.8� with 20 vertical levels. In the tropical

regions, a grid refinement is employed with decreasing

meridional grid-point separation, reaching a value of 0.5�
at the Equator. This increased resolution allows for a more

realistic representation of ENSO events (Min et al. 2005).

The climate model is flux-adjusted to avoid climate drift.

The flux adjustment is held constant in time and its global

average is set to zero.

The model was driven by the following external forcings:

total solar irradiance (TSI), volcanic forcing, and well-

mixed greenhouse gases. The solar forcing was derived

from the data provided by Crowley (2000) through trans-

forming effective solar forcing to TSI units to drive the

model. There still exists a large uncertainty in the amplitude

of past TSI at centennial timescales (IPCC 2001). In this

simulation, the Crowley data were re-scaled so that the

differences between the Late Maunder Minimum (1680–

1710) and present (1960–1990) are 0.3% of the TSI. The

volcanic net radiative forcing was translated to changes in

an affective solar constant by multiplying with the factor

4/(1 - a), where a is the planetary albedo. The volcanic

forcing is thus implemented in this simulation as a global

annual reduction in the solar constant. The values provided

by Crowley already take into account an e-folding time in

the years following a volcanic eruption. The concentrations

of atmospheric carbon dioxide and methane, as provided

by Etheridge et al. (1996) and Etheridge et al. (1998),

respectively, were derived from ice-core measurements.

Concentrations of N2O were used as in previous scenario

experiments with this model (Roeckner et al. 1999): fixed

276.7 ppb before 1860 and the historical evolution from

1860 to 1990 AD adjusted from Battle et al. (1996).

As stated in the ‘‘Introduction’’, the initial conditions for

these simulations were taken from a previous simulation of

the same model spanning the past millennium (von Storch

et al. 2004). The atmospheric and oceanic conditions at the

beginning of year 1700 AD of this previous simulations

were used to start an spin-down period of 100 model years

in which the external forcing values were slowly driven to

those estimated for 1000 AD: 50 years of gradual transition

from the 1700 AD to the 1000 AD forcing levels and fifty

more years of constant conditions fixed at the 1000 AD

levels. Since the difference between both forcing states is

relatively small, changes in this adaptation period are minor

in comparison with those in the simulation used by von

Storch et al. (2004), which transited from current industrial

values to 1000 AD forcing conditions in 100 model years.

After this initial phase, the simulation then proceeded with

the historical estimations of the external forcing until year

1990. A comparison of the evolution of both millennial

simulations is reported in González-Rouco et al. (2006).

The simulated annual mean Northern Hemisphere tem-

perature is here compared with a simulation of the past

1,200 years performed with the Climate System Model

(CSM) of the National Center for Atmospheric research

(Mann et al. 2005) in Fig. 1. The NCAR coupled model is

not flux-adjusted but the small climate drift in the simu-

lation is subsequently corrected by subtracting a long-term

trend estimated from a control simulation (Mann et al.

2005). The Northern Hemisphere temperatures evolve in a

quite similar fashion along the whole millennium, although

Fig. 1 Simulated mean annual Northern Hemisphere temperature

(North of Equator) in three simulations of the past centuries with

General Circulation Models: one simulation with the Climate System

Model (CSM, Mann et al. 2005) and two simulations with the model

ECHO-G (González-Rouco et al. 2006). Curves represent deviations

from the 1900–1980 mean
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the external forcings are presumably different (no infor-

mation about the CSM simulations was available to us),

and the CSM simulations has additionally included the

anthropogenic tropospheric aerosol forcing, which is

lacking in the ECHO-G simulations. The agreement

between both simulation suggests that the flux correction

used in the ECHO-G model has not a relevant influence on

the simulation of the temperature variations in the past

millennium. Differences among a number of millennium

simulations can be accounted for by the differences in the

prescribed external forcing (Goosse et al. 2005). Figure 1

also evidences that the differences in the initial state only

affect the ECHO-G simulations along the first two to three

centuries. After 1300 AD, differences between both sim-

ulations fall within the internal variability experienced in

any two simulations with different initial conditions. The

results within this paper will focus on this ECHO-G sim-

ulation. However, they are also supported by the simulation

used by von Storch et al. (2004) in spite of its deviations in

the first centuries of the millennium.

Statistical reconstruction methods

MBH method

The MBH method is based on an inverse regression

equation between the proxy indicators and the leading

Principal Components (PCs) of the Northern Hemisphere

temperature field (Mann et al. 1998). For the sake of

completeness, a brief description follows here; the inter-

ested reader can consult the original publication (Mann

et al. 1998) and also Bürger et al. (2006) for details.

The statistical method used by MBH98 to calibrate the

proxy indicators is quite elaborated, but the core of this

method can be condensed as follows. A linear relationship

between annual proxy indicators and annual mean instru-

mental records is assumed:

PiðtÞ ¼
X

j

aijpcjðtÞ þ �iðtÞ ð1Þ

where Pi(t) is the the value of the proxy indicator i at year t,

pcj(t) is the value of the temperature PC j at year t, aij are

regression coefficients to be estimated, ei(t) is the part of

the proxy indicator that cannot be linearly explained by the

regression equation. The regression coefficients aij are

estimated by minimizing the variance of ej by ordinary

least-square-error minimisation.

Once the regression coefficients aij have been estimated,

the MBH98 method estimates the value of the temperature

PCs p̂cjðt0Þ in periods outside the calibration period by, first,

finding a value of ~pcj that minimises the variance of the

residuals e in the following equation (Mann et al. 1998).

Piðt0Þ ¼
X

j

aij ~pcjðt0Þ þ �iðt0Þ ð2Þ

This step can be also re-formulated in terms of the pseudo-

inverse matrix containing the regression coefficients

(Buerger and Cubasch 2005).

These initial estimations of the PCs are then renormal-

ised so that they conserve the variance of the instrumental

PCs in the calibration period.

p̂cjðtÞ ¼ nc ~pcjðtÞ ð3Þ

where nc is the renormalisation constant. Note that, because

of this renormalisation step, p̂cj is no longer the optimal

solution in the sense of mean-square-error minimisation.

The estimated PCs p̂cj in the whole period, together with

the spatial eigenvectors, can be then back-transformed to

reconstruct the temperature field and, by spatial averaging,

the Northern Hemisphere mean.

It has been tested whether our implementation of the

Mann et al. (1998) algorithm can reasonably replicate the

original result. For illustration, our emulation is compared

in Fig. 2 with the original reconstructed PCs in the period

1820–1980, with the same set of real proxy indicators used

by Mann et al. (1999) and the same instrumental temper-

ature PCs. Although not completely identical to the

original result, the replication of the algorithm can be

considered as sufficient, with correlations between original

and replicated PCs over 0.9 for all four PCs. Other authors

who have emulated the MBH98 algorithm also achieve a

largely similar results but not a complete agreement (Wahl

and Ammann 2007).

Direct principal-components regression

This approach is based on a more practical view of the

regression equations. The goal is to reconstruct the tem-

perature and this is the variable considered as predictand,

also in the form of its PCs. The predictors are in this case

the proxy indicators:

pciðtÞ ¼
X

j

aijPjðtÞ þ �iðtÞ: ð4Þ

where the notations are the same as in Eq. 1. The regres-

sion parameters are estimated by least-mean-square error

minimisation in the calibration period. The estimation of

the temperature PCs in the whole millennium is then

accomplished by inserting the longer proxy records into

Eq. 4.

Composite plus Scaling

This is is a much simpler method than both previous

methods. The standardised proxy indicators (mean zero and
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unit standard deviation unity in the calibration period) are

simply averaged. The resulting dimensionless time-series is

re-scaled to match the variance of the observed Northern

Hemisphere temperature in the calibration period. This

variance-matching step can be performed in different fre-

quency bands. For instance, Crowley and Lowery (2000)

rescale to match the observed variance at interannual

timescales, whereas Moberg et al. (2005) match the vari-

ance only at timescales between 80 and 4 years. In the

present study, this variance-matching is accomplished with

interannual data for the results to be comparable to those

obtained with the other two methods, as these methods

(direct and inverse regression) also are calibrated with

unfiltered (interannual) data. Within this method, the final

reconstruction is just proportional to the mean of the

standardised proxy records, and the only adjustable

parameter depends on the variance of target record. The

estimation of this variance may be also subject to uncer-

tainties. It has been previously found (Esper et al. 2005)

that, in the observational record, the choice of calibration

period to estimate the observed variance of the target

variable can result in differences in the amplitude of the

final reconstruction of up to 50% of the total amplitude.

It has been argued that a simple averaging method as

CPS would be more robust than more sophisticated

regression methods, as it is free of many of the technical

subtleties that may burden the latter methods (Huybers

2005). It has been claimed by Mann et al. (2005), however,

that CPS method as implemented by Moberg et al. (2005)

may be prone to overestimating the low-frequency variance

of the Northern Hemisphere temperature.

Calibration variants

Instrumental and proxy time-series usually exhibit strong

trends in the 20th century. These trends may be deter-

ministic, i.e. caused by an external factor that may or may

be not common to temperature and proxies, or they may

Fig. 2 Emulation of the

reconstruction algorithm of

Mann et al. (1998). The proxy-

based reconstructed four leading

Principal Components of the

Northern Hemisphere annual

temperature field in the period

1820–1980 from Mann et al.

(1998) (black) and the result of

our emulation of the algorithm

using the same calibration data

(red) (Mann et al. 2004)
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represent extended periods of sustained anomalies that

appear in non-stationary stochastic processes or long-

memory processes. In both cases, the estimation of

regression parameters with trend time-series may be

problematic and may give rise to the so called ‘‘spurious

regression’’ (Yule 1926; Granger and Newbold 1974). In

these cases, more sophisticated statistical models may be

needed. In climatology, a simple, albeit not perfect, solu-

tion to this problem has been sometimes implemented,

namely the estimation of regression parameters or the

estimation of correlations after linearly detrending the data.

Here, the two variants of the calibration step, with detr-

ended and non-detrended data, are shown. The detrending

step is, however, debated (Ammann and Wahl 2007). It has

been argued that, although the issue of the loss of degrees

of freedom when regressing trendy timeseries has to be

considered, the detrending step in methods that make use

of a PCs pre-filtering of the target field hinder the repre-

sentation of the global energy imbalance of the 20th

century. However, this argument is only valid if the cal-

culation of the temperature PCs had been conducted with

detrended grid temperatures, which is not the case either in

von Storch et al. (2004) or in the present study. Here and in

von Storch et al. (2004), the PCs prefiltering was applied to

the original grid-point temperatures and the leading tem-

perature PC shows a strong trend corresponding to the 20th

century warming. Only in the subsequent proxy calibration

is the detrending step introduced. This also applies here for

the direct principal-components regression method. Once

the regression parameters have been estimated, the recon-

struction is performed with non-detrended proxy data. For

the case of the CP method, the calibration variants are

performed by accomplishing the variance-matching step

with the linearly detrended, and alternatively not detrend-

ed, Northern Hemisphere temperature and dimensionless

proxy-average series.

Pseudo-proxy network

Two pseudo-proxy networks, one large and one small, were

used to test the performance of the reconstruction methods.

The largest network is co-located to the proxy network

used by Mann et al. (1998). This pseudo-proxy network is

the same as in the study by von Storch et al. (2004) using

ECHO-G as laboratory. With the resolution of this model,

the pseudo-proxy network comprises 105 grid-points

(Fig. 3). The second pseudo-proxy network is co-located

with the smallest proxy network used in the study by Mann

et al. (1999). This network comprises the proxy indicators

available for the period 1000–1400 AD and consists of 12

proxy indicators. The location of the pseudo-proxies in the

model ECHO-G is shown in Fig. 3 and comprises also 12

model grid-points.

Noise models

The pseudo-proxies were generated by taking the annual

mean temperature of the corresponding model grid-points

and adding statistical noise. The level of non-climatic

noise in the real proxies is not known, and therefore, a

subjective guess has to be made here. For high (interan-

nual) frequencies, the amplitude of non-climatic noise can

be estimated from the correlation between the proxy

indicator and local instrumental temperature. Usually,

these correlations are of the order of 0.5 or lower (Jones

and Mann 2004). Higher correlations are sometimes

reported, but they are rare. A correlation of 0.5 corre-

sponds to a signal-to-noise ratio of 0.33, the signal being

defined here as the climate signal in the proxy record, and

the noise as the non-climatic part of the proxy variability.

The amplitude of noise can be also labelled as the amount

of noise variance as a percentage of the total proxy vari-

ance. For a correlation of 0.5, the amount of noise

variance is 75%. For white-noise pseudo-proxies, a rea-

sonable amount of noise would be the one that matches a

local correlation of 0.5 between the pseudo-proxy and the

grid-point-simulated temperature.

For red-noise pseudo-proxies, this question is not so

straightforward. The spectral characteristics of non-cli-

matic noise in real proxies is not known and only educated,

somewhat arbitrary, guesses can be made. This guess can

Fig. 3 Network of pseudo-proxies in the ECHO-G grid. Upper panel
depicts the full network, which emulates the full complete network of

real proxy indicators in Mann et al. (1998); lower panel depicts the

small pseudo-proxy network emulating the minimum network of real

proxies in Mann et al. (1999)
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also be strongly dependent on the nature of the proxy

indicator, and it may well be the case that the spectral

characteristics of the noise are different from those of the

signal. In this case, the amount of noise present in the

proxy indicators will be frequency-dependent. In this study,

we construct red-noise pseudo-proxies based on two dif-

ferent assumptions. Within the first, the relative amount of

noise is constant for all pseudo-proxies. They are con-

structed to contain approximately 75% of the noise

variance that can be resolved with the length of the climate

simulation. The proxies are constructed by fitting the

parameters of an autoregressive process to the simulated

grid-point temperatures. The order of the autoregressive

process is low (order 2). Random noise using these auto-

regressive parameters is then generated and the variance of

the noise is adjusted to achieve the desired level of noise

variance in the pseudo-proxy. As the autocorrelation of the

grid-point temperatures do not exactly match the autocor-

relation function of an autoregressive process for all lags,

and the autocorrelation function of the grid-point temper-

ature itself varies spatially, the amount of noise variance

does not exactly amount to 75% throughout the whole

spectral range.

In the second implementation of red-noise pseudo-

proxies, the spectral characteristics are assumed to vary

spatially. In this case, the noise is assumed to be a AR-1

process, but the value of the lag-1 autocorrelation is drawn

at random from a beta distribution (parameters 7 and 3), in

the interval (0,1). The beta distribution offers some

advantages for this purpose. The beta distribution takes

values in a bounded interval (whereas for instance,

Gaussian deviates would have to be truncated to the

interval between 0 and unity). Also, the beta distribution is

flexible enough to achieve a reasonable approximation to

the desired form of the distribution with just two free

parameters. The choice of these parameters of the beta

distribution results in a mean value of 0.7 and a standard

deviation of 0.43 for the lag-1 autocorrelation coefficient.

An example of the sample autocorrelation for 100 noise

timeseries generated in this way is shown in Fig. 4. In this

case, the amplitude of noise included in the pseudo-

proxies is 75% of the total pseudo-proxy variance at high

(interannual) frequencies, but as the spectral characteris-

tics of the noise are drawn at random, it cannot be

guaranteed that this level of noise is maintained for lower

frequencies. In general, for those pseudo-proxies in which

the added noise has a higher autocorrelation than that of

the associated grid-point temperature, the relative level of

noise will increase with decreasing frequency and vice

versa.

A slightly more sophisticated model for the non-climatic

noise, making use of long-range time autocorrelation, has

been also implemented. This model is based on long-term

persistence process (Hoskings 1984; Koutsoyiannis 2003;

Cohn and Lins 2005). This type of processes displays an

autocorrelation function as a function of lag that decays

with a power-law, instead of the more rapid decay char-

acteristic of autoregressive processes, which is exponential

in the case of AR-1 processes or, more generally, bounded

by an exponential decay for AR-n processes. A long-range

autocorrelation behaviour has been identified in a number

of observed hydrological and climatic records (Bunde et al.

2005).

In such processes, the autocorrelation function C

follows:

CðlÞ� l�c ð5Þ

where l is the time-lag. The value of c is related to the

Hurst exponent H and to the fractional-difference

parameter d (see e.g. Cohn and Lins 2005) by

Fig. 4 Sample autocorrelation

estimated from random

timeseries generated by

autoregressive process of order

1 with lag-1 autocorrelation

drawn from a beta distribution

with mean 0.7 and standard

deviation 0.42 (left) and

estimated from long-term-

persistence noise timeseries

generated with a lag-1

autocorrelation of 0.7 and a c
parameter (describing the

power-law decay of the

autocorrelation function, see

text) drawn from a beta

distribution with mean 0.5 and

standard deviation 0.18
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c ¼ 2ð1� HÞ ð6Þ
c ¼ 1� 2d: ð7Þ

Long-range-autocorrelation is characterised by values of d

between 0 and 0.5, which corresponds to values of c
between zero and unity. Typical reported values for

hydrological time series are d * 0.3, corresponding to

c * 0.5 (Cohn and Lins 2005). Values of d higher than 0.5

(values of c lower than 0) give rise to non-stationary pro-

cesses and values of d lower than 0.5 (values of c higher

than 1) do not produce long-range correlation.

In the present study, long-term-persistence noise has

been generated by the method proposed by Makse et al.

(1996), based on the transformation of the Fourier coeffi-

cients of realisations of white noise. The methods makes

use of the relationship—through Fourier transformation—

between the spectral density of a timeseries and its auto-

correlation function, and of the fact that the Fourier

transform of a power-law-decaying autocorrelation func-

tion can be calculated analytically. In the first step, a

realisation of a Gaussian white-noise is generated by

standard algorithms. The resulting Fourier coefficients are

then re-scaled to the target Fourier transform, and finally

the modified Fourier coefficients are back-transformed to

the time domain. The resulting timeseries displays the

desired form of the autocorrelation function. A long-range-

correlation process is described by a single parameter, say

c, and the lag-1 autocorrelation cannot be prescribed

independently of c. However, for comparison purposes, in

this application, one would like to align the lag-1 auto-

correlation of the long-range-autocorrelated noise with that

of the AR-1 noise. This is achieved here by mixing the

long-range noise with white noise to achieve the desired

lag-1 autocorrelation. The form of the autocorrelation

function is thereby not changed , and only the general level

of the autocorrelations can be adjusted up or down.

The noise in the pseudo-proxies is constructed to have a

population-lag-1 autocorrelation of 0.7 and the value of c is

however allowed to vary across the pseudo-proxies. This

value is drawn from a beta distribution with parameters

(3,3) in the interval (0,1), which yield a mean value of 0.5

and a standard deviation of 0.18 for the c parameter (cor-

responding to 0.75 and 0.36 for the Hurst coefficients,

respectively). The rationale here is to open the possibility

for some of the pseudo-proxies to have long-memory noise.

Figure 4 also shows the sample autocorrelation function

estimated from 100 long-term persistence timeseries gen-

erated with this methodology. As in the previous case, the

relative level of noise cannot be maintained constant

throughout the whole frequency range, as the spectrum of

the noise is defined by the random value of c. The ampli-

tude of the noise is such that, as in the previous cases, it

accounts for 75% of the pseudo-proxy variance at inter-

annual frequency.

Estimation of the reconstruction uncertainties

In general, the uncertainties in the reconstruction of the

Northern Hemisphere temperature for each particular

method are composed of two terms (National Research

Council 2006): uncertainties originating in the estimation

of the free parameters inherent to each model and to

inadequacies in the model structure, and uncertainties

originating in the high-frequency random part of the tem-

perature variability. When considering long timescales, the

random part is considerably reduced by low-pass filtering,

so that at those timescales the uncertainties in the model

parameters tend to be the larger contributor.

In this study, 31-year running mean values of the target

Northern Hemisphere temperature and of its reconstruction

will be considered. Part of the uncertainty of the first kind

will be estimated by generating 100 realisations of the

pseudo-proxy noise and using these realisations as input for

the reconstruction method. The resulting spread in the

reconstruction illustrates the spread in the best estimate that

could have been obtained with different samples and check

whether this range of variation includes the target tem-

perature, i.e. whether or not the statistical method provides

biased estimations. In the following figures, the 5–95%

spread is shown together with the median. The median and

the spread are calculated for each 31-year moving window,

so that the curves shown in the curves do not represent

individual reconstruction obtained from a particular noise

realisation, but an envelope encompassing 90% of the

pseudo-reconstructions in the corresponding moving

window.

Results

Pseudo-proxies from simple noise models

The results of the three reconstructions methods of the

Northern Hemisphere temperature in the ECHO-G simu-

lation for both pseudo-proxy networks from simple white-

noise and red-noise models (spatially constant spectral

properties) and for both variants of the calibration (detr-

ended or not detrended) are shown in Fig. 5, together with

the target model-simulated North Hemisphere annual mean

temperature. The correlation between pseudo-proxies and

local temperature is 0.5. The general characteristics com-

mon to all pseudo-reconstructions is that they all

underestimate the past variations of the mean temperature,

and the estimated temperature in the centuries previous to
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the instrumental period is too warm. The bias, however,

depends on the noise model, on the calibration variant and

on the size of the pseudo-proxy network.

For the complete proxy network, the Monte Carlo

uncertainties are considerably smaller than that for the

smaller pseudo-proxy network. It is with the complete

network where the differences among the performance of

the methods are, therefore, more clear. In this case, the

detrended-calibration variant performs worse than the non-

detrended calibration. Also, the assumption of red-noise in

the pseudo-proxies deteriorates the performance of all three

methods relative to the white-noise model. The best-per-

forming method among these three methods tested is CPS,

which with non-detrended calibration and white noise

pseudo-proxies is able to yield temperatures very close to

the true simulated temperature. For this method, red-noise

pseudo-proxies also cause a very minor, almost imper-

ceptible worsening of the skill, although red-noise pseudo-

proxies widen the uncertainty range. In this sense,

therefore, CPS seems to be the most robust method among

the three tested in this study.

When the pseudo-proxy network is considerably deci-

mated to just 12 proxy indicators, the skill of all three

methods deteriorates again, and the Monte Carlo uncer-

tainties become considerably larger when compared to the

results obtained with the complete network. However, the

reduction in skill does not seem to be very dramatic con-

sidering that the size of the network has been reduced by a

factor of about ten. It seems, therefore, that at multidecadal

timescales, a limited number of proxies is able to capture a

large part of the signal of the Northern Hemisphere mean

temperature.

Perfect pseudo-proxies

In an ideal set-up, a large high-resolution proxy network

that performs best will always be preferred. However,

sometimes, a choice has to be made between a small

Fig. 5 Pseudo-reconstructions of the annual mean Northern Hemi-

sphere temperature in the model ECHO-G for different setups: upper

and lower rows, large and small network, respectively; left column:

white-noise pseudo-proxies and detrended calibration, middle col-

umn: white-noise pseudo-proxies and non-detrended calibration; right

column, red-noise pseudo-proxies and non-detrended calibration. The

interannual correlation between pseudo-proxies and local temperature

is 0.5. Curves represent deviations from the mean of the calibration

period 1900–1980. Thick and thin lines represent the median and the

5%-95% range resulting from 100 Monte Carlo realisations of the

noise in each running 31-year period
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network of high-quality proxies (defined here as proxy

indicators with a very high correlation with local temper-

ature) and a larger network poorer local correlations. This

trade-off between the quality and quantity of the proxies

can be explored also in the virtual reality of reconstructions

with pseudo-proxies. To explore the skill of a small

high-quality network, pseudo-reconstructions with the 12-

pseudo-proxy network with no noise (i.e. perfect pseudo-

proxies involving directly the model-simulated grid-point

temperatures with no noise contamination) has also been

investigated for all three reconstructions methods (Fig. 5),

this time only with the non-detrended calibration variant. It

turns out, as expected, that with the small proxy-network

the pseudo-reconstructed temperature is closer to the target

temperature than that with noise-contaminated proxies,

either white-noise or red-noise. The improvement is par-

ticularly visible for the two regression-based methods. For

the CPS method, which previously displayed the best

performance, the improvement is not so dramatic. It seems

that this method is also more robust against the presence or

absence of noise in the pseudo-proxies. Actually, the

results obtained with CPS are also most insensitive to the

amplitude of the noise (not shown).

Comparing the performance of the three methods in the

cases of the large and noisy pseudo-proxy network (Fig. 5)

with the result obtained with the small network of perfect

pseudo-proxies (Fig. 6), it turns out that the differences in

the pseudo-reconstructions are small, albeit the small net-

work with perfect pseudo-proxies provides very slightly

better results. They could be very well inside the uncer-

tainty bounds.

Perfect pseudo-proxies are, however, a limiting unreal-

istic case. It should be noted that the results with the small

network of perfect pseudo-proxy set could be model-

dependent and also present spatial variability associated to

the actual geographical distribution of a few number of

proxies, i.e. alternative distributions of 12 proxies could

perhaps capture better the large-scale modes of temperature

variation. These two aspects have not been constrained in

this approach, but the small differences between Figs. 4

and 5 suggest that a large network of imperfect pseudo-

proxies can be a practical strategy in the real world, pro-

vided that the amplitude of the noise remains limited to a

local correlation between proxies and local temperature of

about 0.5 and does not considerably drop below this value.

Pseudo-proxies with mixed temperature–precipitation

response

A problem that may arise in the use of proxy records to

reconstruct past climates is related to the climate variable

that the record is meant to represent. For some records, this

question cannot be answered unambiguously (Jones et al.

1998; National Research Council 2006). Even if the proxy

record is correlated to local temperature in the calibration

period, this may not hold for longer timescales. The cor-

relation of the proxy to temperature could stem from an

indirect correlation of temperature to another underlying

driving variable, for instance, precipitation. In this section,

we investigate the effect on temperature reconstructions of

pseudo-proxies that are constructed as a mixture of local

temperature and precipitation, but which are used only to

reconstruct temperature. In this sense, the pseudo-proxies

are constructed as in the previous sections but replacing

the statistical noise by the grid-cell model-simulated

precipitation.

Several other set-ups to implement this idea could have

been can be considered, but here only a simple zero-order

scheme will be tested, in which the grid-point pseudo-

proxies are constructed, for each grid-point, by adding

temperature and precipitation in such a way that the

amount of interannual variance for the whole simulation

period is equally shared by both variables. In this simula-

tion, this ratio leads to an average absolute value of

correlation between local temperature and the pseudo-

proxy of 0.67 for the large network of 105 pseudo-proxies

and a range of 0.5 and 0.86 for the small network of 12

pseudo-proxies. The amount of non-temperature noise is,

therefore, smaller than that in the previous cases con-

structed with stochastic noise. These relatively high

correlation values are mainly caused by the tendency of

annual precipitation to follow the local temperature at

Fig. 6 Pseudo-reconstructions of the annual mean Northern Hemi-

sphere temperature in the model ECHO-G with perfect pseudo-

proxies and small proxy-network. Curves show deviations from the

mean of the calibration period 1900–1980. The calibration variant is

non-detrended calibration
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decadal and longer timescales. Note, however, that these

values are not the correlation between local temperature

and precipitation, since half of the variability of the

pseudo-proxies already represents local temperature. The

calibration variant used in this case is also the non-detr-

ended calibration.

The results obtained with the large and small pseudo-

proxy network are shown in Fig. 7. Qualitatively, there are

no significant differences from the results obtained in

previous sections. All three methods tend to underestimate

past variations of the Northern Hemisphere temperature.

Again, the best performing method is CPS. The regression-

based methods display clear biases, although smaller than

for the previous cases with pseudo-proxies, which contain a

larger amount of non-temperature noise.

Pseudo-proxies with spatially varying stochastic noise

Figure 8 shows the pseudo-reconstructions of the Northern

Hemisphere temperature using pseudo-proxies containing

stochastic noise with spatially varying spectral character-

istics, for the large and small networks. In both cases, the

CPS method performs clearly better than the regression-

based methods. Again, the use of very few proxy indicators

degrades the performance of all three methods, in partic-

ular for direct principal-components regression. As

expected, the uncertainty ranges are larger for the small

network for the three methods. When comparing the results

obtained in this subsection with those obtained with noise

with spatially constant autocorrelation (Fig. 5), some

changes can be observed. The performance of the three

methods is slightly poorer when the noise is spatially

heterogeneous, and the uncertainty bounds have, unsur-

prisingly, increased. However, the qualitative picture

remains the same as with spatially homogeneous noise

(Fig. 5). This qualitative picture remains also valid when

long-term-persistence pseudo-proxies are used (Fig. 9). In

this case, the smaller pseudo-proxy network also leads to a

larger warm bias and larger uncertainty ranges than with

the larger network. A direct comparison to the case with

spatially heterogeneous autoregressive noise is hampered

by the fact that it is difficult to obtain a similar spread in

the spectral characteristics, so that the apparently larger

uncertainty range in the case of the small long-memory

proxy network than with autoregressive noise should not

be pursued too far.

Influence of proxy seasonality and proxy location

Real proxies usually do not directly record annual mean

temperature but are more sensitive to climate conditions in

one season than in the rest of the year. For instance, trees

and other biological systems may respond to growing

season temperature or available moisture and ice-core

records may reflect more strongly environmental condi-

tions in the season with strongest precipitation rate.

Nevertheless, they are used to reconstruct annual mean

temperatures assuming that seasonal and annual tempera-

tures are strongly correlated. Again, this assumption can be

checked in the instrumental period, but uncertainty about

this connection at centennial timescales is much larger

(Jones et al. 2003). The influence on reconstructions of

annual temperature using of seasonal proxies can be

explored with pseudoreconstructions in the climate simu-

lations. In the climate simulations, annual and summer

temperatures are in general strongly correlated at multi-

decadal timescales and here, for brevity, only for the cases

of white-noise pseudoproxies and non-detrended calibra-

tion. The conclusions can be extended to all other cases—

red noise pseudoproxies and detrended calibration. The

pseudo-proxies are then constructed by taking the June–

August mean grid-pint temperature and adding white noise

Fig. 7 Pseudo-reconstructions

of the annual mean Northern

Hemisphere temperature in the

model ECHO-G with the large

and small proxy networks and

with pseudo-proxies constructed

contaminating the grid-point

temperature with simulated

precipitation. The amount of

non-temperature variance is

50% of the total pseudo-proxy

variance of each pseudo-proxy.

The calibration variant is non-

detrended calibration
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to reach a correlation to the June–August grid-point tem-

perature of 0.5. The target temperature is still the annual

mean Northern Hemisphere temperature. Therefore, for

both regression methods, the spatial EOF patterns were

calculated from the annual mean temperature field. Fig-

ure 10 displays the pseudoreconstructions for the large and

small pseudoproxy networks. The differences to the results

obtained with annual-temperature pseudoproxies are vary

small. In this case, again, all three methods underestimate

the low-frequency variations of the target temperature and

the use of the small pseudoproxy network yields worse

results than the full network.

Another aspect that may influence the performance of

the reconstructions is the fact that, in the full proxy net-

work, the North American continent is over-represented,

especially compared to the Eurasian land mass. To some

extent, this over-representation is ameliorated in the

MBH98 method by a previous PCs analysis of some of

the proxy subnetworks in areas with a dense coverage of

real proxies, such as in North America (Mann et al.

1998). Nevertheless, it could be interesting to investigate

whether a dense Asian pseudo-proxy network would yield

results much different than those obtained with the real

proxy locations. This has been also investigated in this

section by interchanging a subset of the North American

and Asian proxy locations in the full proxy network: the

pseudo-proxies located in the geographical box (30 N–55

N;120 W–60 W) are transferred to (30 N–55 N;120 E–60

E) by transforming west longitudes to east longitudes.

The opposite transformation was applied also to the ori-

ginal locations in (30 N–55 N;120 E–60 E) (Fig. 3). The

influence of the pseudo reconstructions obtained with

the flipped proxy network have been investigated for the

cases with white-noise and red-noise pseudoproxies. The

results for the white-noise pseudoproxies are very similar

to those with the original proxy location. For red-noise

Fig. 8 Same reconstructions as

in Fig. 7 but using pseudo-

proxies constructed by

contaminating the grid-point

temperature with spatially

heterogenous autoregressive

process of order 1. The

(population) lag-1 noise

autocorrelation is drawn from a

beta distribution in the interval

(0,1) with mean 0.7 and

standard deviation 0.42. The

amount of non-temperature

variance at interannnual

timescales is 75% of the total

variance of each pseudo-proxy

Fig. 9 Same reconstructions as

in Fig. 7 but using pseudo-

proxies constructed by

contaminating the grid-point

temperature with spatially

heterogeneous long-term-

persistence noise. The

(population) lag-1 noise

autocorrelation is 0.7 and the

exponent describing the power-

law decay of the autocorrelation

function is drawn from a beta

distribution in the interval (0,1)

with mean 0.5 and standard

deviation 0.18. The amount of

non-temperature variance at

interannnual timescales is 75%

of the total variance of each

pseudo-proxy
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pseudoproxies, the pseudo-reconstructions are slightly

better (Fig. 11, although qualitatively similar. The dif-

ferences in this latter case are probably not large enough

to claim that Asian proxies could be fundamentally more

useful to reconstruct the Northern Hemisphere tempera-

ture in the real world. This aspect may be well dependent

on the particular climate model. This example, however,

illustrates that it should be indeed desirable to achieve a

regular proxy coverage over the globe.

Discussion and conclusion

Three statistical methods to reconstruct the Northern

Hemisphere temperature in the past millennium have been

tested in the virtual reality of a simulation with the climate

model ECHO-G, under different conditions related to the

size of the proxy network and pseudo-proxy noise model.

Two of the methods are regression-based and the third

method is a simple all-proxy-averaging with re-scaling.

The general conclusion extracted from this study is that

all methods underestimate the low-frequency variability

of the Northern Hemisphere temperature. However, the

simple method CPS provides, in the conditions tested in

this study, better results and is more robust against chan-

ges in the proxy network and noise characteristics. This

conclusion is consistent with the results found by Juckes

et al. (2007) in an analysis of real reconstructions of the

past Northern Hemisphere temperature from real proxy

records.

The factors that determine more strongly the skill of the

pseudo-reconstruction are, within those tested in this study,

the size of the proxy network (with better reconstructions

when the network is larger) and the previous detrending of

the calibration data (which degrades the quality of the

pseudo-reconstruction). In this study, the role of the

amplitude of the noise has not been tested, as it became

clear in previous analysis that this factor quite strongly

influences the skill of the pseudo-reconstruction (von

Storch et al. 2004).

Fig. 10 Pseudo reconstructions

of the mean annual Northern

Hemisphere temperature

obtained from summer white-

noise pseudoproxies. The local

correlation between summer

temperature and summer

pseudoproxy is 0.5 for all

pseudoproxies. For the direct

PC regression and MBH98

methods, the spatial temperature

EOF patterns are calculated

from the annual mean

temperature field

Fig. 11 Pseudo reconstructions

of the mean annual Northern

Hemisphere temperature

obtained after transferring the

proxy locations of the full

network (Fig. 3, upper panel) in

the geographical box (30 N–55

N;120 W–60 W) to (30 N–55

N;60 E–120 E), and vice-versa,

by swapping east and west

longitudes. The pseudo-proxies

contain white-noise with local

correlations to temperature

of 0.5
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The superiority of the CPS method found here may not

have general validity and in other circumstances regres-

sion-based methods may display a better performance. For

instance, this study indicates that regression-based methods

are more sensitive to the size of the proxy-network (com-

pare upper and lower panels in Fig. 5). If the focus of the

reconstruction method is regional rather than hemispheric

and the density of proxy indicators is higher, their perfor-

mance may surpass the CPS method. When applying the

pseudo-proxy method to test the reconstructions of past

European temperatures of Luterbacher et al. (2004), who

used a direct principal-components regression method,

Küttel et al. (2007) found that the full pseudo-proxy net-

work representing a proxy network of 166 indicators in

Europe yields a satisfactory pseudo-reconstruction of mean

European temperatures. This high number of proxy indi-

cators covers quite effectively the whole target region.

Decimation of the pseudo-proxy network to emulate the

diminishing number of proxies available backwards in time

induces again a deterioration of the pseudo-reconstructions,

leading to an underestimation of the low-frequency vari-

ability in the model ECHO-G (Küttel et al. 2007).

One of the main uncertainties in pseudo-proxy studies is

a valid model for the non-climate noise, in particular at

longer timescales. The models used in the present study

(white noise, red noise, precipitation noise and long-term

persistence) are admittedly simple, but more complex noise

models require a more detailed analysis of the response of

the different proxies, particularly of the biological proxy

indicators as tree-rings and corals, to modulations of non-

climatic environmental and ecological factors at long

timescales. This knowledge is so far not generally avail-

able. Within the noise models tested here, this study

indicates that the nature of the noise is not the source of

large differences in the performance of the methods, but

it has to be noted that the choice of the noise-model

parameters are just educated guesses, especially for the

parameters that drive the low-frequency variability of the

proxy indicator, so that further analysis may prompt a

revision of this conclusion.

In this study, only the output of one climate simulation

for the whole past millennium has been used and the per-

formance of the reconstructions methods could be different

when using another climate model. However, the objective

of a pseudo-proxy analysis of reconstruction methods

should not be limited to identify simulations where the

performance of some of the methods is acceptable, but to

test the robustness of the reconstruction methods under

different, but plausible, realizations of past climates. This

line of research is still limited by the number of simulations

covering the whole past millennium with state-of- the-art

General Circulation Models. To our knowledge, only two

models have been used for this purpose (shown in Fig. 1),

so that the assessment of the robustness of reconstructions

methods is still limited in this regard.
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