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ABSTRACT

Using the observed relationships between sea level pressure (SLP) and significant wave height (SWH) as
represented by regression models, climate change scenarios of SWH in the North Atlantic were constructed by
means of redundancy analysis (for seasonal means and 90th percentiles of SWH) and nonstationary generalized
extreme value analysis (for seasonal extreme SWH). SWH scenarios are constructed using output from a coupled
climate model under three different forcing scenarios. Scenarios of future anomaly seasonal statistics of SWH
are constructed using climate model projections of anomaly seasonal mean SLP while projections of seasonal
extreme SWH are made using projections of seasonal mean SLP and seasonal SLP gradient index. The projected
changes in SWH are assessed by means of a trend analysis.

The northeast Atlantic is projected to have increases in both winter and fall seasonal means and extremes of
SWH in the twenty-first century under all three forcing scenarios. These changes are generally accompanied by
decreases in the midlatitudes of the North Atlantic and increases in the southwest North Atlantic. The rate and
sign of the projected SWH change is not constant throughout the twenty-first century. In the Norwegian and
North Seas, the projected SWH changes are characterized either by faster increases in the late decades than in
the early decades, or by decreases in the early decades followed by increases, depending on the forcing scenario
and the specific location. Using lower or higher rates of increase in greenhouse gases forcing generally leads
to reduced or increased rates of change, respectively, in ocean wave heights. The sign and rate of future wave
height changes in the North Sea in particular appear to be quite dependent on the forcing conditions. In general,
global warming is associated with more frequent occurrence of the positive phase of the North Atlantic Oscillation
(NAO) and strong cyclones, which leads to increases of wave heights in the northeast Atlantic.

1. Introduction

The earth’s climate is constantly changing. In addition
to natural variabilities, future climate will also be in-
fluenced by anthropogenic emissions of greenhouse gas-
es (GHG) and aerosols. The tools currently available
for simulating the response of the climate system to the
changing atmospheric composition are global climate
models. Descriptions of the modeled response of the
climate system to scenarios of anthropogenic forcing
are referred to as climate projections. With the exception
of some restricted oceanic regions in some models, all
regions of the globe are projected to show warming
under the enhanced GHG conditions that are anticipated
to prevail in the late decades of the twenty-first century.
Global mean temperature is projected to rise by 1.4 to
5.8 K between 1990 and 2100 (Houghton et al. 2001)
for the full range of Special Report on Emissions Sce-
narios (SRES; Nakicenovic and Swart 2000) forcing
scenarios. The corresponding rise in sea level is pro-
jected to be 0.09 to 0.88 m (Houghton et al. 2001).
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The oceans are an important component of the climate
system and oceanborne commerce is sensitive to the
state of the ocean surface. Among other surface char-
acteristics, ocean wave height could be affected by an-
thropogenic forcing of the climate system. Since the
design of offshore oil platforms and other marine and
coastal infrastructure is constrained by the largest wave
height event anticipated during a fixed design period,
increases in the extremes of wave height could have an
impact on the life span of these installations that will
be in excess of impacts anticipated from the rising sea
level.

Projections of ocean wave height are therefore useful
for the design and operation of coastal and offshore
industries. However, previous studies in this field are
limited. The STOWASUS-2100 (Regional Storm, Wave,
and Surge Scenarios for the 2100 Century) Group (Kaas
and the STOWASUS Group 2001) carried out two 30-
yr time-slice experiments for the northeast Atlantic: a
control run for the period of 1970–99, and a double
CO2 run for the period of 2060–89. The WASA (Waves
and Storms in the North Atlantic) Group (1998) carried
out a similar pair of 5-yr time-slice experiments for the
North Atlantic as well as producing a statistical projec-
tion of future anomalies of intramonthly quantiles of
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wave height at Brent and near Ekofisk (in the northern
and central North Sea, respectively). Given the intensity
of industrial activity in parts of the North Atlantic, and
the intensity of ship traffic throughout the basin, there
is a need for additional projections of the future wave
height climate that span the entire basin. The purpose
of this study is to construct climate change scenarios of
wave height in the North Atlantic, and to carry out a
detailed assessment of changes in the projected wave
heights.

Strictly speaking, a climate change scenario refers to
the difference between some plausible future climate
and the current or control climate (usually as represented
in a climate model). Such differences can be viewed as
an interim step towards constructing a climate scenar-
io—a plausible future climate that has been constructed
for explicit use in investigating the potential conse-
quences of anthropogenic climate change (Houghton et
al. 2001). Climate scenarios should represent future con-
ditions that account for both human-induced climate
change and natural climate variability. Such scenarios
often make use of climate projections, by manipulating
model outputs and combining them with observed cli-
mate data.

Although global climate models (GCMs) are funda-
mental for constructing climate scenarios, the direct use
of GCM output for impact assessment is limited by a
number of factors. For example, most climate change
scenarios derived from GCMs are presented at coarse
spatial resolutions; and some types of climate variables
needed for quantitative impacts studies, such as ocean
wave heights or storm surge frequencies, are not directly
available from GCMs. Building on the assumption that
the regional climate is conditioned by the large-scale
atmospheric state, both dynamical models (e.g., regional
climate models, or RCMs) and empirical/statistical
methods have been developed for ‘‘downscaling’’
GCM-projected climate changes (i.e., to construct cli-
mate change scenarios on regional scales, or to provide
information about other climate variables that are not
simulated by contemporary climate models). Both ap-
proaches have their relative strengths and weaknesses
(Houghton et al. 2001).

We use an empirical approach based on linear re-
gression in this study. Our approach is the classical one
that has been used in empirical downscaling work. We
use a regression model to represent the relationship be-
tween large-scale atmospheric conditions and ocean
wave heights on the seasonal time scale in the observed
climate of the past several decades. We then assume that
this relationship will continue to hold under the possible
future climates as projected by a coupled global climate
model. The model we use is CGCM2, the second-gen-
eration coupled GCM of the Canadian Centre for Cli-
mate Modelling and Analysis (Flato and Boer 2001).
Our decision to use the empirical approach is based on
our previous experience with the analysis of the wave
climate of the latter half of the twentieth century and

the reconstruction of the wave climate of the early part
of the twentieth century (Wang and Swail 2001, 2002).
The empirical relationships that we exploit rely, pri-
marily, on the large-scale structure of the North Atlantic
sea level pressure (SLP) field as represented by its low-
order empirical orthogonal functions (EOFs). The
EOFs, which are derived from observations, represent
the climate model simulated SLP variability well, both
in the twentieth and twenty-first centuries. Thus the na-
ture of the large-scale circulation variability in the future
climate as simulated by CGCM2 is similar to that of
the present day. Hence, links between that variability
and the variability of SWH should also continue to hold
in the future.

The remainder of this paper is organized as follows:
The datasets and methodologies used in this study are
briefly described in sections 2 and 3, respectively. The
wave height climate change scenarios and the impli-
cations of climate change for extreme wave height
events are presented in section 4. Finally, a summary
and discussion is presented in section 5 to conclude this
paper.

2. Datasets

There is a strong relationship between storm track
variations and the large-scale, low-frequency variability
in the mean flow (Lau 1988; Chang and Fu 2003). Con-
sistent with this are the findings of our previous studies
(Wang and Swail 2002, 2001), which showed that sea-
sonal significant wave height (SWH) variations in the
North Atlantic over the 1958–97 period are closely as-
sociated with contemporaneous seasonal mean SLP var-
iations in the region, especially in winter [January–Feb-
ruary–March (JFM)] and fall [October–November–De-
cember (OND)]. This suggests that SLP can be used to
predict SWH, and that it may be possible to project
changes in the SWH climate by using GCM projected
changes in the SLP climate. This approach was adopted
in this study. Since the SLP–SWH relationship is much
more profound in the cold seasons (winter and fall) than
in the warm seasons [April–May–June (AMJ) and July–
August–September (JAS)], we will focus only on the
cold seasons in the present study. The observed SLP–
SWH relationship in each season will be represented by
a pair of regression models, one for seasonal means and
90th–percentiles of SWH, and a second for seasonal
maxima of SWH.

Observations of seasonal mean SLP, and of seasonal
means, 90th-percentiles, and maxima of SWH are need-
ed to train our statistical models. The wave height data
used in this study are derived from a 40-yr hindcast of
ocean waves in the North Atlantic for the period from
1958–97 (Swail and Cox 2000), which has been pro-
duced for assessment of the observed climate and var-
iability of the oceanic waves. The hindcast (i.e., pre-
diction for a past period) was obtained by driving a
third-generation ocean wave model (OWI 3G; see the
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appendix in Wang and Swail 2002 for more details) with
surface winds over the North Atlantic basin that were
intensively reanalyzed (Wang and Swail 2002; Swail
and Cox 2000). The resulting ocean wave height dataset
has complete spatial and temporal coverage for the 40-
yr reanalysis period, and compares well with both al-
timeter and in situ data (Swail and Cox 2000; Cox et
al. 2001). The hindcasts are available at 6-hourly in-
tervals on a 0.6258 latitude by 0.8338 longitude grid
over the North Atlantic (208–708N, 808W–208E). Sea-
sonal means, 90th-percentiles, and maxima of SWH
were derived from the 6-hourly wave data and reex-
pressed as anomalies relative to the baseline climate of
1961–90. These anomalies were used as the predictand
data when training our statistical models.

Similarly, seasonal means of SLP for 1958–97 were
derived from the twice-daily National Centers for En-
vironmental Prediction–National Center for Atmospher-
ic Research (NCEP–NCAR) reanalysis (Kalnay et al.
1996) and expressed as anomalies relative to the climate
of 1961–90. These data had previously be converted to
the global 96 3 48 Gaussian grid (approximately 3.758
latitude 3 3.758 longitude) used by CGCM2. Only those
data over the Atlantic sector (16.78–72.368N, 82.58W–
22.58E) were used in this study. The squared gradients
of monthly mean SLP were also calculated from month-
ly means of SLP, and subsequently seasonally averaged.
The monthly and seasonal squared gradient indices were
then expressed as anomalies relative to their 1961–90
baseline climates, which in turn, were used as predictors
when training our regression models.

Projections of future SLP anomalies were obtained
from three ensembles of CGCM2 simulations (monthly
mean SLP) using three different forcing scenarios: (i)
a modified version of the Intergovernmental Panel on
Climate Change (IPCC) IS92a scenario, in which the
change in GHG forcing corresponds to that observed
from 1850 to 1990 and increases at a rate of 1% yr21

thereafter until year 2100 (cf. Boer et al. 2000); (ii) the
SRES A2 forcing scenario, which is described in detail
in the Special Report on Emissions Scenarios (Naki-
cenovic and Swart 2000); and (iii) the SRES B2 forcing
scenario. The forcing includes both greenhouse gas and
aerosol loadings. The A2 scenario is similar to the IS92a
scenario. The B2 scenario reflects slower economic de-
velopment and population growth and thus a slower
increase in GHG forcing.

An ensemble of three integrations was available for
each forcing scenario, with each individual integration
being initiated from different initial conditions. The in-
tegration period is 251 yr (1850–2100) for the IS92a
scenario and 111 yr (1990–2100) for both the A2 and
B2 scenarios. The initial conditions for the A2 and B2
integrations were taken from the IS92a integration. The
differences between the individual integrations in an
ensemble are entirely due to natural variability (Flato
and Boer 2001). Thus, the three members of each en-

semble can be considered as three independent reali-
zations of the same stochastic process.

The CGCM2 simulated baseline (1961–90) climate
was calculated from the IS92a scenario ensemble sim-
ulations and subtracted from the CGCM2 simulated sea-
sonal means of SLP to obtain anomalies of seasonal
mean SLP simulated for each of the three forcing sce-
narios. CGCM2 simulated SLP squared gradient indices
were obtained from the simulated monthly means of
SLP that were adjusted to the observed baseline climate
(by replacing the simulated baseline climate with the
observed baseline climate as derived from the NCEP
reanalysis). The CGCM2 simulated anomalies of sea-
sonal mean SLP and squared SLP gradient indices were
then used as predictors in the SLP–SWH regression re-
lationship to project possible future anomalies of the
seasonal means and extremes of SWH (see sections
3a,b).

3. Methodologies

a. Redundancy analysis

The observed relationship between seasonal means of
SLP and seasonal means (or 90th percentiles) of SWH
was determined by using a least squares regression tech-
nique called redundancy analysis (RA). Redundancy
analysis is similar to canonical correlation analysis
(CCA) in the sense that both methods seek to derive a
hierarchy of correlated pairs of the predictor and the
predictand components. However, RA and CCA use dif-
ferent criteria to identify predictor and predictand re-
lationships. While CCA aims to maximize the corre-
lation between components, RA seeks to maximize the
proportion of predictand variance that is predicted for
each component. Thus, RA’s asymmetrical treatment of
predictor and predictand is better suited for situations
where the objective is to specify the behavior of one
variable on the basis of that of another.

Specifically, RA is used to identify patterns of dif-
ferent fields (X and Y) that are linked through the re-
gression model:

21Ŷ 5 m 1 C C (X 2 m ),YXY XX X (1)

where Ŷ is a linear prediction of Y, mX and mY are the
expected values of X and Y, respectively, and CXX and
CYX are the covariance and cross-covariance matrices.
Redundancy analysis maximizes the predicted variance,
finds a hierarchy of orthogonal predictand modes, and
associates them with the corresponding predictor pat-
terns. The jth predictand mode identified by RA is the
jth EOF of the prediction Ŷ. The temporal variations of
the jth best correlated pair of the predictor and the pre-
dictand modes are referred to as the jth RA components
(RAC j). The proportion of the total variance in Y which
is predicted by the linear prediction Ŷ is called the re-
dundancy index, denoted as R2. More details about RA
can be found in Wang and Swail (2001, 2002), Wang
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TABLE 1. Redundancy index (R2) of the RA model for seasonal SWH statistics (means and 90th percentiles; also denoted as Havg and
Hp90, respectively) over the North Atlantic, as well as the correlation coefficients between the observed and RA-predicted leading PCs, and
between the observed and RA-predicted leading RA components (RACs) of SWH statistics for winter (JFM) and fall (OND). Also shown
are the percentages of the total variance in the SWH statistics (PSWH) or in the seasonal mean fields of SLP or seasonal SLP gradient index
(PSLP) that are associated with the 7 retained EOFs for each season (12 retained EOFs when the seasonal SLP gradient index is used as
predictor).

Predictor PSLP PSWH R2 PC1 PC2 PC3 RAC1 RAC2 RAC3

Seasonal mean SLP JFM

OND

94.0

90.9

Havg
Hp90
Havg
Hp90

89.3
85.1
83.3
78.7

0.96
0.87
0.81
0.72

0.96
0.93
0.79
0.78

0.79
0.78
0.90
0.77

0.55
0.48
0.75
0.69

0.95
0.93
0.81
0.81

0.84
0.80
0.90
0.79

0.71
0.67
0.80
0.70

Seasonal SLP gradient index JFM

OND

91.9

86.7

Havg
Hp90
Havg
Hp90

94.5
91.7
90.8
87.9

0.87
0.80
0.82
0.78

0.91
0.85
0.77
0.67

0.60
0.66
0.75
0.58

0.37
0.54
0.32
0.40

0.91
0.87
0.79
0.78

0.72
0.69
0.77
0.64

0.30
0.45
0.61
0.66

and Zwiers (2001), von Storch and Zwiers (1999), and
Tyler (1982).

We also tried to use the seasonal SLP squared gradient
index as predictor in the RA analysis and found that it
was not quite as good a predictor for SWH as seasonal
mean SLP. This is probably because the seasonal
squared gradient index is not a better indicator of storm
track activity as seasonal mean SLP. Low pressure fea-
tures in the seasonal mean SLP field are well correlated
with high magnitude SWH features because these mean
SLP features arise in a given area only when it is tra-
versed by large numbers of synoptic systems. Therefore,
we decided to use seasonal mean SLP as the predictor
of the corresponding seasonal SWH statistics (means or
90th-percentiles).

The RA analysis was performed in reduced dimension
versions of the predictor and predictand datasets so as
to focus attention on their large-scale behavior. Bearing
in mind the related eigenspectra, we compared the ‘‘pre-
dictive’’ skills of RA models with between 4 and 13
leading SLP and SWH principal components (PCs). We
found that the best skill is obtained when the seven
leading PCs of SWH and SLP are retained. Twelve PCs
are required when the seasonal SLP gradient index is
used as the predictor. Thus, the retained leading PCs of
the SWH and SLP anomalies were used instead of the
original datasets in the RA-regression analysis. The per-
centage of the total variance associated with the retained
PCs/EOFs (also called the retained variance) is listed
in Table 1. This percentage ranges from 80% to 90%
for seasonal mean SWH, and 91%–94% for the observed
seasonal mean SLP (NCEP reanalysis). Most impor-
tantly, the observed changes in SWH and SLP are well
represented in the retained leading PCs/EOFs. For ex-
ample, changes of winter SWH in the North Atlantic
are well represented by the first principal component of
SWH (Wang and Swail 2002).

There is evidence in the literature suggesting that one
of the climate’s responses to external forcing may be a
change in the occupation statistics of its preferred modes
of variability, rather than changes in the modes them-

selves (Palmer 1999; Monahan et al. 2000). Thus we
projected the CGCM2 simulated SLP anomalies onto
the retained EOFs derived from NCEP reanalysis to
obtain seven simulated pseudo-PCs of SLP anomalies.
These seven pseudo-PCs explain 87%–89% (82%–85%)
of the total simulated variance of winter (fall) SLP
anomalies and well represent the trends and large-scale
variabilities of the projected SLP.

The regression model used in the RA analysis was
trained using detrended anomalies of seasonal means
(or 90th-percentiles) of SWH, derived from 6-hourly
hindcast wave data, and detrended anomalies of seasonal
mean SLP or the seasonal SLP gradient index from the
NCEP reanalysis for the 40-yr period from 1958 to
1997. Both predictor and predictand were of reduced
dimension as explained earlier. The training was per-
formed with linearly detrended anomalies to ensure that
the fitted model was not influenced by artificial depen-
dencies resulting from, for example, the response of the
observed SLP field to anthropogenic forcing (e.g., Gil-
lett et al. 2003).

Table 1 shows three measures of the predictive skill
of the RA regression: 1) the proportion (R2) of the pre-
dictand variance that can be predicted by the RA re-
gression, 2) the correlation coefficients between the
three leading pairs of observed and RA-predicted PCs,
and 3) the correlation coefficients between the three
leading pairs of observed and predicted RA components
(RACs) of seasonal means and 90th-percentiles of
SWH. The regression using seasonal mean SLP as the
predictor can explain about 96% (87%) of the total re-
tained variance of seasonal means (90th-percentiles) of
SWH in winter, and about 81% (72%) in fall. Thus the
link between SLP and SWH is somewhat stronger in
winter than in autumn, and it is stronger for mean SWH
than for seasonal extremes of SWH. In particular, the
first two PCs, which well represent trends and large-
scale variabilities of SWH, were very well ‘‘predicted’’
in the RA regression. The link between the seasonal
SLP gradient index and SWH are similar in strength to
those between seasonal mean SLP and SWH, although
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FIG. 1. The baseline (1961–90) climate values of winter and fall seasonal 90th percentiles of SWH in the North Atlantic. The contour
interval is 0.5 m.

this gradient index is not quite as good a predictor for
SWH as the seasonal mean SLP (it has slightly lower
correlation coefficients between the observed and pre-
dicted PCs or RACs; cf. the PCs and RACs columns in
Table 1).

CGCM2 simulated anomalies of seasonal mean SLP
(also of reduced dimension, but not detrended) were
then substituted into the RA regression model to project
future anomalies of seasonal SWH statistics (means and
90th-percentiles) of reduced dimension. These EOF-
space projections were then converted back to physical
space. Each projected anomaly field of SWH statistics
obtained in this way was then superimposed on the cor-
responding field of observed baseline climate of SWH
statistics (shown in Fig. 1 for the 90th percentiles) to
obtain a projection of the full field for that statistic. A
separate projection was produced using the SLP anom-
alies derived from each member of each three-member
ensemble of CGCM2 simulations, resulting in an en-
semble of three projections of seasonal SWH statistics
(means or 90th-percentiles) for each of the three forcing
scenarios. These projections of SWH were then ana-
lyzed to assess future trends in ocean wave heights (see
sections 3c and 4a).

b. Nonstationary generalized extreme value (GEV)
analysis

Since non-Gaussian behavior is a particular concern
for extremes, statistical models for data of Gaussian
distribution (such as redundancy analysis or other con-
ventional regression models) are not really suitable for
analyzing extremes. Further, if the earth’s climate is
changing, then its extremes are most likely those of a
nonstationary process, which will have characteristics
that change systematically through time. In this case,
the classical stationary generalized extreme value

(GEV) model (with constant parameters) is no longer
appropriate (Leadbetter et al. 1983). One should allow
the GEV parameters to change through time in order to
represent the systematically changing characteristics of
extremes. A GEV model of time-varying parameters is
called a nonstationary GEV model (Coles 2001).

In this study, we carried out the nonstationary GEV
analysis to characterize the SWH extremes of the chang-
ing climate, to make projections of future extreme wave
heights. We first fit nonstationary GEV models to the
observed seasonal maxima of SWH, in which one or
more of the GEV parameters are assumed to be a func-
tion of atmospheric variables that are thought to affect
SWH extremes. Then, the CGCM2 projections of the
atmospheric variables for 1990–2099 are used to vary
the parameters of the GEV model to produce projections
of future extremes (see section 4).

Specifically, the GEV family has distribution func-
tions of the form

21/jz 2 m
G(z) 5 exp 2 1 1 j ;5 1 2 6[ ]s

2` , m , `, s . 0, 2` , j , `,

where m, s, and j are the location, scale, and shape
parameters, respectively (Coles 2001). These parame-
ters could change as a result of climate change. How-
ever, the shape parameter of a GEV distribution is dif-
ficult to estimate with precision, so it is usually unre-
alistic to try modeling j as a smooth function of time
or one or more time-dependent covariate(s). In this
study, we assume that j will not change as a result of
climate change. We do, however, allow the location and
scale parameters to vary with time-dependent covari-
ates.
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TABLE 2. The field significance (Livezey and Chen 1983) of the
regression parameters r1, r2, q1, and q2 (see section 3b), as represented
by the percentages of grid points where a given GEV model is favored
over a relatively simpler GEV model at the 5% level of significance.

JFM OND

GEV1 over GEV0 (r1)
GEV2 over GEV1 (r2)
GEV2 over GEV0 (r1 and r2)
GEV3 over GEV2 (q1)
GEV3 over GEV0 (r1, r2, and q1)
GEV4 over GEV3 (q2)
GEV4 over GEV0 (r1, r2, q1, and q2)

54.0
43.6
70.3

2.3
31.2

1.4
10.4

44.8
29.7
53.1

2.2
21.4

1.0
8.4

Let the notation GEV (m, s, j ) denote the GEV dis-
tribution with location parameter m, scale parameter s,
and shape parameter j. Then, the following five nested
GEV models were fitted to the observed seasonal max-
ima of SWH (derived from the 40-yr wave hindcast) at
each grid point.

• GEV0 (m, s, j ). In this model all parameters are con-
stant.

• GEV1 (mt 5 mo 1 r1Pt, s, j ). In this model the lo-
cation parameter is a function of the time-dependent
covariate Pt.

• GEV2 (mt 5 mo 1 r1Pt 1 r2Gt, s, j ). In this model
the location parameter is a function of two time-de-
pendent covariates, Pt and Gt.

• GEV3 (mt 5 mo 1 r1Pt 1 r2Gt, log(st) 5 bo 1 q1Pt,
j ). In this model the location parameter is a function
of two covariates (Pt and Gt), and the scale parameter
is a function of one covariate (Pt).

• GEV4 (mt 5 mo 1 r1Pt 1 r2Gt, log(st) 5 bo 1 q1Pt

1 q2Gt, j ). In this model the location and scale pa-
rameters are both functions of Pt and Gt.

The time-dependent covariates used in these models, Pt

and Gt, are, respectively, the seasonal mean SLP anom-
aly and the seasonal squared SLP gradient index at the
SWH grid point. Note that these SLP quantities, which
are required on the fine SWH grid, were calculated from
values at four nearest SLP grid points (all within about
500-km radius from the SWH grid point), using weights
proportional to the inverse of the distance. Here, Pt con-
tains information about the mean state of SLP at time
t, and Gt contains information about its variation in
space, over the area within 500-km radius from the SWH
grid point.

The previously described GEV models were trained
using observed Pt and Gt as derived from the NCEP
reanalysis for the 1958–97 period. The significance of
the linear relationships built into the various GEV mod-
els (and the goodness of fit of the GEV models them-
selves) was assessed by performing the following like-
lihood ratio tests. Let Li denote the maximum log-like-
lihood for model GEVi (i 5 0, 1, 2, 3, 4). Then, a test
of the validity of model GEV j relative to model GEVi

(i , j) at the p level of significance (here p 5 0.05) is
to reject model GEVi in favor of model GEV j if the
deviance statistic

2D 5 2(L 2 L ) . x (p),ji j i k

where (p) is the (1 2 p) quantile of the x 2 distribution2x k

with k degrees of freedom, where k is the difference
between the number of estimated parameters in models
GEV j and GEV i.

Likelihood ratio tests were carried out to assess model
GEVi (i 5 1, 2, 3, 4) relative to model GEVi21 (and to
model GEV0 for i 5 2, 3, 4). Results of these tests,
which are summarized in Table 2, show that the location
parameter for the SWH extremes is significantly cor-
related with both the anomalies of seasonal mean SLP

(Pt) and the seasonal SLP gradient index (Gt; see r1 and
r2 in Table 2 and Fig. 2). However, the results also show
that the scale parameter appears to be independent of
either Pt or Gt (and hence does not change with time;
see q1 and q2 in Table 2).

Based on this analysis, we chose to use the fitted
GEV2 model to project possible future changes in SWH
extremes. To this end, the CGCM2 simulated values of
Pt and Gt were substituted into the fitted expression for
the location parameter,

m̂ 5 m̂ 1 r̂ P 1 r̂ G ,t o 1 t 2 t

to produce a time series of location parameter estimates
for the 1990–2099 period. This time series was then
analyzed as outlined in section 3c to estimate trends in
the location parameter of SWH extremes. These trends,
in turn, were used to project changes in the size and
frequency of extreme SWH events.

c. Analysis of projected trends

In this section we report on our analysis of trends in
the projected SWH statistics. We study trends in the
projected seasonal means and 90th percentiles of SWH,
and in the projected location parameter t of the dis-m̂
tribution of the seasonal extremes of SWH.

Let xt denote the projected time series that is to be
analyzed. The following regression models (RMs) were
fitted to xt at each grid point:

• RM0: xt 5 a0 1 «t (i.e., no trend in xt);
• RM1: xt 5 a0 1 a1t 1 « t (i.e., linear trend in xt);
• RM2: xt 5 a0 1 a1t 1 a2t2 1 «t (i.e., quadratic trend

in xt),

where ai are the regression parameters, and «t denotes
a zero-mean white noise process. Standard F tests (e.g.,
Venables and Ripley 1999) were used to intercompare
pairs of models RM j and RM i ( j . i).

The sample that we used to perform the trend analysis
for each forcing scenario was obtained by combining
the three members of each ensemble into a single sample
with three ‘‘observations’’ at each sampling time. Thus,
the series length is n 5 (3 3 110). Results of the F
tests are summarized in Table 3 and will be discussed
in detail in sections 4a and 4b.
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FIG. 2. The estimated coefficients linking the GEV location parameter for seasonal maximum SWH with anomalies of seasonal mean SLP
(r1 from GEV1) or seasonal SLP gradient index (r2 from GEV2). The contour interval is 1.0. Shading indicates locations where the coefficient
is significantly (at 5% level) different from zero (results of x 2 tests that compare GEV1 with GEV0 for significance of r1, and GEV2 with
GEV1 for significance of r2. See section 3b and Table 2 for the percentages of the shaded areas).

TABLE 3. The field significance of trends in the seasonal statistics (means and 90th percentiles), and in the GEV location parameter t ofm̂
seasonal maxima, of SWH projected with the three forcing scenarios, as represented by the percentages of grid points where a RM model
is favored over a relatively simpler RM model at the 5% level of significance (see section 3c). Bold entries represent cases where a linear
representation of trend is not sufficient.

Scenario Models tested

Means

JFM OND

90th percentiles

JFM OND

tm̂

JFM OND

IS92a RM1 over RM0

RM2 over RM0

RM2 over RM1

67.7
69.5
23.5

26.8
20.0

0.0

61.3
61.3
22.2

74.7
67.4

0.0

59.2
59.3
10.2

54.2
48.8

6.3
A2 RM1 over RM0

RM2 over RM0

RM2 over RM1

61.1
75.7
47.7

60.0
54.5

4.2

54.7
67.9
39.4

70.0
63.6

4.0

61.7
60.3
14.6

55.0
51.2

6.7
B2 RM1 over RM0

RM2 over RM0

RM2 over RM1

45.3
44.3

9.1

6.9
1.0
0.0

34.7
36.3
11.2

33.9
29.8

0.5

51.5
53.6

9.7

32.5
22.7

0.9
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In addition, the Durbin–Watson statistic was also cal-
culated to test the null hypothesis that the residual time
series of the previously selected regression model is
white. Evidence counter to the null hypothesis was not
found.

4. Ocean wave height climate change scenarios

In this section, we describe changes in seasonal sta-
tistics (means and 90th percentiles) of SWH projected
with the three different forcing scenarios for the 1990–
2099 period, as well as the implications for extreme
wave height events. The changes of a SWH statistic are
expressed in physical units and as percentages of its
baseline climate value. Figure 1 shows the typical cli-
mate field of SWH in the North Atlantic, featuring a
center of high waves in the region west of Ireland (508–
608N): In the cold seasons, the typical values of seasonal
means, 90th percentiles, and maxima of SWH in this
region are 4–5, 6–8, and 11–13 m, respectively. Cor-
responding values in the Norwegian Sea are 3–4, 5–6,
and 9–11 m, respectively, and 2–3, 3–5, and 6–9 m in
the North Sea.

a. Trends/changes in the projected seasonal statistics
of SWH

Using datasets described in section 2 and the RA
regression technique described in section 3a, for each
of the three forcing scenarios, we constructed an en-
semble of three projections for each of the seasonal
statistics (means and 90th percentiles) of SWH for win-
ter (JFM) and fall (OND) of the 1990–2099 period.
Trends in the projected 1990–2099 time series of sea-
sonal SWH statistics at each grid point were analyzed
as described in section 3c. Results are summarized in
Table 3. As expected, trends are more apparent under
the strong IS92a and A2 forcing than under the weaker
B2 forcing. Also, for the seasonal mean SWH, trends
are more apparent in the winter solstice season than in
the preceding transition season (i.e., fall).

In the strong forcing cases, a simple linear represen-
tation of trend is not sufficient in many locations, es-
pecially in winter (cf. the bold numbers in Table 3). For
example, in the Norwegian and North Seas, trends are
more or less quadratic, with either faster increases in
the late decades than in the first few decades, or de-
creases in the first few decades followed by increases
in the later decades of the twenty-first century (cf. Figs.
3a–f, which show typical trends of SWH in the northeast
Atlantic). In the following we discuss changes in SWH
that are projected with RM2 because the quadratic com-
ponents of trends are not negligible, especially in winter
(also note that the estimate 2 will be near zero if theâ
trend is basically linear).

The locations with statistically significant (at 5% lev-
el) quadratic trends in the projected seasonal mean SWH
are shaded in Fig. 4. This diagram also shows the change

in the seasonal mean SWH in the 90-yr period from
1990 to 2080 as estimated using RM2 (i.e., ĥtr(t) 5 oâ
1 1t 1 2t2). Changes in winter seasonal mean SWHâ â
projected under IS92a forcing for 2020 and 2050 are
displayed in Fig. 5. Figure 4 shows that while the three
scenarios have generally similar patterns of change in
both winter and fall, the changes projected under the
IS92a and A2 scenarios are generally larger and more
extensive than those under the B2 scenario. Overall,
similar forcing scenarios (IS92a and A2) lead to similar
changes in seasonal mean SWH, and a scenario (B2)
with a slower rate of increase in GHG forcing leads to
smaller changes in seasonal mean SWH. However, note
that stronger changes are projected in the northeast At-
lantic (including the North Sea) for the A2 scenario,
and in the southwest North Atlantic for the IS92a sce-
nario (cf. Figs. 4a and 4c).

In winter, as shown at left in Fig. 4, the patterns of
change in seasonal mean SWH are commonly charac-
terized by increases of up to 12 cm (or 5% of the base-
line climate values) in the southwest North Atlantic,
matched by decreases of up to 20 cm in the midlatitudes.
For the northeast Atlantic, especially for the North Sea,
the projected future seasonal mean SWH changes were
found to be quite dependent on the forcing conditions.
Quadratic trends with decreases in the first few decades
of the 1990–2099 period followed by increases were
projected with the IS92a scenario (cf. Figs. 3a, 4a, and
5), while large and basically linear increases (up to 32
cm or 11% of the baseline climate values) were pro-
jected with the A2 scenario (cf. Figs. 3b and 4c), and
no significant changes were projected with the B2 sce-
nario (cf. Fig. 4e).

The pattern of the projected changes in the fall mean
SWH (cf. Fig. 4, right) are similar to those of winter,
but the changes are generally smaller and less extensive
(see also Table 3). In this season, quadratic components
of trends were found to be less extensive in general;
and they are more apparent for the A2 scenario rather
than for the IS92a scenario (it is the other way around
in winter; see Figs. 3a,b and 3d,e).

The projected pattern of changes for the 90th per-
centiles of winter SWH, and the differences between
scenarios (not shown), are similar to those projected for
the seasonal means, except that the area of increase in
the northeast Atlantic extends farther to the northwest
for the 90th-percentiles than for the seasonal means pro-
jected with the A2 scenario (cf. Figs. 4c and 6a). From
1990 to 2080, the increase in the northeast Atlantic is
as large as 55 cm for the 90th percentiles (which is also
about 11% of the relevant baseline climate value).

The projected patterns of change in the 90th percen-
tiles of fall SWH are a little different from those of the
corresponding seasonal mean in the lower latitudes: In-
creases of up to 50 cm (9% of the baseline climate
values) were projected for the 90th percentiles in the
central subtropical North Atlantic (cf. Fig. 6b), but no
significant changes were projected for the seasonal
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FIG. 4. Changes in the (left) winter and (right) fall seasonal means of SWH in the period from 1990 to 2080 (2080s minus 1990s), as
projected with the indicated forcing scenarios. The contour interval is 2.5 cm. Solid and dashed lines are positive and negative contours,
respectively. Shading indicates areas of significant quadratic trends (RM2; see section 3b).
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FIG. 5. The same as in Fig. 4 but for changes in the winter seasonal
means of SWH from 1990 to (a) 2020 and (b) 2050, as projected
with the IS92a forcing scenarios.

means of SWH in this region (cf. Fig. 4d). Again, the
stronger forcing (IS92a and A2) scenarios project larger
increases in fall 90th percentiles of SWH than does the
weaker (B2) forcing scenario, especially in the northeast
Atlantic (cf. Table 3).

b. Implications of climate change for extreme wave
height events

The GEV analysis described in section 3b was carried
out to explore implications of climate change for sea-
sonal extreme wave height events. As described in sec-
tion 3b, the location parameter of seasonal extreme
SWH is highly correlated with both anomalies of sea-
sonal mean SLP (Pt) and the seasonal SLP gradient
index (Gt), but the scale parameter appears to be in-
dependent of both Pt and Gt. Thus we used the GEV2

model to estimate possible future changes in the SWH
extremes under the three forcing scenarios.

For each forcing scenario, a projection of the change
in the location parameter of seasonal extreme SWH was
obtained from each of the three ensemble members us-
ing the expression t 5 o 1 r̂1Pt 1 r̂2Gt. These threem̂ m̂
projections were analyzed in a combined trend analysis
as described in section 3c. As shown in Table 3, the
projected trend in the location parameter is field sig-
nificant in both winter and fall. As with the SWH sta-
tistics discussed earlier, the quadratic component of
trend is also significant in winter, especially for the A2
scenario.

Generally, the characteristics of quadratic trends in
the location parameter of SWH extremes are similar to
those in the seasonal mean SWH. In the Norwegian and
North Seas, the quadratic trends again feature either
faster increases in the late decades than in the first few
decades (cf. Figs. 3g–i), or a decreasing trend in the
first few decades followed by an increasing trend in the
late decades of the 1990–2099 period (not shown, but
similar to Fig. 3a). However, the projected changes in
fall extreme SWH in the Norwegian Sea appear to be
more nonlinear than those projected for the seasonal
means under the strong forcing (IS92a and A2) scenarios
(cf. Figs. 3d,e and 3g,h).

Since the quadratic components of trend in the lo-
cation parameter are not negligible, the RM2 trend mod-
el was chosen for use in estimating changes in the pro-
jected location parameter t. This trend model was thenm̂
substituted into the GEV2 extreme value model de-
scribed in section 3b {i.e., GEV [ tr(t), , ]}, whichm̂ ŝ ĵ
in turn was used to estimate 20-yr return values of SWH
(H20yr) for the climates of 1990, 2020, 2050, and 2080.
This extreme value model was also used to estimate the
return period for the 20-year circa 1990 event in the
climate of the 2020s, 2050s, and 2080s. Selected results
are shown in Figs. 7–9.

Increases in the extreme wave height of a fixed fre-
quency of occurrence, or equivalently, reductions in the
waiting time between extreme wave height events of a
fixed size, were identified for the projected warmer cli-
mates. For example, in the Norwegian and North Seas
we projected a 15–45-cm increase in the winter 20-yr
return values in the 90-yr period between 1990 and 2080
(see Figs. 7a,c). Equivalently, the winter extreme wave
heights that occur on average once every 20-yr period
in the present-day (1990s) climate (11–13 m; see Fig.
8a) is expected to occur on average once every 12–16-
yr period in the climate projected for year 2080 (cf. Fig.
9a). In fall, the situation is similar: under the strong
forcing scenarios, the fall 20-yr return values of SWH
in the Norwegian Sea will increase by 60–100 cm from
1990 to 2080 (cf. Fig. 7, right), or equivalently, the fall
extreme wave height events that occur on average once
every 20-yr period in the present-day climate is expected
to occur on average once every 4–12-yr period in the
climate projected for year 2080 (cf. Fig. 9b).

The patterns of changes in the 20-yr return values of
SWH bear substantial similarity to the RA-projected
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FIG. 6. The same as in Fig. 4 but for changes in the indicated seasonal 90th percentiles of SWH from 1990 to 2080, as projected with the
A2 forcing scenario. The contour interval is 7 cm.

patterns of change in seasonal mean SWH (cf. Figs. 4
and 7). However, in the northeast Atlantic, increases in
the seasonal extremes are much larger than those in the
seasonal means in the fall season (cf. Figs. 4 and 7).
The largest increases in the extreme SWH in the north-
east Atlantic are now projected for the fall season rather
than for the winter season.

5. Concluding remarks

While using a traditional least squares approach for
downscaling climate variables that are basically Gauss-
ian distributed, we have also demonstrated the use of a
new approach for downscaling climate extremes (i.e.,
non-Gaussian variables). More specifically, by means of
linear regression analysis and nonstationary generalized
extreme analysis, we have constructed climate change
scenarios for seasonal mean and extreme significant
wave heights, using the CGCM2 simulations of SLP for
three different forcing scenarios.

With all three forcing scenarios, the northeast Atlantic
is projected to have increases in both winter and fall
seasonal means and extremes of SWH in the twenty-
first century. These increases are generally accompanied
by decreases in the midlatitudes of North Atlantic and
increases in the southwest North Atlantic.

The GEV analysis shows that global warming may
result in changes in the location parameter of the dis-
tribution of wave height extremes, eventually leading
to changes in the size and frequency of extreme wave
height events. For example, in the Norwegian Sea, an
extreme wave height event that occurs on average once
every 20-yr period in fall in the present-day (1990s)
climate is expected to occur on average once every 4–
12 yr in the climate projected for year 2080 under the
A2 forcing scenario. Such significant changes will have
an impact on the life span of marine and coastal infra-

structure in the area. The possible changes in future
wave extremes should be taken into account in the de-
sign, planning, and operation of coastal and offshore
industries.

The changes in significant wave heights projected for
the 1990–2099 period are not simply linear. In the Nor-
wegian and North Seas, the nonlinearity is characterized
either by faster increases in the late decades than in the
first few decades, or by decreases in the first few decades
followed by increases. Also, it was shown that similar
forcing scenarios lead to similar changes in ocean
waves, and that a scenario with a slower rate of increase
in GHG forcing leads to a slower rate of change in ocean
waves.

The projected changes in the wave height climate are
consistent with the corresponding climate changes that
are projected to occur in SLP. As shown in Fig. 10 (A2
scenario), global warming leads to decreases in SLP
over the northeast Atlantic, accompanied with increases
over the midlatitudes (cf. red contours in Fig. 10), which
results in an increased pressure gradient over the north-
east Atlantic. This change in pressure gradient results
in stronger westerly winds and more frequent occur-
rence of strong cyclones (central pressure lower than
990 mb) that affect the northeast Atlantic and northern
European coasts (Wang et al. 2004, manuscript sub-
mitted to J. Climate), and hence increases of SWH in
the northeast Atlantic. For example, the 1010-mb con-
tour shifts from over Norway to over Denmark (see the
dark green shading edge and the thick black contour
line in Fig. 10), resulting in an increased pressure gra-
dient and stronger westerly winds over the region.

It is possible that anthropogenic forcing may affect
the ocean wave climate by changing the occupation sta-
tistics of atmospheric circulation regimes. Using the
CGCM1 simulations of the Canadian Centre for Climate
Modelling and Analysis, Monahan et al. (2000) con-
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FIG. 7. Changes in the (left) winter and (right) fall 20-yr return values of SWH (H20yr) from 1990 to 2080 (2080s minus 1990s), as projected
with the indicated forcing scenarios. The contour interval is 15 cm. Solid and dashed lines indicate positive and negative contours, respectively.
Shading indicates areas of significant quadratic trends in the location parameter of the SWH extremes.
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FIG. 8. The 20-yr return values of SWH (H20yr), estimated using the GEV parameters of year 1990 for the indicated seasons (A2
scenario). The contour interval is 1.0 m. Shading indicates areas of values $12 m.

FIG. 9. Future return periods of the 1990s H20yr, as estimated using the GEV parameters values projected for year 2080 using the A2
forcing scenario. The contour interval is 4 yr. Solid and dashed contours indicate return periods shorter and longer than 20 yr, respectively
(20-yr contours not drawn). Shading indicates areas of values #12 yr.

cluded that under global warming, the episodic split-
flow regime [which resembles the extreme negative
phase of the North Atlantic Oscillation (NAO) in SLP]
occurs less frequently while the standing oscillation re-
gime (which resembles the Arctic Oscillation) occurs
more frequently. In other words, global warming is as-
sociated with more frequent occurrence of the positive
phase of NAO on the one hand, and with increases of
wave height in the northeast Atlantic on the other hand.
The implication here is that the projected wave height
increases in the northeast Atlantic are associated with
the anthropogenic changes that affect the NAO. Such a
relationship between the NAO and wave height makes
sense physically and is well supported by observational
evidence. The significant increases in winter wave

height observed in the northeast Atlantic in 1958–97
were found to be closely related to an ‘‘enhanced’’ pos-
itive phase of NAO (Wang and Swail 2001, 2002).

For the northeast Atlantic, our scenarios are consistent
with the double CO2 scenario of the STOWASUS-2100
(Kaas and the STOWASUS Group 2001), in which the
mean SWH in this region was projected to have 5–35-
cm increases in the climate of 2060–89 relative to that
of 1970–99 in the cold seasons (September–February;
Kaas and the STOWASUS Group (2001; 128–129).
Correspondingly, our scenarios projected 5–35-cm (5–
20 cm) increases in the climate of 2070–99 relative to
the 1961–90 climate for winter (fall) mean SWH (not
shown).

Note that the basic assumption in this study is that
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FIG. 10. The climate (30-yr mean) field of (a) winter and (b) fall SLP for 1961–90 (1970s;
shaded contour map) and of 2070–99 (2080s; thick black line contour map; contour interval 5
hPa). The red contours show the difference between the two climates [2080s 2 1970s; contour
interval is 1 hPa; dashed (solid) red lines indicate decreases (increases); zero contours are in
bold]; hatching indicates areas of significant (at 5% level) climate change.

the SLP–SWH relationship developed for the present-
day climate will continue to hold under the different
forcing conditions of possible future climates. Although
the empirical-based technique is economical and prac-
tical, it cannot account for possible systematic changes
in regional forcing conditions or feedback processes.
The various sources of uncertainty related to climate
scenario construction should be kept in mind when in-
terpreting/using the climate change scenarios. However,
we reiterate that the SLP–SWH relationships that we
diagnosed from observations should be reasonably ro-
bust. Those relationships rely primarily on the large-
scale structure of the North Atlantic SLP field as rep-
resented by its low-order EOFs. These EOFs represent

the model-simulated SLP variability well, both in the
twentieth century and in climates projected for the twen-
ty-first century. Thus the modes of SLP variability that
are linked to SWH variability in the present-day climate
should continue to be influential in determining SWH
variability in the future climate.
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