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ABSTRACT

The class of “regime dependent autoregressive” time series models (RAM:s) is introduced. These nonlinear
models describe variations of the moments of nonstationary time series by allowing parameter values to change
with the state of an ancillary controlling time series and possibly an index series. The index series is used to
indicate deterministic seasonal and regimal changes with time. Fitting and diagnostic procedures are described
in the paper.

RAMs are fitted to a 102-year seasonal mean tropical Pacific sea surface temperature index time series. The
models are controlled by a seasonal index series and one of two ancillary time series: seasonal mean Adelaide
sea level pressure and Indian monsoon rainfall, which have previously been identified as possible precursors of
the extremes of the Southern Oscillation (SO).

Analysis of the fitted models gives clear evidence for the seasonal variation of the statistical characteristics of
the SO. There is strong evidence that the annual cycle of the SO index depends upon the state of the SO as
represented by the ancillary time series. There is weaker evidence which suggests that its autocorrelation structure
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is also state dependent.

1. Introduction

There are examples of processes that have season
and state dependent statistical properties in many areas
of geophysics and it is reasonable to suspect that the
Southern Oscillation (SO) is one such phenomenon.
Southern Oscillation “warm” and “cold” events are
clearly linked to the seasonal cycle (Rasmusson and
Carpenter 1982; Wright et al. 1988). The existence of
numerous studies that describe possible SO precursors,
including van Loon and Shea (1985), Wright et al.
(1988) and Barnett et al. (1989), also suggests that the
variability of the SO is state dependent. The purpose
of this paper is to investigate a class of nonlinear time
series models that can accommodate both seasonal and
state dependence in both their mean and stochastic
properties and to illustrate their use by applying the
models to a well-known SO index, specifically Wright’s
(1984) SST index.

There have been numerous studies of the stochastic
behavior of the SO. Wright (1977, 1985, 1988) ex-
amined the relationship between the Southern Oscil-
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lation index and other meteorological and oceano-
graphic parameters and made some efforts to quantify
the seasonal march of the SO autocorrelations. Chu
and Katz (1985, 1987, 1989) used stationary and sea-
sonal ARMA models to describe the statistics of the
Southern Oscillation index and to characterize the sto-
chastic behavior of the SO with some success: Barnett
(1983, 1984a,b, 1985) and Gutzler and Harrison
(1987) used complex EOF analysis techniques. In this
paper we describe the use of nonlinear time series:
models.

A few papers have been published on the question
of whether the SO is a chaotic system. Fraedrich
(1988), in a study of the SO’s predictability, found no
clear support for the existence of a strange attractor.
Hense (1987), however, using different data than
Fraedrich, found evidence for the existence of an at-
tractor of fractal dimension between 2.5 and 6.

Time-domain time-series analysis tools such as the
ARIMA (autoregressive integrated moving average)
models of Box and Jenkins (1976), used by Chu and
Katz (1985, 1987, 1989) and others to analyze SO in-
dex time series, are able to describe seasonal variations
in stochastic structure and certain kinds of nonstation-
ary stochastic behavior, but are not able to represent
processes in which the statistical properties depend on
the seasonal cycle and on the state of related processes
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or on the basic state that is exposed to stochastic vari-
ations.

However, when screening the recent statistical lit-
erature we found a relatively large class of nonlinear
time series models (“Threshold Autoregressive Mod-
els”: Tong 1983), which we thought might be useful
for the analysis of geophysical processes affected by a
stochastic environment. This class of models, which
we call “regime dependent autoregressive models”
(RAMs), forms an extension of the usual class of linear
autoregressive (AR ) time series models (Box and Jen-
kins 1976) that have been applied extensively in the
geophysical literature. The difference between RAMs
and ordinary AR models is that in a RAM, two external
variables are employed to control the choice of auto-
regressive parameters used at a particular time. One of
the external variables is an indicator describing the
seasonal march. The second external variable is usually
another stochastic time series. When the latter crosses
a threshold, the parameters governing the evolution of
the modeled time series change. Tong shows that the
class of models is quite general in nature and that it is
able to accommodate a rather large range of nonlinear
characteristics. .

Fitting RAMs is computationally straight forward
because of their “piece-wise” linear nature. Moreover,
it is possible to objectively choose the “best” fitting
RAM from a group of such models by means of an
information-theory-based criterion such as the Akaike
information criterion (AIC) [Akaike 1973]. Despite
these positive characteristics, which are not shared by
other classes of nonlinear time series models, we have
learned from our modeling experience that these mod-
els must be fitted with some care and must be inter-
preted carefully.

In this study we identify RAMs that describe the
nonstationary behavior of the Southern Oscillation
(SO) as it is represented by Wright’s homogenized SST
index (Wright 1984). We will refer to this index as the
SOsst index to distinguish it from the widely used SOI
index which is based on the normalized pressure dif-
ference between Darwin and Tahiti. The fitted models
use two indices that have previously been identified as
possible precursors of the extremes of the SO as con-
trolling stochastic time series; the zonal pressure dif-
ference across the southwest Pacific (van Loon and
Shea 1985, 1987; Xu and Storch 1990)-and the Indian
monsoon rainfall (Barnett et al. 1989; Elliot and Angell
1987).

A description of the RAM class of models is given
in section 2. This is followed by a description of the
fitting procedure in section 3. An application of RAMs
to the SOsst index using both southwest Pacific sea
level pressure (SLP) and Indian monsoon rainfall in-
dices as ancillary time series is described in section 4.
Results of this analysis are described in section 5, and
the paper is concluded with a discussion and summary
in section 6.
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2. Regime dependent autoregressive time series models
(RAMs)

a. Formal definition of a RAM

A Regime dependent Autoregressive Model (RAM)
X, controlled by an indicator series S, and an ancillary
time series Y, is described by a stochastic difference
equation of the form

X, = aOS(t),y(t) + aIS(t),y(t)Xt_1 + aZS(t),y(t)Xt_2
+ e + a3 0Y0X L+ (1)

We refer to p as the “order” of the RAM. Superscripts
s(t) take integer values 1 < s(¢) < s to represent the
seasons indicated by S,. The latter is deterministic and
strictly periodic with period 4. Superscripts y(¢) identify
the “region” occupied by the ancillary time series Y,
at a lag of d seasons. These regions are defined in terms
of “threshold parameters” —oo < T; < +++ < T,
< +o0 and the “delay parameter” d by

y)y=j if Y_,€(T-, T,
JE{L, -, g +1} (2)

where T, = —co and T,4; = +oo. We refer to the
combination of a particular season s and region j as a
“regime” because the RAM has constant stochastic
properties for all observing times ¢ that fall into a given
season and-for which the ancillary time series takes
values within a given region. The indices s(¢) and y(#)
define a total of #(x + 1) possible different regimes
for the modeled time series X,. The “innovation pro-
cess” ¢ is a zero mean Gaussian white noise process
whose variance in regime (s, j) is o2 ;. The RAM coef-
ficients ;" depend upon the regime (s, j).

b. Model hierarchjz

The general definition given by (1) and (2) incor-
porates a hierarchy of models of increasing complexity.
At the bottom of this hierarchy there are traditional
AR models that ignore the seasonal variation and ex-
ternal forcing. Disregarding the ancillary time series,
or setting ¢ = 0, leads to the second level in the hier-
archy, the ordinary seasonal AR models. The third level
in the hierarchy, first-moment RAMs, is obtained by
allowing only the constant term coefficient a, of the
seasonal AR model to depend on the ancillary time
series. In first-moment RAMs, the ancillary time series
does not affect second moment statistics such as the
variance. The top of the hierarchy, full RAMs, is ob-
tained by using the full version of (1) and (2) that
describes a seasonal model in which both the annual
cycle and variation about the annual cycle is modulated
by the ancillary time series. _ v

In our example, presented in sections 4.and 5, we
restrict ourselves to the upper three levels of the hier-
archy and we will refer to these three levels as the RAM
Hierarchy.
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c. j-Moments

Clearly, a RAM is in general a nonstationary model
and, thus, traditional moments can not be defined. It
is, however, possible to derive moments conditional
upon a given scenario of regimes. In particular, we
define “conditional j-moments™ to be the s(¢)-depen-
dent moments of a RAM that remains in region j € {1,
- « -, # + 1} for an infinitely long period of time.

1) CONDITIONAL j-MEANS

The “conditional j-means,” E(X,|y(t)=j; j=1t,1
— 1, - - +), of a RAM are given by the solution of a
system of linear equations to be described below. We
will simplify the notation by writing E(- | j) to indicate
E(-|y(t)=j,j=t,t— 1, - - ). By taking expectations
on both sides of (1) we find
E(X.])) = ao* ' + a* T E(X,_| j)

+ & MEXa| )+ -0+ @ E(Xp ). (3)

This system of equations may be closed by noting that
E(X,| j) is periodic with period » when y(¢) = j for
all ¢. ’

2) CONDITIONAL j-VARIANCES AND j-COVARI-
ANCES

The “conditional j-second moments” may be ob-
tained by writing the model in its infinite moving av-
erage (MA) form:

Xi=EX|)H)+tet cls(l)’jft—l + gy 4 e
' (4)

which we assume to be mean square convergent. Using
the independence properties of the innovations we see
that

. —_ 2 ':
> (X J) = o3 + (") 262y
+ ()02 gy i+ - -

(5)

The lag A “j-autocovariance” is also easily derived.
We have that

Cov(X;, Xsal J) = El(¢+ 2 Cus(l)’jft—u)

u=1{
bt .
X (€4a + Z Cvs(HA)’ijA—v)]
v=1
and, thus,
Cov(Xy, Xival )

o0

= +A),j .2 ) A)J 52

=M a5y i+ 2 et e T 03y . (6)
i=1

Note that the j-autocovariance function is not a
simple function of the time difference alone. It depends
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upon both lag A and time ¢. In fact, there is a distinct
autocovariance function for each season which de-
scribes the linear relationships between the present re-
alization of X, and realizations of the time series at
other times.

To calculate the j-second moments of a RAM it is
necessary to derive the MA coefficients ¢*/ from the
AR coefficients a;*/. To do so, the past states X,_;,
X;-2, . .., on the right-hand side of Eq. (1) are replaced
by linear combinations of previous states by recursive
application of (1). This recursion results in a sequence
of gradually improving finite MA approximations of
(4). The necessary calculations are easy to implement
on a computer. It is, of course, impossible to exactly
represent the infinite moving average by computational
means because the recursion must be stopped after a
finite number of steps. Thus, (4) must be approximated
by a finite MA process of some order. A suitable stop-
ping criterion can be based on the variance of the finite
MA approximation obtained after every iteration; the
approximation will be satisfactory when its relative
change becomes small.

3. Model fitting procedure

One of the great advantages which RAMs have over
other nonlinear time series models is that they are easy
to fit to data using approximate maximum likelihood

.estimators (MLEs). Exact MLEs of RAM parameters

can be obtained but require the use of nonlinear min-
imization techniques. Approximate MLEs may be eas-
ily obtained via least squares and the resulting param-
eter estimates enjoy the same asymptotic properties as
exact MLEs. We therefore decided to use the approx-
imate procedure described by Tong (1983).

a. Model fitting and identification

Model fitting is done in two steps. First, it is assumed
that the delay parameter d and the threshold set T
={T, T, - - -, T,} are fixed. (These numbers are
meaningless for ordinary seasonal models.) Then, given
these fixed parameters, several AR models of fixed or-
der are fitted. In particular, M = s “auto regressive”
models of order g,,,, m = 1, - - +, M are fitted for sea-
sonal AR models and first-moment RAMs; M = 4(«
+ 1) AR models of order g,,,, m =1, » - «, M are fitted
for full RAMs. The fitting is accomplished by first writ-
ing the mth AR model in vector/matrix form

X =Xa +e. (7)

Here, x is a vector containing the k observations that
fall into season #1 (seasonal AR model or first-moment
RAM) or regime m (full RAM); a is a vector of j
model-coefficients; ¢ is a vector of k innovations and
X is the k X p “design matrix.” The details, that is, the
number j and the vector a, are described below. The
vector a is estimated by minimizing the squared length

’
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of the innovation vector. The resulting least squares
estimate is given by

a=(X"™X)"'Xx. (8)
The corresponding approximate MLE estimate of the
variance of the innovations is

8= xT( = X(X™X) X T )x/k 9)
where 1 denotes the identity matrix.

The goodness of the mth AR model is expressed by
the Akaike information criterion (AIC) (Akaike 1973;
Tong 1983)

AIC(gm, d, T) = k Ing* + 2p. (10)

AIC rewards a close fit through the In6? term while
imposing a penalty for excessive numbers of parameters
through the 2p term. The order of the mth AR model
is determined by the choice of ¢,,,, 0 < ¢,, < p, which
minimizes (10).

The goodness of the entire seasonal AR model or
RAM fitted in this piecewise manner with fixed delay
d and threshold set 7 is expressed as the “total AIC”
(11), which is defined as the total of the AIC values
summed over all models:

M

2 AIC(gn, d,T)

el = . )
21 k(m)

TAIC(d, T) =

The total AIC is divided by the total number of ob-
servations used to do the fitting to permit comparison
between models using different values of delay param-
eterd.

The ultimate model is determined by searching for
the delay parameter ¢ and threshold set 7, which min-
imizes (11). We do this via a simple brute force search
procedure. Threshold sets 7 are obtained by taking
subsets of size 4 from a set T of £ > 4 candidate
threshold points on the real line. We simply chose T
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to be the collection of midpoints between all sorted
realizations of the ancillary time series. Then (11) is
evaluated for all combinations of subsets 7 C T and
delay parameters d, 0 < d < dpax-

The details of the procedure outlined above are
specified in the following three subsections. That is,
the vectors x and a in (7), the matrix X in (7) and the
number 7 in (11) are described for each model m.

1) SEASONAL AR MODELS

The models in different seasons are not related to
each other so that the minimization of ( 11) may be
done for each season independently; i.e., by minimizing
(10). Let ¢4, o, . . ., tx(s) be the observmg times that
fall into season s. Then the k(s)-vector of observations
xis (X, Xy, .. X,k( the number of coeflicients
pP=gq+1,the vector ofzcoefﬁments ais (ay’, a,°, ...,
a, )" and the k(s) X (g + 1) design matrix X is given
by

1 X -1 X 2 7 X t—q
X = 1 X t,—l -2 : t,~q
1 X‘A(,)"l X‘k(.)—2 X‘k(.)‘q

2) FIRST-MOMENT RAMS

As above, models in different seasons are not related
to each other because the AR coeflicients, except for
a,, are not affected by the ancillary time series. Again,
let ¢, t5, . . ., tis) be the observing times that fall into
season 5. The k(s)-vector of observations is the same
as in the seasonal AR model. However, the constant
term in this model is modulated by the ancillary time
series and hence a contains ¢ + 1 constant coefficients
as well as the g dynamic coeflicients. Thus,

a= (aos,l, aos,Z’ cee aos’/+l, als’ . aqs)T.
The total number of coefficientsis p = g +  + 1. The
corresponding k(s) X p design matrix X has the form

of1, y(1))] Ol g+ 1, )] X Xia Xiq
X = of1, y(tz)] o[ y+ 1 ¥(1)] Xt,—l , X:,-z T th-q
811, y(t,)] Syt L)) X Xim o Xoy

where k represents k(s). The indicator function &(}, .

(1)), defined by

1 it j=y()
6(J, y(1)) = .

0 otherwise
identifies the region that is occupied by the ancillary
time series at time ¢, and hence the constant term that
is used in the model at that time.

3) THE FULL RAM

For a full RAM an individual AR model is fitted for
each combination of season s and region j. Let ¢y, 1,
, li(s,jy be the collection of times ¢ > g when X, is

in regime (s, j) The k(s, ]) vector of observations is
x = (X, X,Z, . X,k(“)) the number of AR model
coefficients is p = (q + 1), the coefficient vector is a
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=(a,°’, a;*’, + -+, a,*’)T and the k(s,j) X (g + 1)
design matrix is

I X Xoes Xy-q
o Xpot Xy b
1 X’k(s,j)—l X (s, )2 X (s, )~

b. Model diagnostics

While the procedure described above is “objective,”
considerable vigilance is required to ensure that the
fitted RAM is a reasonable one. Tong (1983 ) contains
a large amount of material and wisdom regarding
model diagnostics. We will only describe some of the
things which we found useful and relevant in our par-
ticular applications, and we will also add some of our
own advice to Tong’s advice.

The most important advice is, of course, to ask
whether the fitted model is physically reasonable. In
the case that the fitted model is a RAM, one should
also ensure that each regime (s, j) of the chosen model
contains enough observations to make reliable param-
eter estimates. In all cases, one should ensure that the
innovations behave as Gaussian white noise. We will
discuss this in some detail below.

The full model permits innovations to have differing
variance in each of its M component AR models. Thus,
when a seasonal AR model or RAM fits well, the time
series of estimated innovations {¢;t=1, « - -, n} will
be approximately stationary with respect to the mean
and approximately serially uncorrelated. However, the
variance will be time dependent. Therefore, estimated
innovations within each component model must be
normalized by the corresponding estimate of the in-
novation standard error (9) to apply standard statistical
tests.

As a first step, the normalized residuals should be
tested for Gaussian characteristics. Non-Gaussian be-
havior, as evidenced by skewed, plato-kurtic or bi-
modal normalized residuals, is an indication that the
fitted model does not adequately explain the behavior
of the modeled time series. It is thus useful to look at
a relative frequency histogram and probability plot of
the normalized residuals and to estimate their skewness
and kurtosis.

Second, the normalized estimated innovations
should be studied to see if they are serially uncorrelated.
A very effective way in which to do this is to simply
plot the autocorrelation function of the normalized re-
siduals. In particular, checks should be made to deter-
mine whether autocorrelations are unusually large at
small lags, at seasonal lags, or more often than would
be expected. An objective test of the null hypothesis
that the normalized residuals behave as a white noise
process can be made with a “Portmanteau” lack of fit
test (Box and Jenkins 1976; Ljung and Box 1978).

Given that the chosen RAM fits reasonably well, it
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may be examined in more detail. Asymptotic confi-
dence intervals can be constructed for the estimated
AR parameters of each component AR model by using
the fact that 4 is asymptotically a multivariate Gaussian
random vector with mean a and covariance matrix
oc2(XTX)"! where X is the design matrix appropriate
to the component model and ¢? is the corresponding
innovation variance (Cox and Hinkley 1974 ). The co-
variance matrix is estimated by 62(XTX) ™! where 5°
is the appropriate estimate of the innovation variance.

Estimates of the conditional j-means, j-variances,
and j-autocovariance functions can be derived from
(3), (5), and (6). Plots of these quantities reveal useful
information about the stochastic characteristics of the
modeled time series when it is in each of the particular
states. One can also display the behavior of forecasts
of X,41, Xps2, ... given specified values at previous
times conditional upon y(¢) = j for all 7 and the absence
of noise. In this case “conditional j-forecasts” of X,
and X, are given by

E(X1| Xpy Xe=1s * * 05 Xev1=p3 J)
= @, ¢ a X, @ IX,
F oo+ aps(t+1),th+l_p

E(Xt+2|Xz, Xt—l’ M Xt+l—p;j) = aOS(HZ)’j
+ a I E(X | Xy Xicrs 00 0y Xerr—p3 J)
F @Y+ e g DX, (12)

Subsequent conditional j-forecasts are computed in like
manner. The simplicity with which it is possible to
construct forecast functions is one of the great advan-
tages of RAMSs as compared to other nonlinear time
series models.

An important question is whether the fitted model
is “better” than another model lower down the hier-
archy of models described earlier; that is, does the an-
cillary time series contain useful information about
state dependent variations in the annual cycle, and does
it also contain additional useful information about state
dependent variations in the second-order stochastic
properties of the analyzed time series X,?

Such questions can be addressed using standard
analysis of variance techniques by computing statistics
of the form

¥ = 1
ndfo e ndf1 ndfl ( 3)

_ SSR; — SSR, (SSRl)‘l
where SSR; and SSR; are sums of squared estimated
innovations for two models in the RAM hierarchy.
The corresponding degrees of freedom, computed as
the number of observations minus the number of es-
timated parameters, are given by ndf, and ndf;, re-
spectively. Subscript “0” is used to indicate the simpler
of the two models. Above, ¥ measures the reduction
of innovation variance that is brought about by using
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a model of greater complexity, higher in the RAM hi-
erarchy. Here, F has a Fisher’s F-distribution with (ndfy
— ndf,) and ndf, degrees of freedom under the null
hypothesis that the simpler model adequately explains
the observed variation of the fitted time series ( Priestly
1981, sect. 5.4.4). In view of the fact that even the
simplest model in the RAM hierarchy incorporates in-
novations with variance that are allowed to change cy-
clically, it makes little sense to compute F for all sea-
sons combined. We thus computed F ratios for each
season separately.

4. Application to the SO index

Our approach to modeling the behavior of the SO
will be to begin with the simplest model in the RAM
hierarchy that can accommodate seasonal variation in
its first- and second-order characteristics, and then
progress to the most complex RAM that we feel to be
appropriate and can be estimated from the available
data. At each step we will ask whether the additional
complexity has led to a significant reduction in inno-
vation variance and hence to a better description of
SO characteristics.

When analyzing the nonstationary behavior of the
SO by means of a full or first-moment RAM one has
to specify:

the time series X, that is to be used as an SO index,
the maximum AR order p,
the seasonal indicator S,

e an ancillary time series Y, that is expected to con-
trol the SO,

e the number of thresholds 4, and

o the maximum delay dp.x.

In both cases the delay parameter and the threshold
set are parameters that must be estimated. In the case
of the full RAM, (p + 1) AR-parameters must be es-
timated in each regime with the implication that a total
of s(¢ + 1)(p+ 1)+ ¢ + 1 free parameters must be
specified. In the case of the Ist-moment RAM, (g
+ 1) “constant” coefficients must be estimated for
each season together with p dynamic AR coefficients.
It is therefore necessary to estimate #(¢ + 1 + p) + ¢
+ 1 parameters to fit the first-moment RAM. In the
case of a seasonal AR model, there are only #s(p + 1)
free parameters to estimate.

a. The SO time series X, and the numbers p, g and
dmax

Wright (1984 ) showed that there are several atmo-
spheric and oceanic indices that carry nearly equivalent
information about the SO. One of these indices is a
spatial average of monthly mean sea surface temper-
ature (SST) anomalies in the central and eastern equa-
torial Pacific. Wright compiled a “homogenized” SST
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index of this form that is almost 150 years in length
and is virtually uninterrupted during the past century.
In this paper we use the 1882-1983 segment of Wright’s
SST time series (Fig. 1a) as an SO index. We refer to
the index as the SOggy index to clearly distinguish it
from the usual SOI which is based on the normalized
Darwin minus Tahiti SLP difference.

While there is no doubt that this long segment of
Wright’s SST index contains many inhomogeneities
caused by data sparsity and changes in SST measure-
ment technology, there also seems to be little doubt
that this index represents the SO signal reasonably well
over the entire 102-year interval. Both Darwin sea level
pressure (SLP) and the Darwin minus Tahiti pressure
difference (SOI) are commonly used SO indices, and
Wright (1984) shows that they contain virtually the
same information in the 60-20 month frequency band
and on the annual time scale. He then shows that the
coherence between the SOgst and SLP indices in the
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FIG. 1. Area-averaged tropical Pacific SST used as index of the
state of the Southern Oscillation as compiled and homogenized by
Wright (1984). (a) Time series of the SOsst index. Units °C. (b)
Frequency histogram of the time series shown in (a). The distribution
is significantly skewed. (c¢) Autocorrelation function of the SOssr
index. Lags in numbers of season. The negative autocorrelation at
lag 7 seasons is significantly nonzero.
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60-20 month frequency band during the period 1950-
79 (when both indices are thought to be relatively free
of inhomogeneities) was 0.89. The coherence in this
frequency band drops to 0.75 for the 1890-1979 in-
terval, which covers most of the 102-year interval we
have selected for study. Similarly, the correlation be-
tween the annual means of the indices is 0.91 in the
1950-79 interval, and is 0.81 in the 1890-1979 interval.
Thus, while the presence of inhomogeneities in SOgst
will introduce some uncertainty into the RAM mod-
eling process, we are reasonably convinced that the
SOsst index captures enough of the SO signal during
the 102-year interval we have selected to study varia-
tions in its stochastic behavior that may be related to
other indicators of the state of the SO.

A frequency histogram of the SOggr index is dis-
played in Fig. 1b. It is somewhat skewed with a wide
tail in the direction of warm events. Its skewness coef-
ficient of 0.45 is significantly greater than zero (if the
effects of the annual cycle and serial correlation are
ignored when making the assessment of significance).
The kurtosis, —0.12, is not significantly different from
that which would be expected for Gaussian samples.

To a first order of approximation, the SOgr index
has stochastic characteristics similar to that of an au-
toregressive process of order 2 (Fig. 1c¢). Index values
at a 7-season lag are significantly negatively correlated
with the current value. This is an indication of the
Southern Oscillation’s well-known tendency to vary
on a quasi-biennial time scale (van Loon and Shea
1985, 1987). The plotted function displays average
second-order stochastic characteristics for all seasons.
As will be shown below and has been pointed out earlier
by Chu and Katz (1985 and 1987), there is in fact
considerable seasonal variation in the stochastic struc-
ture of the SO.

The SOgst index varies on at least two time scales.
The one we are interested in is the time scale of one
year or more. The other time scale, of order one to two
months, reflects the 30-60 day wave (e.g., Weickmann
et al. 1985). To remove the high frequency variations
we calculated three month seasonal means and set s
= 4, Since a SO event (an extreme of the SO as char-
acterized by a large excursion of the SOgst or other SO
index from its mean which is sustained over several
seasons) usually extends from early summer to the
spring of the next year (Wright 1977), a reasonable
choice for the “seasons” is FMA (February, March,
April), MIJ, ASO, and NDJ.

We anticipated that there might be three regions with
distinct stochastic behavior, two being representative
of warm or cold events and one of near normal con-
ditions and thus set ¢ = 2.

Chu and Katz (1985) analyzed time series of Darwin
minus Tahiti SLP and inferred an AR model of order
3 using the Bayesian information criterion. However,
to limit the number of parameters that must be esti-

FRANCIS ZWIERS AND HANS VON STORCH

1353

mated from a limited amount of data, and in view of
Fig. 1c, we have compromised somewhat by setting p
= 2 and therefore limiting the number of free param-
eters to 39. We felt this to be the maximum number
of parameters that could be entertained with a sample
of 407 seasons. Corresponding first-moment RAMs
and seasonal AR models have 23 and 12 free param-
eters, respectively.

We allowed the delay parameter to vary between 0
and 8, i.e., dnax = 8 seasons, thereby providing sufficient
flexibility for the model to correctly align the SOsggr
and ancillary time series, and to uncover any short
term (up to four seasons) lagged relationships.

b. T})z,e seasonal index S, and the ancillary time series
!
The seasonal indicator is
s(t)
if ¢ € {February, March, April }
if t€ {May, June, July}
if ¢ € {August, September, October }

AW N -

if ¢ € {November, December, January }.
(15)

To identify an appropriate ancillary time series Y,
two different SO scenarios were exploited: the “South
Pacific convergence zone” hypothesis (SPCZ) and the
“Indian Monsoon” hypothesis (IM). The correspond-
ing ancillary time series are called the SPCZ- and IM-
index; and the resulting RAMs are called the SPCZ-
model and the IM-model.

1) THE SPCZ HYPOTHESIS

The SPCZ hypothesis, suggested by van Loon and
Shea (1985, 1987), argues that the intensity of the me-
ridional flow in the SPCZ region, i.e., in the southwest
Pacific during northern summer, is instrumental in
triggering SO events. A good indicator of the strength
of this meridional flow is the SLP difference between
Adelaide and Rapa. Unfortunately, observations from
Rapa are available only from 1952, whereas a reliable
1882-1983 Adelaide SLP time series can be obtained
from the World Mean Station Climatology [available
from the National Center for Atmospheric Research
(NCAR)]. However, correlation of the Adelaide SLP
time series with the Adelaide minus Rapa SLP time
series reveals that the relevant information on the time
scale we are interested in is contained in Adelaide sea-
sonal mean SLP alone. This is clearly demonstrated
by Fig. 2, which displays the Adelaide SLP and the
Adelaide minus Rapa time series. We therefore used
Adelaide SLP to construct the controlling time series
in our modeling experiments.
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The few missing values in the Adelaide SLP time
series were replaced by simple linear interpolation.
Seasonal means, beginning with FMA 1882, were
computed and the resulting series was seasonally ad-
justed by subtracting the annual cycle of the mean,
and scaling by the annual cycle of the standard devia-
tion. Low frequency variations in the mean and the
variance on time scales beyond a decade were removed
by subtracting the 20-year running mean from the time
series and dividing by a 20-year moving estimate of
the standard deviation. For the purposes of filtering,
the time series of running means and moving standard
errors was extrapolated at both ends so that the resulting
time series of differences was again the same length as
the original seasonally adjusted time series.

Finally, following the advice of van Loon and Shea
(1985, 1987), we tried to enhance the signal in the
controlling time series by calculating four and five sea-
son differences of the adjusted Adelaide SLP series.
The physical rational for doing so is the tendency of
the Southern Oscillation to oscillate on a quasi-biennial
time scale (Fig. 1¢). We found the five season differ-
ences to be most useful in our subsequent modeling.

A SLP tendency time series Z™" was constructed
from the adjusted and differenced Adelaide SLP series
as follows:

ZMY = adjusted SLP in MJJ,

— adjusted SLP in FMA_; (16)

where subscripts “0” and “—1” indicate the present
and previous calendar year. SLP tendency series Z #5°,
ZNPJ and Z™A were computed analogously. Four
candidate ancillary time series Y, Y250 YN "and
Y.FMA were defined as piecewise constant versions of
the tendency series. For example, Y, is defined by

Y MY = 7z MH
t = FMAy, MJJy, ASOp and NDJ,. (17)

First-moment and full RAMs were fitted with each of
the resulting ancillary time series.

The fitted collection of RAMs were scrutinized along
the lines sketched in the preceding section. First, fitted

for
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models were dismissed out of hand if the choice of
thresholds resulted in regimes containing only a small
number of observations. Second, the fitted model
should have low normalized TAIC. This scrutiny led
us to a tentative model using the [MIJ, — FMA_,]
SLP index as the ancillary “SPCZ index.” This choice
of the controlling SPCZ index, which was made objec-
tively on the basis of the normalized TAIC criterion,
is consistent with the finding of van Loon and Shea
(1985). .

The SPCZ index and its frequency histogram are
displayed in Fig. 3. The index’s sample skewness (0.12)
and kurtosis (—0.07) are not significantly nonzero. The
autocorrelation function (not shown) has irregular
characteristics, which are attributable to the long sam-
pling interval of one year (the index is constant within
years).

Notice that there is a fairly strong visual coherence
between the SOgsr and the SPCZ indices that is con-
firmed by the cross-correlation functions displayed in
Fig. 4. They show that MJJ, ASO and NDJ SOgsy val-
ues are positively correlated (~~0.4) with the SPCZ
index at lag 0. The greatest, but relatively small, cor-
relation in FMA occurs at lag 1 with the SOsst index
lagging the SPCZ index.

2) THE IM HYPOTHESIS

The IM hypothesis, suggested by Barnett et al. (1989)
among others, argues that the strength of the Indian
monsoon may be a precursor of extremes of the SO.
An index of the strength of the Indian summer mon-
soon is the “all India” mean JJAS rainfall (Mooley
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FIG. 3. The SPCZ index “Adjusted [MJJ, — FMA_,] Adelaide
SLP.” (a) Time series. Normalized units. (b) Frequency histogram.
The data do not contradict the null hypothesis of a normal distri-
bution.
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and Parthasarathy 1984; Shukla 1987; Elliot and Angell

1987). This series is used as an “IM index” Y, by fixing
the time series to the JJAS value within calendar years.
The IM index and its frequency histogram are displayed
in Fig. 5. The index’s sample skewness (—0.52) is sig-
nificantly different (at the 5% level ) from that expected
for a Gaussian sample. Its kurtosis (—0.08) does not
deviate significantly from zero.

As with the SPCZ index, variations of the IM index
are fairly coherent with the variations of the SOsgr in-
dex. This is substantiated by the cross-correlation
functions shown in Fig. 6. MJJ, ASO and NDJ SSTs
are negatively correlated (=~ —0.6) with the IM index
at lag 0. The greatest correlation in FMA occurs at lag
1, with the SOsst index following the IM index. The
latter correlation is comparable to the ASO and NDJ
values. These findings are in general agreement with
those of Elliot and Angell (1987).

5. The fitted models
a. The ordinary seasonal AR model

We fitted an ordinary seasonal AR model to the
SOsst index to provide a baseline of comparison for
subsequent RAMs. Details of the fitted seasonal AR
model are given in Table 1. Note that our results are
in general accord with those described by Chu and Katz
(1985) even though the same SO index is not used in
both studies and the definition of the seasons is some-
what different. In particular, both models show that
the SO is least persistent in Northern Hemisphere
spring. A major difference is that our model tends to
amplify SOgst anomalies in NDJ.

The annual march of the mean and standard devia-
tion of the SOgst index that-is derived from the fitted
seasonal AR model is shown in Fig. 7. The seasonal
means should be and are practically zero because the
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FIG. 5. The IM index “all India summer (JJAS) rainfall.” (a)
Time series. Units: cm. (b) Frequency histogram. The data do not
contradict the null hypothesis of a normai distribution.

SOgst index is derived from SST anomalies. The stan-
dard deviation exhibits a. marked annual variation with
a maximum in FMA and a minimum in ASO. This
behavior reflects the earlier mentioned tendency of the
SO to be highly persistent in its “peak” phase but highly
variable at the end of an event.

b. The SPCZ models
1) THE FIRST-MOMENT SPCZ-RAM

The parameters of the fitted model are given in Table
2. The estimated innovations do not contradict the
hypothesis that they behave as stationary white noise
after normalization. Their standard deviations are ap-
proximately one-half that of the SO index.

The estimated thresholds are —1.12 and 0.84; i.e.,
the model is in region j = 1 if ¥, < —1.12, j = 2 if
—1.12 < Y,<0.84,and j = 3if Y, > 0.84. These values
were estimated by using the search procedure outlined
in section 3a. Negative values of the ancillary time series
refer to negative 15-month SLP change at Adelaide,
or according to Fig. 2, a negative change in Adelaide
minus Rapa pressure; i.e., strengthening southerly
winds in the southwest Pacific. Similarly, positive val-
ues are indicative of strengthening northerly winds.
Therefore, regime j = 1 is called “southerly,” j = 2
“normal,” and j = 3 “northerly.” The delay parameter
was chosen to be one season (d = 1) suggesting that
the 15-month SLP change at Adelaide between MJJ
of the current year and FMA of the previous year affects
the course of the annual cycle of the SOsst index be-
tween the current MJJ and the next FMA.
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The annual cycle of the conditional j-means of the
first-moment SPCZ RAM are displayed in Fig. 7a. The
normal means are close to zero in all seasons, the
southerly means fluctuate around —0.55°C and the
northerly means vary between +0.6°C and +0.9°C;
that is, the southerly regimes tend to be connected with
below normal tropical Pacific SST (cold event), and
the northerly regimes with above normal SST (warm
event). This is the scenario that was suggested by van
Loon and Shea (1985). In the following we identify
southerly with “cold,” and northerly with “warm.” In-
terestingly, the mean warm events are described as
being larger than mean cold events.

The annual march of the j-standard deviations (Fig.
7b), which in the case of first-moment models does
not depend on the regime j, is similar to that of the
seasonal AR model with respect to the pattern, but the
annual mean of the standard deviation is reduced by
about 0.1°C. This reduction reflects the RAM’s success
in using the state of the ancillary time series to modulate
the mean state and hence in reducing the magnitude
of anomalies from the annual cycle.

The first-moment SPCZ RAM is superior to the or-
dinary seasonal AR model; the F-statistic in FMA,
M1IJ, and ASO is sufficiently large to reject the null
hypothesis that there is no additional information in
the ancillary time series, i.e., in the SPCZ index (risks:
2.0% in FMA, <0.1% in MJJ, and 3.9% in ASO).

The resuits of the F-tests are consistent with the de-
tails of the first-moment RAM. There is little difference
between the dynamic components, a; and a,, of the
seasonal AR model (Table 1) and the first-moment
RAM (Table 2). However, the seasonal AR model in-
corporates only a weak annual cycle, whereas the first-
moment RAM incorporates an annual cycle that is
strongly modulated by the SPCZ index as is evident
from the difference between the “warm/northerly,”
“npormal,” and “cold/southerly” annual cycles dis-
played in Fig. 7a.

Insight into the behavior of the dynamic part of the
first-moment RAM can be obtained by considering the
conditional j-forecasts (12) made from a 1°C anomaly
of one season duration. These forecasts are displayed
in Fig. 8 as anomalies from the j-mean. Note that be-
cause the dynamic part of the first-moment RAM is
not affected by the ancillary time series, there is only
one forecast of anomalies from the conditional mean
per season. The figure shows that an SOggr anomaly
from the conditional mean that appears in

e NDJ decays over the course of four to five seasons
in the absence of any forcing.

¢ FMA persists until the following NDJ before de-
caying exponentially over the course of two seasons.

e MJJ is amplified for two seasons so that it attains
about 150% of its original magnitude in NDJ. It then
quickly decays over the course of two to three seasons.
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® ASO is slightly amplified for one season and is
then again quickly damped.

2) THE FULL SPCZ-RAM

The estimated parameters of the full SPCZ model
are also given in Table 2. The estimated innovations
do not contradict the hypothesis that the normalized
innovations come from a white noise process. The same
delay and threshold parameters were chosen as for the
first-moment RAM. We will see that the most impor-
tant feature of RAMs for modeling the, SOggr index is
their ability to modulate the annual cycle. It is, thus,
not unreasonable that there was not a refinement in
the estimated delay and threshold parameters as they
were estimated from a discrete set of possible candi-
dates.

The annual cycle of the conditional j-means and j-
standard deviations of the full RAM are displayed in

Fig. 7. The normal-means are close to zero in all sea-
sons, the cold/southerly annual cycle varies near
—0.6°C, while the warm / northerly annual cycle varies
between +0.4°C and 0.7°C. The j-standard deviations
exhibit a marked seasonal variation. Also, variability
in the warm /northerly regime is substantially larger
than in the cold/southerly regime, at least in NDJ
and FMA.

It is not clear whether the full SPCZ-RAM is superior
to the first-moment model described above or whether
it is over specified. First, there is only a small increase
in explained variance beyond the first-moment model.
Second, the null hypothesis that the ancillary time series
does not modulate the model’s dynamic components,
ai, a2, and ¢, can be rejected only in MJJ and ASO
(risk: <0.1% and 4.9%, respectively). This is consistent
with differences that can be noted in Table 2. The AR
models fitted in FMA and NDJ are very similar to
those fitted for the first-moment RAM. But, the models
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in the cold region in MJJ and ASO exhibit strikingly
different stochastic behavior. The differences suggest
that disturbances are more persistent during a warm
event than during a cold event in the sense that anom-
alies about the modulated annual cycle are damped
much more vigorously in MJJ and ASO during cold
regimes than during warm regimes. This may in part
explain the systematic difference of the j- standard de-
viations mentioned above.

The difference in stochastic behavior between warm
and cold regimes can also be seen in the conditional
Jj-forecasts (Fig. 9). Forecasts made from SOggr anom-
alies that appear in NDJ and ASO evolve in a manner
similar to that of the corresponding forecasts derived
from the first-moment model. One minor difference
from the first-moment model in the warm case is that
a positive anomaly is followed by a small negative
anomaly in NDJ of the subsequent year. Like the first-
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moment model, an SOsst anomaly that appears in
FMA or MJJ decays in the model in approximately 6-
8 seasons. However, unlike the first-moment model,
there are considerable differences between the warm,
normal, and cold region forecasts.

The full SPCZ model is not nearly as well specified
as the first-moment model because smaller numbers
of observations are used to estimate individual param-
eters. Consequently, there is a loss of precision in es-
timated quantities such as the conditional j-means.
Unfortunately, this loss can not be quantified and one
has to suspect that at least part of the details of the
SPCZ RAM merely mirror sampling properties.

¢. The IM models

Three-region IM models similar to the SPCZ models
were fitted to the data with disappointing success. In
both cases the threshold search procedure led to models
that were in essence 2-region RAMs in that two of the
three defined regions contained all but a few of the
observed IM precipitation amounts. We therefore de-
cided to fit 2-region first-moment and full IM RAMs.

1) THE FIRST-MOMENT IM-RAM

The parameters of the fitted 2-region first-moment
IM model are given in Table 3. As with the SPCZ
model, this model explains a large proportion of the
variance of the SOgst index, and the Portmanteau test

. does not contradict the null hypothesis that the nor-

malized residuals come from a white noise process.
The single threshold is located at 85.7 cm of IM rainfall,
very near the 102-year mean IM rainfall of 85.2 cm.
We refer to the two regions defined by the threshold
as the “dry” and “wet” regions. The IM hypothesis
predicts that a wet monsoon will be associated with a
“cold” SO event and vice versa.

The delay parameter was chosen to be one season.

Therefore, the form of the annual cycle of SOsst be-

TaABLE 1. Ordinary seasonal AR model fitted to the 1882-1983
SOgst index with maximum AR order 2 permitted in any season.
Units (for ag and ¢.): 1072 °C. Estimates of @, and a, are dimensionless.
Quantities in parentheses indicate asymptotic standard errors of the
corresponding parameter estimates.

Parameters
Std dev
Season a a, a .
FMA 0.39 0.571 332
(3.31) (0.037)
MJJ -0.17 1.032 —0.368 374
(3.73) (0.112) (0.076)
ASO 2.55 1.436 —-0.471 36.2
) (3.59) (0.087) (0.077)
NDJ 3.56 1.172 27.1
(2.70) (0.037)
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TABLE 2. First-moment and full SPCZ-RAM with 3, regimes and maximum AR order 2 as fitted to the SOssr index. The change in
Adelaide SLP between FMA of the previous year and MJJ of the current year is used as the ancillary time series. The thresholds, T, and
T>, are located at —1.12 and +0.84 of the normalized SPCZ index. Units (for ao and ¢.): 1072 °C. Estimates of a, and a, are dimensionless.
Quantities in parentheses indicate asymptotic standard errors of the corresponding parameter estimates.

First-moment SPCZ RAM Full SPCZ RAM
Parameters Parameters
Std dev Std dev
Season Region a @ @ 7. a a a 0.
FMA 1 -17.02 0.572 31.9 —16.87 0.554 32.2
(7.98) (0.035) (8.09) (0.072)
2 0.56 0.572 31.9 0.60 0.609 28.7
(3.93) (0.035) (3.57) (0.039)
3 14.40 0.572 31.9 13.39 0.455 39.0
(7.32) (0.035) (8.72) (0.103)
M1 { —29.68 0.894 —0.288 339 —38.37 0.381 28.8
(8.66) (0.106) 0.071) (7.35) 0.117)
2 —0.65 0.894 ~0.288 339 -1.17 0.933 —0.287 35.8
4.17) (0.106) (0.071) (4.45) (0.155) (0.106)
3 26.60 0.894 —0.288 339 24.00 1.107 ~0.496 21.1
(7.92) (0.106) (0.071) (5.00) (0.121) (0.079)
ASO 1 -341 1.344 —0.437 35.0 —32.78 0.538 359
(9.44) (0.095) (0.077) (13.70) 0.241)
2 —-1.98 1.344 —-0.437 35.0 -0.64 1.397 —0.506 31.7
(4.28) (0.095) (0.077) (3.91) (0.103) (0.086)
3 23.44 1.344 ~0.437 35.0 9.10 1.563 -0.379 41.7
(8.62) (0.095) (0.077) (12.37) (0.255) (0.244)
NDJ 1 7.67 1.174 27.1 2.21 1.076 23.2
(7.18) (0.043) (9.81) (0.108)
2 2.07 1.174 27.1 1.83 1.140 28.8
(3.34) (0.043) (3.58) (0.056)
3 5.26 1.174 27.1 —0.85 1.273 21.8
(6.91) (0.043) 6.37) (0.064)

tween the current MJJ and the following FMA, as rep-
resented by the fitted model, is influenced by the con-
current JJAS Indian monsoon precipitation. The an-
nual cycle of the conditional j-means and j-standard
deviations of the IM model are displayed in Fig. 10.
We see that the model has means of the expected sign
in the wet and dry regions and thus we designated these

regions as “wet/cold” and “dry/warm.” Consistent
with the first-moment SPCZ RAM, the j-standard de-
viations of the first-moment IM RAM are about 0.1°C
less than those of the seasonal AR model.

The comparison of parameter estimates for the first-
moment IM-RAM (Table 3) and for the seasonal AR
model (Table 1) reveal that the main difference be-
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F1G. 8. Conditional j-forecasts from a 1°C anomaly imposed at season (a) NDJ, (b) FMA,
(c) MJJ, and (d) ASO made with the first-moment SPCZ model.
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FI1G. 9. Conditional j-forecasts from a 1°C anomaly imposed at season (a) NDJ, (b) FMA,
(c) MJJ, and (d) ASO made with the full SPCZ model.

tween the two models is in the estimates of the constant
terms in MJJ and ASO. Thus, the main difference be-
tween the two models is that the annual cycle is mod-
ulated in MJJ and ASO in the first-moment model by
an indicator of whether the concurrent monsoon is
weaker or stronger than normal. The F-test supports
this interpretation by rejecting the hypothesis that the
IM-index does not modulate the annual cycle of SOgs
in MJJ and ASO (risk < 0.1% in both seasons).

2) THE FULL IM-RAM

The details of the full 2-region IM RAM will not be
described. There is only a weak suggestion that a two-
state index of the Indian monsoon affects the (second-
order) stochastic properties of the RAM. The null hy-
pothesis that the two-state IM index does not modulate
the model’s dynamic components can be rejected only
in ASO with a relatively large risk (4.9%).

TABLE 3. First-moment IM-RAM with 2 sregimes and maximum
AR order 2 as fitted to the SOggr index. The threshold is located at
85.7 cm of IM precipitation. Units (for gy and ¢,): 1072 °C. Estimates
a, and a, are dimensionless. Quantities in parentheses indicate
asymptotic standard errors of the corresponding parameter estimates.

Parameters
Std dev
Season ag' ag’ a a a.
FMA —-1.22 1.62 0.581 33.1
(5.91) (5.02) (0.048)
Ml 20.17 —17.28 0.904 -0.276 32.7
4.91) (4.49) (0.101) (0.069)
ASO 25.77 —16.89 1.164 —0.331 314
(5.09) (4.59) (0.089) (0.071)
NDJ 4.99 2.37 1.160 27.1
(4.85) (4.23) (0.050)

d. Classification of ENSO events

One of the by-products of our RAM analysis is a
times series of SO state estimates as characterized by
the sequence of regimes identified by the RAM and
the labels (cold, normal, warm), which we have at-
tached to these regimes. On the other hand, it is possible
to categorize each year as being the year of a “cold,”
“warm,” or “no” event by means of the SOgst index
itself. If the NDJ SOssr is less (greater) than the mean
minus (plus) one standard deviation of the index the
year is labeled “cold” (“warm™). All other years are
labeled “no” years.

A measure of association between the two classifi-
cations, by the RAM and by the SOggst index alone,
may be obtained by compiling a contingency table and
conducting a X *-test of the null hypothesis that the two
partitions are unrelated. Strong association is not a
measure of success because the indices used as ancillary
variables are correlated with the SOggr time series. On
the other hand, lack of association indicates that
thresholds have been chosen in such a way as to oblit-
erate the connection between the index and SOggt Se-
ries. -

Since the first-moment SPCZ RAM and the full
SPCZ RAM operate with the same thresholds, the
classifications made by the models are identical. In the
contingency table derived from the SPCZ RAM (Table
4), there is a strong association between the RAM and
SOgsr classifications of the SO as measured by the X2
statistic. Comparison of the column and row sums of
Table 4 shows that the SPCZ-classifications have a dis-
tribution similar to that of the observed states. Ex-
amination of the cells of this table shows that warm
(cold) classifications coincide with warm (cold) SO
years more frequently than expected if there were no
association between estimates and observations.

SPCZ-classifications also have stochastic character-
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istics that are similar to those of the observed states as
is revealed by Table 5. Both the occupation times and
transition probabilities are similar in the SOgsr clas-
sifications and the SPCZ-RAM classifications. A severe
deviation is the cell “warm at time ¢, cold at time ¢
+ 1,” which is zero in the SPCZ RAM. A minor de-
viation is that when the SPCZ classification is either
warm or cold there is a greater than observed proba-
bility that the classification the following year will be
normal.

6. Summary

We have introduced a fairly general class of nonlin-
ear time series models—regime-dependent autoregres-
sive models (RAMs)—into climate research and dem-
onstrated its usefulness by describing the Southern Os-
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cillation. The basic idea of the RAM is to define
different regions in the considered state space and to
fit within each region a regular seasonal AR model.
The choice of which region is appropriate at a given
time is made by an ancillary variable.

In our example we use the models to describe the
Southern Oscillation as characterized by Wright’s SST
index (Wright 1984). We exploited two different hy-
potheses of how the Southern Oscillation is maintained
to obtain ancillary time series; the “South Pacific con-
vergence zone (SPCZ)-hypothesis” of van Loon and
Shea (1985, 1987) and the “Indian monsoon (IM) hy-
pothesis™ as reported by Barnett et al. (1989) and oth-
ers. The SPCZ hypothesis suggests the use of Adelaide
sea level pressure as the ancillary time series and the
Indian monsoon rainfall appears to be a reasonable
choice for the IM hypothesis.

Both SPCZ RAMs, the first-moment and the full
model, turned out to be skillful descriptions of the
Southern Oscillation. These models represent a signif-
icant advance over previous time series models of the
SO because they incorporate a representation of the
annual cycle that is dynamically modulated by an in-
dicator of the state of the SO. The inclusion of these
annual cycle terms results in a significant reduction of
variance attributed to noise when compared with or-
dinary seasonal AR models that allow for only a fixed,
nonstate dependent representation of the annual cycle.
Both RAM models suggest that events during FMA
are pivotal in determining the course of the SO during
the subsequent year. An indication of which course
has been taken is available at the end of July in the
form of the 15-month Adelaide FMA_, to MJJ, SLP
tendency. The characteristics of the full SPCZ-RAM
indicate that the stochastic characteristics of the SO
index may also depend on the regime. In the model,

TABLE 4. Contingency table describing the association between
the classification of years as cold, normal, or warm SO years using
the SOgsr index (labeled “observed”; “cold/warm” corresponds to
NDJ SST less/greater than the mean minus/plus 1 standard deviation)
and the classification obtained from the SPCZ-RAM.

Quantities in parentheses are expected cell frequencies under the
hypothesis that there is no association. The X2-statistic for the table
is 33.2 with 4 degrees of freedom (significant at the 0.01% level pro-
vided the data were not serially correlated).

Observed SO state

Row

Cold Normal Warm total

SPCZ RAM:  Cold/ 9 7 0 16
Southerly 3.5) (8.5) 4.0)

Estimated Normal 12 41 12 65
SO State (14.2) (34.7) (16.1)

Warm/ 1 6 13 20
Northerly 4.4) (10.7) 4.9)

Col Total 22 54 25 101
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TABLE 5. Transition probability matrix using the classifications obtained from the SOgsr index and from the SPCZ-RAM (101 years).

State at time ¢ + |

SOSST index SPCZ RAM
State at time ¢ Cold Normal Warm Cold Normal Warm
Cold 32% 36% 32% 25% 56% 19%
Normal 17% 61% 22% 18% 57% 25%
Warm 21% 54% 25% 0% 95% 5%
Mean occ. time (yrs) 1.5 2.6 1.3 1.3 2.3 1.1

the course of a cold event is less variable than that of
a warm event. We cannot exclude, however, the pos-
sibility that this finding is due to over fitting the data.
It is fair to say that the full RAMs employed in this
paper stretch the limits of our ability to estimate pa-
rameters with seasonal time series that are of order 100
years in length.

The IM hypothesis leads to a less successful RAM.
In contrast to the 3-region SPCZ models, the IM model
operates in only two regions. The sign of the IM pre-
cipitation anomaly may be used to infer which of the
two possible regimes the SO is in at a given time. The
“above normal” and “below normal” regimes differ
mainly with respect to the annual cycle. The extension
of the first-moment model to a full RAM provided
only weak evidence that the IM index affects the second
moments of the SOgsr index. The fact that the IM hy-
pothesis does not result in a workable 3-region model
with distinct warm, cold, and intermediate regime
characteristics suggests that the Indian monsoon does
not contain a useful SO precursor signal. Rather, the
IM RAMs describe a concurrent relationship between
the SO and the Indian monsoon. This is consistent
with the findings of Elliot and Angell (1987) who
showed that the IM index was not correlated with prior
SO variation.

An important caveat to this study is that it has been
conducted very much in an exploratory vein. We have
demonstrated that RAMs are able to capture stochastic
features of the SO and its relationships with certain
precursor time series that have previously been de-
scribed in other ways. This illustrates the potential util-
ity of this type of statistical model. However, it does
not constitute an independent confirmation of the ex-
istence of these stochastic relationships because our
findings are not based on independent data. Ultimate
confirmation or rejection of the SPCZ- and IM-hy-
potheses awaits either future climate observations or
the development of coupled atmosphere/ocean GCMs
that can simulate the ENSO phenomenon with con-
siderable fidelity.

This study illustrates both the advantages and the
potential problems of RAMs. These models can be in-
terpreted as discretized nonlinear differential equations.
As such, this is a very broad class of models that can

be used without precise. or restrictive specification of
the form of the governing equations. In that sense these
models are almost nonparametric and lend themselves
well to an exploratory analysis of geophysical data.
However, the price of this generality is the need to
estimate numerous parameters. OQur experience with
these models shows that there is a need for a reasonable
physical model of the process that can be used to con-
strain the class of statistical models to be considered
and, thus, strengthen the inferences that are possible.
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