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ABSTRACT 

The comparison of means derived from samples of noisy data is a standard part of climatology. When the 
data are not serially correlated the appropriate statistical tool for this task is usually the conventional Student's 
t-test. However, frequently data are serially correlated in climatological applications with the result that the t 
test in its standard form is not applicable. The usual solution to this problem is to scale the t statistic by a factor 
that depends upon the equivalent sample size n,. 

lt is shown, by means of simulations, that the revised t test is often conservative ( the actual significance level 
is smaller than the specified significance level) when the equivalent sample size is known. However, in most 
practical cases the equivalent sample size is not known. Then the test becomes liberal (the actual signi~cance 
Ievel is greater than the specified significance level). This systematic error becomes small when the true equ1valent 
sample size is !arge (greater than approximately 30). . 

The difficulties inherent in difference of means tests when there is serial dependence are reexamined. Guidelines 
for the application of the "usual" t test are provided and two alternative tests are proposed that substantially 
improve upon the "usual" t test when samples are small. 

1. lntroduction 

Statistical comparisons of means are frequently 
conducted in climatology to intercompare observed 
and/or simulated climates among themselves or 
against fixed reference values. These comparisons are 
conducted by employing a paradigm in which (i) a 
statistical model is imposed upon the samples of cli­
mate data, (ii) a null hypothesis Ho that is tobe tested 
is specified, (iii) an alternate hypothesis H0 that guides 
the interpretation of the test statistic is specified, and 
(iv) a test statistic is computed to determine how un­
usual the observed difference ofmeans is in the context 
of the model and the null hypothesis. 

lt is well known that the classical method, which 
employs the Student's t-test ( see, e.g., Mood and Gray­
bill 1963) and assumes a statistical model in which 
climate observations are statistically independent and 
Gaussian, is sensitive to serial correlation within the 
samples. The effect of serial correlation is, usually, to 
make comparisons of means liberal. That is, "signifi­
cant" differences are found more frequently than ex­
pected when there is no difference. This occurs because 
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the t test scales the difference oftime averages with an 
estimate of the standard error of the difference, that 
relies explicitly upon the independence assumption. 
When the data are serially correlated the estimate of 
the standard error underestimates the sampling vari­
ability of the difference of time averages. 

The purpose ofthis paper is to review existing meth­
ods for dealing with serial correlation, propose a·new 
test for the difference of means that better takes the 
effects of serial correlation into account, and provide 
guidelines for application of comparison of means 
procedures. 

W e will operate by replacing the independence as­
sumption referred to above with a red noise assump­
tion. That is, it will be assumed that the evolution of 
an observed climate process is govemed, approxi­
mately, by a difference equation of the form 1 

X, - µx = P1(X1-1 - µx) +Ei. (1) 

where {Ei} is a Gaussian white noise process, P1 is the 
lag-1 correlation coefficient, and µx is the long-term 
mean. This simple difference equation model approx­
imates observed climate behavior in many instances 
when 0 .:;; p 1 < 1. In this case the power spectrum, an 

1 Stochastic processes that satisfy ( 1) are frequently referred to as 
being autoregressive of order 1 [AR( 1 )]. 
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example ofwhich is illustrated in Fig. 1, has maximum 
energy at zero frequency and decreases smoothly with 
increasing frequency. This characteristic roughly ap­
proximates the behavior of many thermodynamic 
variables in the free atmosphere, even if accurate rep­
resentation of their stochastic behavior requires the use 
of higher-order models. The AR( l) model also arises 
naturally when one employs stochastic climate models 
( e.g., Hasselmann 1976) to explain how the climate 
system can exhibit low-frequency variability without 
resorting to either normal modes, which operate at low 
frequencies; complex nonlinear feedbacks; or external 
forcing. We therefore feel that the difficulties with the 
standard t test can be usefully alleviated in many sit­
uations by approximating the stochastic structure of 
climate observations with an AR ( 1 ) model. 

While the Gaussian and red noise assumptions are 
reasonable in many instances, they should not be made 
blindly. Departures from both assumptions may cause 
difficulties with test reliability that are as serious as 
those that we are striving to correct. This will especially 
be the case when the observed processes have spectral 
peaks at greater than zero frequency. For example, any 
variable that exhibits an ENSO, QBO, or MJO signal 
is suspect. In general, it is imperative that the assump­
tions that are necessary for the application of a statis­
tical procedure are checked. Relatively simple descrip­
tive methods, such as plotting observations as a func­
tion oftime; plotting estimates ofthe power spectrum, 
autocorrelation, and partial autocorrelation functions; 
and plotting frequency histograms of the data should 
be adequate to detect gross departures from the Gauss­
ian and red noise assumptions. 

The remainder of this paper is organized with two 
groups of readers in mind. Those interested in the 
practical aspects oftests ofthe mean when the data are 
approximately AR ( 1 ) and Gaussian will find our rec­
ommendations for one- and two-sample tests of the 
mean in section 2. Readers interested in a detailed de­
scription of the testing problem should read the re­
mainder of this section, skip section 2, and return to 
it after reading the rest of the paper. 

a. A pedagogical example 

A parochial and naive but nonetheless instructive 
question is whether long-term mean winter tempera­
tures at two locations such as Hamburg and Victoria 
are equal. To attempt to answer this question, suppose 
that we have at our disposal the daily observations at 
both locations for the winter of 1992 / 9 3. W e treat the 
winter temperatures at both locations as random vari­
ables, say TH and Tv. The "long-term mean" winter 
temperatures at the two locations, denoted as µH and 
µv, respectively, are parameters ofthe probability dis­
tributions of these random variables. 

The statistical question we pose is: Do the two sam­
ples oftemperature observations contain sufficient ev­
idence to reject the null hypothesis 
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FIG. 1. The power spectrum of an AR( 1) process with lag-1 
correlation coefficient p1 = 0.75 and innovation variance a; = 1. 

(2) 

In this example, and in many applications in climate 
research, the assumption that the observations are sta­
tistically independent is not satisfied. Consequently, 
the Student's t-test tends to reject that null hypothesis 
on weaker evidence than is implied by the significance 
level 2 that is specified for the test. Consequently, the 
Student's t-test will reject the null hypothesis more fre­
quently than expected when the null hypothesis is true. 

b. Subsampling the data 

A relatively clean and simple-minded solution to 
this problem is to form subsamples ofindependent ob­
servations. In the case of daily temperature data, one 
might argue that observations that are separated by, 
say, 5 days, are effectively independent ofeach other. 3 

Let the number of observations, the sample means, 
and standard deviations of these reduced datasets be 
d -* -* * * enoted by n*, TH, Tv, SH, and Sv, respectively. 
Then the usual t statistic 

ti1 - tt 
t =' -------'---

((St/+ Sf:,2)/n*]112 
(3) 

has a Student's t distribution with 2n* - 2 degrees of 
freedom provided that the null hypothesis is true.4 A 
test can be conducted at the specified significance level 
by comparing the value of ( 3) with the appropriate 
percentiles of this distribution. 

2 The significance level indicates the probability with which the 
null hypothesis will be rejected when it is true. 

3 The choice of the sampling interval is a nontrivial problem. lt is 
determined either from physical considerations or by examination 
ofthe autocovariance function. See section lc for a related discussion 
of the concept of effectively independent observations. 

4 Strictly speaking, this is true only if the standard deviations of 
TH and Tv are equal. 
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Thus, appropriately subsampling the data will result 
in a test that operates as specified by the user. Unfor­
tunately, this is achieved by throwing away much of 
the data and, presumably, at least part of the infor­
mation contained in the data. 

c. The equivalent sample size 

The main reason for the liberal behavior ofthe t test 
when the data are not subsampled is that the denom­
inator of ( 3) underestimates the sampling variance of 
the numerator [see, e.g., Laurmann and Gates 1974; 
Chervin and Schneider 1976; Jones 1975; Thiebaux 
and Zwiers 1984 (hereafter TZ)]. To correct this 
problem, the sum of sample variances S1 + Si, must 
be scaled by the equivalent sample size ne. The equiv­
alent sample size is given by 

ne = n / [ 1 + 2 :~: ( 1 - ~) p( T) ]. ( 4 ) 

where p( T) is the correlation between temperature at 
timet and temperature at time t + r. When the ob­
served processes are AR ( 1 ) with lag-1 correlation coef­
ficient Pi. p( r) = p \'1. Thus 

ne = n / [ 1 + 2 ~~: ( 1 - ~) p I ]. ( 5 ) 

which may be approximated by 

when n is large. 

(1 - Ti) 
ne=n(I+p1) (6) 

As an (important) aside, we reiterate the point made 
in TZ that the equivalent sample size is not uniquely 
defined. The equivalent sample size arises because we 
interpret t as the distance between the sample means 
expressed in units of standard deviations of sample 
means. Many statistics have this basic form: 

T= D/Sn, (7) 

where Dis some characteristic ofthe difference between 
two samples and Sn is an estimate ofthe standard error 
of D. In many cases, the standard error estimator that 
is appropriate when observations are independent 
needs tobe scaled by some function ofthe sample size 
n when observations are serially correlated. The re­
sulting expression for the equivalent sample size ne or 
integral time scale n/ne depends upon the definition 
of D. 

Another way to think about the effective sample size 
is that it is a diagnostic that tells us something about 
the information loss due to serial correlation in a sam­
ple of size n. When ne is defined as in ( 5), the inter­
pretation is that samples of independent observations 
of size ne contain as much information about the dif­
ference of means as samples of serially correlated ob-

servations of size n. In that context, we can think of 
ne as the number of effectively independent observations. 
However, when our interest is in some other feature 
of the difference between two samples, the definition 
of information changes. Consequently, the definition 
of the equivalent sample size, or number of effectively 
independent observations, also changes. lt is therefore 
impossible to interpret ne as the number of effectively 
independent observations in an absolute sense. 

d. Adjusting the t statistic 

When samples are sufficiently large, the adjusted t 
statistic, 

TH- Tv 
t=-------

[(S1 + St)/ne] 112 (8) 

has a standard Gaussian, or normal, distribution N(O, 
l ) with mean 0 and standard deviation 1 ( Albers 197 8 ) 
under the null hypothesis. Thus one can conduct a test 
by comparing ( 8) to the percentiles of the standard 
Gaussian distribution. When samples are small it is 
often assumed that ( 8) will behave as Student's t with 
ne - 1 degrees of freedom under the null hypothesis. 
While this assumption, which appears to have a heu­
ristic basis, is asymptotically correct ( Albers 1978, see 
Lemma 2.1 ) , it is not correct for small samples ( see 
Katz 1982; TZ). 

The imprecision of the assumption that ( 8) is dis­
tributed Student's t is demonstrated with the following 
example. Suppose samples are obtained from a speci­
fied zero mean Gaussian AR( 1) process. The exact 
equivalent sample size ne is known because the AR ( 1) 
parameters are known. Samples of length n are ran­
domly generated for various choices of n and AR( 1) 
parameters and each sample is used to test the null 
hypothesis that µx = 0 with t statistic ( 8) at the 5% 
significance level. W e find that the actual rejection rate 
( Fig. 2) is notably smaller than the expected rate of 
5% for ne ~ 30. This finding is further supported by 
theoretical arguments in the appendix. 

Additional difficulties arise when the equivalent 
sample size must be estimated from the data. In this 
case the actual rejection rate of the t test tends to be 
greater than the nominal rate ( see section 3). In some 
instances the actual significance level can be several 
times greater than the nominal significance level. 

Although the effects of dependence on tests of the 
mean are weil known in the statistical literature, it is 
relatively void of advice on how to counteract these 
effects. Albers ( 1978) considers the cost of making a 
large sample version of the t test robust against some 
kinds of dependence. Cressie ( 1980) contains a survey 
of the effects of various departures from the assump­
tions that are implicit in the t test. Tubbs ( 1980) de­
scribes the effects of serial correlation on multivariate 
versions of the t test. Katz ( 1982) describes an asymp­
totic test. Kabaila and Nelson ( 1985) describe uni-
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F!G. 2. Actual rejection rates of the t test with n, known in a series 
of simulation experiments. The upper panel shows the rejection rate 
as a function of sample size, while the lower panel shows it as a 
function of equivalent sample size. Each panel contains five curves 
corresponding to data-generated first-order autoregressive processes 
X, with zero mean and lag-1 correlation coefficients of 0.3 (short 
dashes), 0.45 (medium dashes), 0.6 (long dashes), 0.75 (long broken 
dashes), and 0.9 (medium broken dashes), respectively. The null hy­
pothesis 0(X1) = 0 was tested at the 5% significance level in each of 
1000 Monte Carlo trials conducted for each combination of sample 
size and lag-1 correlation coefficient. The solid horizontal line rep­
resents the nominal (5%) rejection rate and the dashed horizontal 
lines represent critical points at which the null hypothesis that the 
test operates at the nominal significance level is rejected. 

variate and multivariate versions of a competing 
asymptotic test. Both approaches were examined in 
TZ. Sutrahdar et al. ( 1987) discuss one-way analysis 
of variance of experimental designs in which each 
"treatment" results in a sample taken from a time se­
ries. The comparison of the means of two relatively 
large samples is considered as a special case. None of 
these authors discuss the small sample case. 

The remainder ofthis paper is organized as follows. 
Our recommendations for one- and two-sample tests 
ofthe mean for data from Gaussian red noise processes 
are contained in section 2. Readers interested in a de­
tailed description of the testing problem should skip 
this section and return to it after reading the rest ofthe 
paper. The "usual" t test, which is adjusted for serial 

correlation using the equivalent sample size, is dis­
cussed in section 3. The likelihood ratio (LR) test, a 
competing asymptotic test that is based on rigorous 
statistical principles, is described in section 4. An em­
. pirically developed table lookup test that has superior 
small sample properties is described in section 5. A 
summary is presented in section 6. 

2. Recommended test procedures 

The following procedures are appropriate for use 
when the observations are obtained from processes that 
are approximately Gaussian red noise processes. Unless 
otherwise noted, procedures for the two-sample case 
rely on the additional assumption that both samples 
come from red noise processes that have the same vari­
ance and lag-1 autocorrelation. The reliability of any 
statistical inference procedure will be compromised if 
the assumptions that are implicit in the procedure are 
not satisfied. 

a. Large samples ( ne ~ 30) 

We recommend the use of the "usual" t test when 
the equivalent sample size ne ( one sample) or the sum 
of the equivalent sample sizes ( two sample) is known 
tobe greater than 30. The procedures are as follows. 

• The one-sample case: 
To test H 0 : µ = µ 0 using a sample ofsize n compute 

(x - µo) 
t = s/(ft;)112' (9) 

where x is the sample mean and s2 is the sample vari­
ance. Compute the estimated equivalent sample size 
ft; using 

r if fze :s; 2, 
Af A 

if 2 < fze :s; n, ( 10) ne = :e 
otherwise, 

where fze = n( l - ri)/( l + ri) and r1 is the sample lag-
1 correlation coefficient that is given by 

n 

L: (x, - x)(x,_1 - x) 
/=2 ( 11) r1 = n 

L: (x1 - x) 2 

t=I 

Compare the computed t value with the appropriate 
critical values of the standard Gaussian distribution. 

• The two-sample case: 
To test H 0 : µy = µx using Y and X samples of size 

m and n, respectively, compute 

y-x 
t = s[l/(m;)l/2 + l/(fz;)t/2]' (12) 
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where y and x are sample means and s2 is the pooled 
sample variance. The latter is given by 

m n 

s2 = [L (X1 - x)2 + L (Yi - Y) 2 ]/(m + n - 2). 
l=I 

(13) 

The equivalent sample size estimates m; and n; are 
obtained by substituting a pooled estimate of the lag-
1 correlation coefficient 

m n 

L: (xi - x)(x1-I - x) + L: (Y1 - :YHY1-I - fl 
/=2 /=2 

m n 

L (Xi - X) 2 + L (Yi - Y) 2 

t=I t=I 

(14) 

into ( 10) for sample sizes m and n, respectively. Com­
pare the computed t value with the appropriate critical 
values of the Standard Gaussian distribution. 

b. Small samples (ne < 30) 

When ne is known to be less than 30, a two-stage 
procedure is required. 

• First make a subjective estimate of ne, which you 
know tobe no greater than the actual value. Use this 
estimate with the "usual" t test [ based on ( 9) or ( 12)] 
to make a preliminary decision. If the decision is to 
reject H 0 then the analysis can stop because evidence 
against Ho has been found with a conservative test. 
Otherwise the analysis should continue with either the 
LR test [ see section 2b( l)] or table lookup test [ see 
section 2b( 2)]. 

• The LR test is suggested for the second stage when 
it is known that ne > 15 ( or ne > 15 for both samples 
in the two-sample case). The LR test is preferable to 
the table lookup test from a practical point of view 
because the required software is widely available and 
because the test does not rely upon specialized tables 
that are difficult to derive. 

• The table lookup test is suggested for the second 
Stage when it is not known if ne > 15 ( or ne > 15 for 
both samples in the two-sample case). In this case it 
is prudent to utilize the protection against spurious 
reject decisions that is offered by the superior small 
sample properties of the table lookup test. 

Outlines of the LR and table lookup tests follow. 

l ) THE LR TEST 

Our recommendations for the LR test are made un­
der the assumption that the user has access to computer 
codes that are able to make exact Gaussian maximum 
likelihood estimates of autoregressive time series mod­
els. We recommend Ansley's algorithm (Ansley 1979), 
which is contained in the Sp/us arima.m/e function 

( Splus 1992; Becker et al. 1988). The Splus function 
also makes use of a transformation of the autoregressive 
parameters (in this case only p I), which insures sta­
tionarity of the fitted model (Jones 1980). Similar 
functions are available in other statistical packages. For 
reasons of computational convenience, the recom­
mended two-sample procedure does not utilize the as­
sumption of common variance and lag-1 correlation. 
See section 4 for further details. 

• The one-sample case: 
1. Assume that H 0 : µ = µ0 is true, compute the 

deviations x; = x1 - µ 0 , and choose parameters p 1 and 
a, to maximize the log likelihood l, of the model X; 
= PIX;_I + f1. 

2. Assume the H 0 : µ = µo is false, choose parameters 
PI, µ, and a, to maximize the log likelihood 11 of the 
model (X1 - µ) = PI (X1-I - µ) + f1. 

3. Compute the difference between the log likeli­
hood ofthefull model U1) and that ofthe Ho restricted 
model (/,). Compare (11 - l,) against the critical values 
of the X 2 distribution with 1-df. 

• The two-sample case: 
1. Assume that H 0 : µx = µy is true, compute the 

common mean ji = (L;'!I X1 + L:7=I Yi)/(m + n) from 
both samples, compute the deviations x; =Xi - ji and 
y; = Ys - ji, choose parameters Px,I • a„ PY,I and <lo to 
maximize the log likelihoods of the models X ; 
= PIX ;_I + fi and Y; = ßY ;_I + b„ respectively, and 
set l, to the sum of the log likelihoods. 

2. Assume that H 0 : µx = µy is false, choose param­
eters Px,I, µx, u„ Py,I, µy, and uri to maximize the log 
likelihoods ofthe models Xi - µx =PI (X1-1 - µx) + fi 

and Ys - ay = ß( Ys-t - µy) + b„ respectively, and set 
frto the sum ofthe log likelihoods. 

3. Compute the difference between the log likeli­
hood ofthefull model (fr) and that ofthe Ho restricted 
model ( l,). Compare (Ir - l,) with the critical values 
of the X 2 distribution with 1-df. 

2) THE T ABLE LOOKUP TEST 

• The one-sample case: 
To test Ho:µ= µ0 using a sample ofsize n compute 

t = (x - µo) 
s/(n)112, (15) 

where x is the sample mean and s 2 is the sample vari­
ance. Compute the sample lag-1 correlation coefficient 
rI using ( 11 ). Use Tables 6-10 5 in section 5 to deter­
mine the critical value for t that is appropriate to a 
sample of size n that has a lag-1 correlation coeffi­
cient r 1 • 

5 Electronic versions of the tables are available from the au­
thors, either on DOS compatible floppy disk or via e-mail 
(fzwiers@uvic.bc.doe.ca). 
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• The two-sample case: 
To test H0 : µy = µx using Y and X samples of size 

m and n, respectively, compute 

.Y-x 
(16) 

t = ( 1 1 )1/2 ' 
s-+-

n m 

where y and .X are sample means and s 2 is the pooled 
sample variance ( 13 ). Compute the pooled sample lag-
1 correlation coefficient r1 using ( 14 ). Use Tables 6-
10 to determine the critical value for t that is appro­
priate to a sample of size m + n that has a lag-1 cor­
relation coefficient r 1 • 

3. The usual test 

In this section we discuss the "usual" t test in which 
the ordinary Student's t statistic is scaled using an es­
timate of the equivalent sample size. For simplicity, 
the discussion will focus primarily on the one-sample 
test. We indicate how the results apply in the more 
usual two-sample context at the end ofthis section. As 
discussed in section 1, the common approach used in 
climatology for testing the null hypothesis 

Ho:µ= µo ( 17) 

is to 

• compute a t statistic as 

(x - µo) 
t = s/(fie)112' 

(18) 

where .Xis the sample mean, s 2 is the sample variance, 
and fie is an estimate ofthe equivalent sample size, and 

• compare the computed t with critical values from 
the Student's t distribution with fie - 1 df. 

Variations in this approach are distinguished by the 
method used to estimate fie. In general, parsimonious 
methods ( i.e., methods that rely upon the estimation 
of a small number of parameters) perform best. 

The extreme antithesis of a parsimonious method is 
that which TZ called "DIRECT." In that method ne 

is estimated by substituting the sample autocorrelation 
function into ( 4) directly. This results in highly variable 
estimates of ne and by inference, very poor test per­
formance. The variability is caused by sampling vari­
ability in the n - l estimated parameters that enter the 
calculation. 

Substantial improvement can be obtained by trun­
cating the sample autocorrelation function after a fixed 
number of lags ( the method TZ call "DIRECT2"). 
Further improvement can be obtained by deriving the 
autocorrelation function from a parametric time series 
model fitted to the observations ( the method TZ call 
"ARMA"; see also Katz 1982). 

We modify the ARMA estimator in two ways: 

1) We fit only AR( 1) models to the observations. 
We do this by estimating the lag-1 correlation coeffi­
cient of the observed time series with ( 11 ) and substi­
tuting this estimate of p 1 into ( 5) to provide an estimate 
fie of ne. Note that ( 6) may also be used when samples 
are large. 

2) We note that sampling variability sometimes re­
sults in unrealistic values of fie. We therefore constrain 
the estimates to realistic values using ( 10). 

The performance of this equivalent sample size es­
timator and the corresponding approximate t test of 
the mean were examined by means of a simulation 
experiment. One thousand samples of length n = 15, 
30, 60, 90, 120, and 240 were taken from simulated 
AR( l ) stochastic processes with mean zero and lag-1 
correlation coefficients p 1 = 0.3, 0.6, and 0.9. Thus a 
total of 18 combinations of sample length and persis­
tence were considered. Each sample was used to esti­
mate the equivalent sample size using the modified 
ARMA method described above, and each was used 
to conduct an approximate test of ( 17) with µ0 = 0. 

The results for fi; are summarized in Table 1. The 
modified ARMA estimator of the equivalent sample 
size shows improved performance compared to that 
reported by TZ. Both the bias and the variability of 
the estimates are reduced. 

The results for a two-sided test of ( l 7) with µ0 = 0 
using the t statistic ( 18) with ne estimator fi; and critical 
values appropriate to the 5% significance level are 
summarized in Table 2. Because H 0 is true, we would 
expect about 5% of the 1000 simulated tests to result 
in reject decisions if the test operates as anticipated. 

We need to take the sampling variability ofthe ob­
served rejection rates into account to determine 
whether they are significantly different from the antic­
ipated rate. Test decisions are independent of each 
other because the samples were generated in such a 
way as to insure their mutual independence. Conse­
quently, the number of reject decisions in each 1000-
trial experiment should have a binomial distribution 
in which the probability of a "success" ( a rejection) 
on any trial will be 0.05 (von Storch 1982). We there­
fore expect the observed proportion of reject decision 
to lie in the interval (0.0365, 0.0635) with proba­
bility 0.95. 

Table. 2 shows that the test generally rejects the null 
hypothesis too frequently. The effect is particularly 
dramatic when samples are small and the sampled time 
series is persistent. The test operates as designed only 
when samples are "large," that is, roughly when ne 

> 30. Our conjecture is that at these sample sizes the 
variance of .Xis weil enough estimated by s2 /fi; that t 
has approximately a Gaussian distribution. 

The fact that the test rejects H 0 too frequently at 
small sample sizes is due to the sampling variability of 
fi;. Table 3 and Fig. 2 show that H0 is not rejected 
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TABLE 1. Each cell contains a summary of 1000 simulated realizations of estimator fi~. Each estimate was computed from a sample of 
length n generated from an AR (1) stochastic process with lag-1 correlation a. The first entry in each cell is the known equivalent sample 
size obtained from (11 ). The second entry is the mean of 1000 realizations of fi~. The entries in parentheses indicate the interquartile range 
(IQR) of the 1000 realizations of fi~. The IQR contains the middle 50% of all fi~ realizations. 

Lag-1 correlation a 

0.3 

n n, fi~ IQR n, 

15 8.4 10.9 (8, 15) 4.3 
30 16.5 19.7 (15, 24) 8.0 
60 32.7 36.7 (30, 43) 15.5 
90 48.8 51.7 (44, 58) 23.0 

120 65.0 68.3 (59, 76) 30.5 
240 129.6 134 (121, 144) 60.5 

frequently enough when the simulation is repeated with 
the known rather than estimated value of ne. 

Our advice then is that this simple and intuitively 
appealing test ofthe mean should be used either when 
samples are very large or when other knowledge about 
the problem can be used to infer something about the 
true value of ne. As a very rough guideline, when ne is 
estimated users should expect the actual level of sig­
nificance of this test ( when conducted at the nominal 
5% level) tobe about 10% when ne ~ 15. The signif­
icance level will approach the nominal level when ne 
> 30. If ne cannot be reliably estimated a conservative 
guesstimate ( which is known tobe no greater than the 
true ne) can be used in place of fi;. This results in a 
safe ( i.e., conservative) test that requires stronger ev­
idence to reject H 0 than would be required by an op­
timal test. 

A two-sample test version of the test is constructed 
by analogy with the standard difference of means test 
that is described in section 1. To apply the test, it is 
necessary to assume that the two samples come from 
processes with the same variance and lag-1 correlation 
coefficient. The characteristics of the resulting two­
sample test, and our recommendations for its use, are 

T ABLE 2. Each cell summarizes the results of 1000 tests of H 0 : µ 
= 0. The test was conducted by computing t statistic ( 15) and 
comparing it with the 5% critical points ofthe Student's t distribution 
with fi~ - 1 df. Boldface type indicates observed rejection rates under 
H0 that are different from the nominal 5% at the 5% significance 
level. 

lag-1 correlation p 1 

n 0.3 0.6 0.9 

15 0.077 0.169 0.308 
30 0.083 0.116 0.249 
60 0.070 0.084 0.170 
90 0.060 0.079 0.130 

120 0.051 0.062 0.118 
240 0.052 0.060 0.090 

0.6 0.9 

., 
IQR 

., 
IQR n, n, n, 

7.8 (5, 10) 1.6 5.1 (3, 6) 
11.2 (8, 14) 2.3 5.7 (4, 7) 
18.6 (14, 22) 3.7 6.9 (5, 8) 
26.3 (21, 30) 5.3 8.2 (6, 10) 
33.6 (28, 38) 6.9 9.7 (7, 12) 
63.3 (57, 69) 13.2 16.1 (13, 19) 

the same as those for the one-sample test except that 
they apply to the sum of the equivalent sample sizes 
for the two samples. 

4. The likelihood ratio test 

A more formal approach to the problem of testing 
the mean of a time series is to base the inference on 
the LR test ( see, e.g., Kalbfleisch 1979; Breiman 1973; 
Cox and Hinkley 197 4). The idea here is that the like­
/ihood of the observations is maximized under two 
scenarios: one in which the null hypothesis is true and 
the other in which it is false. These likelihoods are 
compared by computing their ratio. Asymptotic theory 
provides a large sample reference distribution for the 
natural logarithm of the likelihood ratio and demon­
strates that LR tests are asymptotically optimal. 

Suppose that the sample x 1, ••• , Xn represents a re­
alization of the random variables X 1 , ••• , Xn. Suppose 
also that our assumptions about the observed process 
(X1) together with either the null of alternate hypotheses 
allows us to determine the joint density functionf( X 1 , 

... , Xn 19) of X 1 , ••• , Xn. The vector 9 represents 
parameters, such as the lag-1 correlation coefficient, 

T ABLE 3. Each cell summarizes the results of 1000 tests of H 0 : µ 
= 0. The test was conducted by computing t statistic ( 15) using the 
known value of n, and comparing it with the 5% critical points of 
the Student's t distribution with n, - 1 df. Boldface type indicates 
observed rejection rates under Ho that are different from the nominal 
5% at the 5% significance level. 

lag-1 correlation p 1 

n 0.3 0.6 0.9 

15 0.046 0.022 0.000 
30 0.045 0.038 0.000 
60 0.051 0.049 0.014 
90 0.047 0.046 0.026 

120 0.047 0.046 0.039 
240 0.048 0.051 0.048 



FEBRUARY 1995 ZWIERS AND VON STORCH 343 

TABLE 4. Each cell summarizes the results of 1000 LR tests of 
H0 : µ = 0. The test was conducted by computing the LR statistic 
and comparing it with the 5% critical point of the x2 distribution 
with 1 df. Boldface type indicates observed rejection rates under Ho 
that are different from the nominal 5% rate at the 5% significance 
level. 

lag-1 correlation a 

n 0.3 0.6 0.9 

15 0.088 0.118 0.214 
30 0.057 0.085 0.150 
60 0.045 0.077 0.096 
90 0.063 0.062 0.094 

120 0.049 0.056 0.092 
240 0.055 0.056 0.064 

which must be estimated. The likelihood function is 
then defined as 

and the maximum likelihood estimate 8 of 8 is obtained 
determining the value of 8, which maximizes L. 

a) Two sided table lookup test 
at 5°10 level 

0 
lt) 

Q) 
:J 
(il 0 > C") 

(il 
.g 
·;:: 

0 
~ 0 

0 

-1.0 -0.5 0.0 0.5 1.0 

Lag-1 correlation 

b) Two sided table lookup test 

0 
lt) 

0 
C") 

0 

0 

-1.0 -0.5 

at 5°10 level 

0.0 0.5 1.0 

Lag-1 correlation 

In the present context the two models that are fitted 
to the observed time series via the method of maximum 
likelihood are 

(X1 - µo) = Pi (X1-1 - µo) + f 1 when Ho true, (20) 

(X1 - µ) =Pi (X1-1 - µ) + f1 when H 0 false. (21) 

The noise, ( f 1), is Gaussian and white. When Ho is true 
the likelihood function depends upon p 1 and u;, the 
variance ofthe noise. When H0 is false, it depends upon 
Pi, u;, and µ. 

The likelihood functions for thefull model (i.e., H0 

false) is given by 

L(µ, Pi, u, 1 x) = (27ru;)-n/2 IMI 1/2 

(x - µ)'M(x - µ) (
22

) 
X exp-

2 2 , 
u, 

where µ is the n X 1 vector (µ, µ, ... , µ)' and x is the 
n X 1 vector of observations (x 1 , ••• , Xn). The matrix 
M is given by 2: = u;M- 1

, where 2: is the variance­
covariance matrix ofthe vector of observations x. Here 
u; is the white noise variance. The ( i, j) element of 2: 
is given by u;J = u;pji-il/(l - pf). The likelihood 

c) Two sided table lookup test 
at 5% level 

0 
lt) 

Q) 
:J 
(il 0 > C") 

(il 
.g 
·;:: 

0 0 

0 

-1.0 -0.5 0.0 0.5 

Lag-1 correlation 

FIG. 3. Critical value curves for the standard t statistic (21) 
indexed by the value of the estimated lag-1 correlation coef­
ficient (16) for samples ofsize 15 (a), 60 (b), and 240 (c). The 
curves are appropriate for 5% level, two-sided or 2.5% level, 
one-sided tests of (14 ). 

r 

1.0 
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TABLE 5. Each cell summarizes the results of 1000 table Iookup 
tests of H0 : µ = 0. The test was conducted by computing the ordinary 
t statistic and comparing it with an empirical distribution that is 
indexed by the sample lag-! correlation coefficient (see text). Boldface 
type indicates observed rejection rates under H 0 that are different 
from the nominal 5% at the 5% significance level. 

lag-! correlation a 

n 0.3 0.6 0.9 

15 0.003 0.030 0.128 
30 0.027 0.035 0.085 
60 0.043 0.043 0.061 
90 0.037 0.043 0.034 

120 0.042 0.047 0.051 
240 0.053 0.050 0.054 

fünction for the H 0 restricted model is identical except 
that µ0 = ( µ 0 , µ 0 , ••• , µ 0 )' is substituted for µ. The 
intricacies ofthe exact likelihood fünction are described 
in detail in Box and J enkins ( 197 6, see section A 7.4). 

The LR test is conducted by computing the differ­
ence between the maximum log likelihood of the füll 
( 21 ) and partial ( 20) models. The resulting LR statistic 
is asymptotically distributed x 2 with 1 df under the 
null hypothesis. 

We conducted an experiment identical to that de­
scribed in section 3 to determine the actual significance 
level of the LR test when decisions are made at the 
nominal 5% significance level. Results of this experi­
ment are summarized in Table 4. 

The LR test clearly improves upon the "usual" test 
ofthe mean. Our advice is that this test should be used 
in preference to the "usual" test. lts mathematical and 
computational complexity should not be a deterrent 
because modern maximum likelihood estimation rou­
tines for Box-Jenkins models are readily available in 
a number ofstatistical packages. The LR test approach 
has desirable optimality properties and also has the 
advantage that it can be expanded to incorporate more 
sophisticated statistical representations ofthe stochastic 
nature of the observed climate. As a rough guideline, 
users should expect the actual level of significance of 
the LR test (when conducted at the nominal 5% level) 
tobe about 10% for ne = 8. The significance level will 
approach the nominal level when ne > 15. 

A two-sample version ofthe LR test is constructed by 
analogy to the one-sample test. The procedure is detailed 
in section 2b ( 1 ) . Two-sample LR tests can be con­
structed with or without the assumption of section 3 that 
the two samples come from processes with the same vari­
ance and lag-1 correlation coefficient. W e recommend 
the somewhat more general version that does not depend 
upon this assumption because the necessary computa­
tions can be done with existing software when the test is 
cast in this way. This generality comes at a cost in that 
larger samples are needed for the test to attain its asymp­
totic properties. The concept behind the test is that the 

Joint log likelihood of samples x1, ... , Xm and Y1, ... , 
Yn is maximized both with and without the restrictions 
imposed by the null hypotheses. The difference between 
the two log likelihoods is then computed and compared 
against the critical values of a X 2 distribution. The number 
of degrees of freedom is found by computing the differ­
ence between the number of free parameters in the füll 
model and the H 0 restricted model. 

Our guidelines for use ofthe two-sample test are the 
same as those for the one-sample test except that they 
should be satisfied individually by the equivalent sam­
ple size of each sample. This cautious approach, which 
differs from that for the two-sample test discussed in 
section 3, is required because of the generality of the 
two-sample LR test we advocate. 

5. The table lookup test 
The "usual" t test described in section 3 works poorly 

because 
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~ 
0 '<!' ·a.. c:i 

0 
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Power at the 5% sig. level 
n =90 

0.5 1.0 1.5 2.0 

Mean 

Power at the 5% sig. level 
n=240 

0.5 1.0 1.5 2.0 

Mean 

2.5 

2.5 

FIG. 4. The estimated power of thc tablc lookup tcst (solid linc) 
and the LR test (dashed line) for a range of alternatives to the null 
hypothesis. The power was estimated by generating 1000 samples 
from an AR( 1) process with the specified mean and testing the null 
hypothesis on each sample. The upper panel shows the power ofthe 
test for samples of size 90 obtained from AR(!) processes with Pt 
= 0.3 and 0.6. The lower panel displays corresponding results for 
samples of size 240 Pt = 0.3, 0.6, and 0.9. 
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TABLE 6. Critical values for the table lookup test appropriate for a two- (one-) sided test conducted at the 20% (10%) significance level. 
Dashes indicate that sample correlations ofthis magnitude were not observed in the simulations used to create the table. 

r, 10 15 20 25 30 45 

-0.35 2.30 
-0.30 2.34 1.87 
-0.25 2.41 1.88 1.70 
-0.20 2.46 1.92 1.71 1.62 1.54 
-0.15 2.52 1.99 1.75 1.64 1.55 1.45 
-0.10 2.61 2.04 1.80 1.67 1.59 1.47 
-0.05 2.67 2.09 1.84 1.68 1.64 1.50 

0.00 2.75 2.18 1.88 1.72 1.66 1.53 
0.05 2.82 2.26 1.97 1.79 1.71 1.60 
0.10 2.94 2.35 2.08 1.87 1.76 1.64 
0.15 3.10 2.48 2.18 1.96 1.82 1.70 
0.20 3.23 2.59 2.27 2.08 1.91 1.77 
0.25 3.36 2.75 2.42 2.22 2.05 1.87 
0.30 3.48 2.96 2.57 2.36 2.22 1.96 
0.35 3.61 3.20 2.79 2.56 2.38 2.12 
0.40 3.77 3.46 3.02 2.74 2.61 2.31 
0.45 3.95 3.66 3.38 3.05 2.79 2.55 
0.50 4.13 3.92 3.71 3.41 3.24 2.73 
0.55 4.27 4.23 4.13 3.77 3.55 3.03 
0.60 4.45 4.59 4.47 4.26 3.94 3.45 
0.65 4.55 4.83 4.85 4.72 4.49 3.89 
0.70 4.56 5.17 5.37 5.28 5.25 4.49 
0.75 5.37 5.71 5.82 5.85 5.35 
0.80 5.99 6.49 6.49 6.42 
0.85 6.66 7.26 7.82 
0.90 7.31 8.77 
0.95 

• The test statistic does not have a Student's t dis­
tribution under the null hypothesis. 

• The denominator ofthe test statistic is highly vari­
able because the equivalent sample size is poorly es­
timated. 

• The critical value to which the test statistic is com­
pared is subject to variability because the reference dis­
tribution is indexed by the same equivalent sample 
size estimator. 

We reasoned that these problems could be ameliorated 
with an empirical test procedure based on the following 
ideas: 

1. Base the test on a statistic that is not affected by 
the sampling variability that is present in equivalent 
sample size estimators. We chose to use the ordinary 
t statistic, which does not take serial correlation into 
account. The statistic ( 15) is given by 

x- µo t = ------.,. 
s/(n)112. (23) 

2. Index the critical values that are used to make 
test decisions with an indicator ofthe serial correlation 
which has low variability. We chose to use the sample 
correlation coefficient r1 rather than fi;. The latter is 
highly variable because it is a nonlinear function of 
the former. 

n 

60 75 90 120 180 240 

1.44 1.42 1.39 1.38 
1.47 1.44 1.39 1.39 1.36 1.33 
1.49 1.46 1.43 1.40 1.38 1.35 
1.55 1.47 1.50 1.46 1.43 1.42 
1.58 1.55 1.50 1.48 1.46 1.40 
1.66 1.60 1.58 1.57 1.53 1.51 
1.70 1.66 1.64 1.63 1.59 1.57 
1.78 1.75 1.77 1.69 1.69 1.70 
1.91 1.91 1.86 1.86 1.79 1.77 
2.02 2.03 1.96 1.88 1.92 1.90 
2.22 2.13 2.11 2.07 2.00 2.02 
2.36 2.25 2.23 2.19 2.14 2.13 
2.57 2.47 2.46 2.39 2.31 2.30 
2.86 2.65 2.61 2.56 2.50 2.43 
3.14 3.03 2.83 2.75 2.65 2.72 
3.60 3.26 3.16 3.02 2.91 2.94 
4.01 3.74 3.59 3.36 3.27 3.33 
4.91 4.40 4.14 3.92 3.69 3.55 
6.00 5.51 5.18 4.67 4.28 4.25 
7.33 7.28 6.76 6.09 5.41 5.05 
9.47 9.45 9.01 8.59 7.55 6.97 
9.93 10.7 11.3 13.2 13.3 12.5 

3. Derive critical values appropriate to a particular 
value of r1 via Monte Carlo simulation. 

The last point deserves some comment. 
When the true lag-1 correlation coeffi.cient p 1 is 

known, very good estimates of the critical values for 
the test of ( 17) based on ( 23) are easily obtained via 
Monte Carlo simulation. The approach is to generate 
a large number of samples of size n from the appro­
priate AR( 1) process, compute t for each sample, 
compute the appropriate percentiles from the ensemble 
of simulated t's, and compare the observed t with the 
derived percentiles. The operating significance level of 
such as test will be very close to the nominal level pro­
vided one derives the critical values (i.e„ percentiles) 
from a large ensemble of simulated t values. 

When the true lag-1 correlation coefficient is not 
known, critical values are more difficult to obtain be­
cause a wide range ohrue lag-1 correlation coefficients 
p 1 will be consistent with the sample coefficient r1 • The 
Bayesian approach to this problem is to use probability 
distributions to express the likelihood that p 1 has a par­
ticular value. 

The prior distribution expresses our subjective beliefs 
about likely values of p 1 before observations are taken. 
In the absence of any other information, a reasonable 
choice ofprior distribution on p 1 is the uninformative 
prior, which places equal weight on all values in the 
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TABLE 7. Critical values for the table lookup test appropriate for a two- (one-) sided test conducted at the 10% (5%) significance level. 
Dashes indicate that sample correlations ofthis magnitude were not observed in the simulations used to create the table. 

r, 10 15 20 25 30 45 

-0.35 3.46 
-0.30 3.55 2.57 
-0.25 3.68 2.59 2.26 
-0.20 3.80 2.66 2.28 2.15 2.03 
-0.15 3.85 2.76 2.35 2.17 2.04 1.89 
-0.10 4.03 2.89 2.44 2.22 2.09 1.92 
-0.05 4.21 2.98 2.52 2.24 2.13 1.96 

0.00 4.34 3.15 2.59 2.31 2.18 2.02 
0.05 4.48 3.30 2.76 2.40 2.26 2.09 
0.10 4.75 3.47 2.88 2.56 2.38 2.15 
0.15 5.07 3.71 3.06 2.69 2.43 2.24 
0.20 5.27 3.96 3.26 2.85 2.58 2.33 
0.25 5.42 4.25 3.63 3.07 2.79 2.48 
0.30 5.63 4.60 3.82 3.32 3.07 2.66 
0.35 5.90 5.10 4.20 3.72 3.35 2.85 
0.40 6.17 5.56 4.74 4.07 . 3.67 3.11 
0.45 6.44 5.60 5.28 4.59 4.09 3.53 
0.50 6.80 6.54 5.93 5.23 4.80 3.79 
0.55 7.00 6.93 6.64 5.96 5.31 4.39 
0.60 7.15 7.45 7.36 6.96 6.14 5.05 
0.65 7.20 7.91 8.03 7.67 7.15 5.80 
0.70 7.21 8.39 8.70 8.72 8.50 6.87 
0.75 8.57 9.13 9.44 9.22 8.43 
0.80 9.65 10.3 10.5 10.4 
0.85 9.67 10.4 11.4 12.8 
0.90 11.4 13.8 
0.95 

interval (0, 1 ). That is, we think any value of p 1 con­
sistent with a red spectrum is as likely as any other. 
The posterior distribution expresses our revised opinion 
about likely values of p 1 after sampling is complete. 

Given the posterior distribution, Monte Carlo 
methods can be used to derive critical values for the 
test of ( 17) based on ( 23). The approach is to generate 
a !arge number of p 1 's from the posterior distribution, 
generate a sample oflength n from each corresponding 
AR( 1) process, compute t's from these samples, and 
then compute the appropriate percentiles from the en­
semble of simulated t's. 

We emulate the Bayesian approach by deriving crit­
ical values as follows: 

1. Generate an ensemble of 240 000 lag-1 correla­
tion coefficients PI randomly on the interval (0, 1 ). 

2. For each PI generate a sample of length n from 
the corresponding AR ( 1 ) process. 

3. Compute r 1 and t from each sample. 
4. Sort the resulting ensemble of240 000 ( r,, t) pairs 

in order of increasing r 1 • 

5. Select 200 equally spaced points rI ,; , i = 1, ... , 
200 between the minimum and maximum ofthe sim­
ulated r, 's. 

6. At each of these 200 "base" points select the m 
(r,, t) pairs with r1 nearest the base value. We used m 

n 

60 75 90 120 180 240 

1.85 1.83 1.81 1.78 
1.90 1.88 1.81 1.80 1.73 1.72 
1.92 I.89 1.84 1.83 1.75 1.74 
1.98 1.89 1.94 1.86 1.84 1.84 
2.07 2.01 1.96 1.91 1.89 1.85 
2.14 2.09 2.04 2.02 1.96 1.96 
2.21 2.17 2.14 2.12 2.05 2.03 
2.35 2.28 2.29 2.21 2.19 2.20 
2.53 2.51 2.42 2.37 2.33 2.26 
2.63 2.65 2.56 2.47 2.44 2.43 
2.94 2.81 2.76 2.68 2.56 2.56 
3.19 2.97 2.94 2.84 2.79 2.76 
3.52 3.26 3.19 3.11 3.02 2.95 
3.85 3.52 3.49 3.33 3.25 3.13 
4.29 4.10 3.76 3.61 3.44 3.54 
5.03 4.49 4.24 4.06 3.79 3.78 
5.74 5.30 4.85 4.53 4.34 4.21 
7.19 6.43 5.80 5.23 4.89 4.67 
9.11 8.28 7.64 6.55 5.79 5.50 

11.8 11.4 10.3 9.02 7.40 6.72 
14.4 14.9 14.9 13.4 10.9 9.58 
14.9 16.4 17.3 20.3 20.7 19.8 

= 4800(240/n) 112 • This choice form will be explained 
below. 

7. Compute the 80th, 90th, 95th, 98th and 99th 
quantiles of 1t1 from each subset of selected t values. 
We will refer to these quantiles as t0 .9o,;, t0 .95 ,;, ... , 

lo.995,i. 
6 

The result is five critical value tables ( Tables 6-10), 
which are indexed by rI and are suitable for two-sided 
( one-sided) tests of ( 17) at the 20%, 10%, 5%, 2%, or 
1 % ( 10%, 5%, 2.5%, 1 %, or 0.5%) level, respectively. 

These tables form the basis of our empirical test pro­
cedure. To conduct a test at a given significance level 
we first compute rI and t from the sample. The sample 
correlation rI is used to enter the appropriate critical 
value table. lt may be necessary to interpolate between 
table entries that are nearest to rI. 

Examples of the tables of the quantiles appropriate 
for a 5% level two-sided test with samples of size n 
= 15, 60, and 240 are illustrated in Fig. 3. Note that 
for the !arger sample sizes the crossing point at rI = 0 
corresponds closely to the critical value that would be 

6 Note that because of symmetry, the 80th (90th, ... ) percentile 
of the simulated 1 t l 's is a better estimator of the 90th (95th, ... ) 
percentile oft than the 90th (95th, ... ) percentile of the simulated 
t's. 
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T ABLE 8. Critical values for the table lookup test appropriate for a two- ( one-) sided test conducted at the 5% (2.5%) significance level. 
Dashes indicate that sample correlations ofthis magnitude were not observed in the simulations used to create the table. 

n 

r, 10 15 20 25 30 45 60 75 90 120 180 240 

-0.35 5.18 
-0.30 5.32 3.44 
-0.25 5.56 3.47 2.84 
-0.20 5.71 3.61 2.86 2.65 2.50 
-0.15 5.76 3.75 2.98 2.70 2.50 2.34 
-0.10 6.25 3.88 3.11 2.76 2.56 2.34 2.22 2.23 2.19 2.10 
-0.05 6.48 4.05 3.19 2.81 2.62 2.40 2.28 2.28 2.19 2.12 2.08 2.05 

0.00 6.75 4.44 3.34 2.90 2.71 2.46 2.33 2.28 2.31 2.19 2.11 2.20 
0.05 7.17 4.68 3.59 3.05 2.82 2.53 2.37 2.31 2.31 2.25 2.18 2.20 
0.10 7.49 5.16 3.82 3.29 2.99 2.65 2.53 2.42 2.34 2.32 2.21 2.21 
0.15 7.91 5.55 4.15 3.55 3.12 2.77 2.63 2.52 2.46 2.43 2.38 2.35 
0.20 8.38 6.00 4.61 3.74 3.34 2.89 2.70 2.64 2.60 2.59 2.45 2.43 
0.25 8.52 6.50 5.20 4.13 3.52 3.07 2.89 2.78 2.76 2.69 2.66 2.66 
0.30 8.81 7.17 5.57 4.52 4.05 3.32 3.10 3.05 2.91 2.86 2.76 2.70 
0.35 9.11 7.93 6.25 5.23 4.48 3.60 3.28 3.21 3.11 2.92 2.93 3.00 
0.40 9.55 8.74 7.19 5.88 5.05 3.96 3.61 3.45 3.34 3.28 3.13 3.11 
0.45 9.91 9.36 8.25 6.72 5.92 4.50 3.95 3.75 3.51 3.48 3.36 3.29 
0.50 10.4 9.84 9.10 8.00 7.01 4.99 4.36 3.97 3.90 3.78 3.70 3.54 
0.55 10.6 10.6 10.2 9.21 7.79 5.82 5.04 4.41 4.28 4.09 4.00 3.85 
0.60 10.7 11.2 11.4 11.0 9.22 6.98 5.49 5.31 4.69 4.47 4.18 4.25 
0.65 10.6 12.l 12.1 11.9 11.0 8.33 6.68 5.81 5.36 5.04 4.67 4.57 
0.70 10.6 12.5 13.2 13.5 13.0 10.1 8.20 7.07 6.25 5.71 5.25 5.04 
0.75 12.3 13.8 14.2 14.2 13.1 
0.80 14.2 15.2 15.6 15.2 
0.85 15.1 16.5 18.8 
0.90 16.5 20.0 
0.95 

used if we could assume that the data are not serially 
correlated. The latter (percentiles of the Student's t 
distribution with n - 1 degrees of freedom) are illus­
trated as horizontal lines. The discrepancy between the 
crossing point at r1 = 0 and the Student's t critical 
value is large for small samples because the distribution 
of r1 is widely dispersed in this case. Note that quantiles 
gradually increase as r1 increases. Critical values for 
tests conducted at higher levels of significance, such as 
the 1 % level, actually peak for r, near 1 and then de­
crease as r1 approaches 1. We conjecture that the nu­
merator and denominator of the t statistic ( 23) become 
less dependent as the true correlation coefficient p 1 ap­
proaches 1 ( see the appendix for details). This would 
imply lower sampling variability fort as p1 (and hence 
r,) approaches 1 and consequently smaller critical 
values. 

This empirical approach emulates the Bayesian 
approach in the following sense. The critical value, 
which is referenced by a sample lag-1 correlation 
coefficient, was derived as the corresponding quantile 
of a collection of m realizations of t. Each of these 
realizations was obtained from an AR( 1) process 
with a different lag-1 correlation coefficient p 1 • This 
collection of p 1 's constitutes an empirical posterior 
distribution on p 1 • The prior distribution in this in­
stance is the uniform distribution on the interval 
[O, 1 ). 

10.7 9.12 7.77 6.58 5.98 5.62 
13.6 12.1 11.0 8.60 7.22 6.64 
17.3 16.9 15.4 12.9 9.50 8.37 
21.2 22.0 21.2 20.0 15.1 12.6 
20.9 23.4 24.3 27.4 28.8 29.5 

The total number of simulated ( r 1 , t) pairs used to 
obtain the critical value table is large to reduce noise 
in the table. The total number of pairs ( 240 000) and 
the number of pairs used to determine an individual 
table entry [ m = 4800 ( 240 / n) 112

] was chosen so that 
(r1 , t) pairs spanning only 2% ofthe r1 range could be 
used to accurately determine the critical values for the 
largest sample size considered ( 240). A narrow span 
is necessary when the sample size is large because the 
critical value curve changes quickly in this case for 
values of r 1 near 1. The number of simulated (r1 , t) 
pairs used to determine critical value table entries is a 
function of n- 112 to compensate for the effects of sam­
pling variability on r 1• 

The operation of the test when the null hypothesis 
is true was examined in a simulation experiment anal­
ogous to those described in sections 3 and 4. The re­
jection rate for the test under H 0 in a l 000 trial ex­
periment is reported in Table 5. Note that there is some 
imprecision when sample sizes are small: the test is 
conservative when the lag- l correlation coefficient is 
small and somewhat liberal when it is large. Otherwise, 
the test operates more or less as advertised-and it 
generally does so for smaller samples than either ofthe 
competing tests described previously. Our experimen­
tation has shown us that the imprecision in the test at 
small sample sizes is caused by sampling variability in 
the lag-1 correlation coefficient. 
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TABLE 9. Critical values for the table lookup test appropriate for a two- (one-) sided test conducted at the 2% (1%) significance level. 
Dashes indicate that sample correlations ofthis magnitude were not observed in the simulations used to create the table. 

n 

r, 10 15 20 25 30 45 60 75 90 120 180 240 

-0.35 8.76 
-0.30 9.03 5.02 
-0.25 9.26 5.12 3.80 
-0.20 9.98 5.43 3.89 3.34 3.07 
-0.15 10.1 5.67 4.03 3.42 3.10 2.79 
-0.10 10.9 5.87 4.21 3.52 3.19 2.82 2.68 2.68 2.63 2.51 
-0.05 11.1 6.49 4.38 3.67 3.30 2.97 2.77 2.69 2.61 2.51 2.52 2.45 

0.00 11.9 7.35 4.71 3.91 3.44 3.04 2.85 2.76 2.69 2.61 2.50 2.41 
0.05 12.4 7.97 5.30 4.07 3.60 3.08 2.89 2.82 2.76 2.69 2.61 2.59 
0.10 12.8 8.92 5.72 4.49 3.95 3.28 3.03 2.88 2.78 2.71 2.66 2.64 
0.15 14.0 10.1 6.51 4.78 4.26 3.45 3.24 3.08 3.01 2.92 2.83 2.86 
0.20 14.6 10.5 7.18 5.28 4.40 3.60 3.39 3.19 3.06 3.09 2.94 2.96 
0.25 14.7 11.1 8.59 6.16 4.81 3.81 3.55 3.43 3.27 3.21 3.19 3.23 
0.30 15.2 12.8 8.94 6.88 5.68 4.26 3.97 3.72 3.57 3.42 3.31 3.21 
0.35 15.4 13.7 10.5 8.26 6.58 4.70 4.05 3.99 3.82 3.51 3.49 3.56 
0.40 15.7 14.9 12.8 9.54 7.85 5.26 4.60 4.37 4.07 3.85 3.84 3.79 
0.45 16.4 16.3 14.9 11.4 8.92 6.32 5.14 4.73 4.33 4.28 4.07 3.92 
0.50 17.1 17.4 16.3 13.8 11.4 6.99 5.81 5.18 4.79 4.58 4.39 4.35 
0.55 16.9 17.9 17.3 15.6 12.6 8.73 6.91 5.65 5.34 5.05 4.85 4.57 
0.60 17.2 18.6 18.7 18.9 14.8 10.6 7.53 6.78 5.94 5.63 4.94 5.10 
0.65 16.9 19.8 19.2 20.6 18.9 14.2 10.1 7.76 7.05 6.24 5.62 5.37 
0.70 16.9 19.3 21.3 22.0 22.2 17.6 12.4 9.77 8.35 7.32 6.51 6.12 
0.75 18.8 21.4 22.1 23.0 21.9 18.1 14.2 11.0 8.56 7.64 6.98 
0.80 20.7 22.9 24.6 24.6 21.3 20.0 16.6 12.6 9.15 8.18 
0.85 22.7 25. l 28.6 28.4 30.3 24.6 19.I 12.9 11.1 
0.90 25.0 27.9 31.0 33.7 33.1 31.1 23.8 17.8 
0.95 

The power ofthe table lookup test is contrasted with 
that of the LR test in Fig. 4 for samples of size 90 for 
which the true lag-1 correlation is 0.3 and 0.6 and for 
samples of size 240 for which the true lag-1 correlation 
is 0.3, 0.6, and 0.9. The comparison can be made fairly 
for these combinations of sample size and lag-1 cor­
relation because both tests appear to operate at the 
nominal 5% significance level in this circumstance. The 
power curves were obtained from 1000 trial experi­
ments in which departures from the null hypothesis 
ranging between uxf 4 and 5ux were prescribed. What 
we see is that there is little difference between the power 
of the LR test ( which is known to be asymptotically 
optimal) and the table lookup test. 

Therefore, the table lookup test is an attractive com­
petitor to the "usual" t test discussed in section 3 and 
the LR test. A significant efficiency penalty is appar­
ently not imposed through the use ofthe table lookup 
test. Moreover, the table lookup test operates at near 
the nominal significance level with smaller samples 
than either the "usual" test or the likelihood ratio test. 

A two-sample version ofthe table lookup test is de­
tailed in section 2b ( 2). The test is developed using 
the assumption that both sampled processes have the 
same variance and lag-1 correlation. The ingredients 
are virtually identical to those used in the one-sample 
test: the ordinary Student's t statistic for the difference 

29.7 32.2 33.4 37.4 42.3 45.8 

of means is computed and an estimate is made of the 
common lag-1 correlation coefficient. As in the one­
sample case, the properties of the t statistic depend 
upon the true lag-1 correlation coefficient and the 
number of observations used to compute the standard 
deviation in the denominator ofthe t statistic. The un­
certainty in the estimated lag-1 correlation coefficient 
also depends on the number of observations used in 
the estimate. Thus, the appropriate critical values are 
obtained by entering the critical value tables with the 
estimated lag-1 correlation coefficient and the sum of 
the two-sample sizes. Our guidelines for the use of the 
two-sample test are the same as those for the one-sam­
ple test except that they apply to the sum ofthe sample 
sizes. 

6. Summary 

We described the ordinary t test and the usual way 
in which it is adapted to climatological inference prob­
lems in section 1. The usual test, which is adjusted by 
an estimate of the equivalent sample size, performs 
poorly because the equivalent sample size is poorly 
estimated and because it is incorrectly assumed that 
the adjusted statistic has a Student's t distribution under 
the null hypothesis. 

We also reiterated the observation that the equivalent 
sample size ( or equivalently, the integral timescale) is 
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TABLE 10. Critical values for the table lookup test appropriate for a two- (one-) sided test conducted at the 1% (0.5%) significance level. 
Dashes indicate that sample correlations of this magnitude were not observed in the simulations used to create the table. 

n 

r, 10 15 20 25 30 45 60 75 90 120 180 240 

-0.35 13.0 
-0.30 13.3 6.82 
-0.25 14.0 7.01 4.70 
-0.20 15.1 7.42 4.83 3.87 3.58 
-0.15 15.5 7.70 5.12 3.98 3.58 3.20 
-0.10 16.2 8.41 5.26 4.16 3.69 3.23 3.02 2.96 2.97 2.82 
-0.05 16.2 9.41 5.45 4.47 3.80 3.34 3.20 2.98 2.94 2.83 2.80 2.79 

0.00 18.0 10.6 5.91 4.77 4.01 3.48 3.24 3.05 2.99 2.93 2.82 2.67 
0.05 19.0 11.6 7.22 5.11 4.21 3.56 3.20 3.20 3.13 3.00 2.92 2.88 
0.10 19.2 13.7 8.28 5.80 4.77 3.66 3.43 3.31 3.16 2.99 2.95 2.93 
0.15 20.5 14.9 9.44 6.20 5.27 3.96 3.66 3.44 3.37 3.30 3.16 3.13 
0.20 20.6 15.5 11.0 7.08 5.37 4.25 3.93 3.60 3.47 3.55 3.29 3.28 
0.25 20.5 16.6 12.l 8.80 6.17 4.43 4.04 3.85 3.70 3.65 3.50 3.49 
0.30 21.2 18.4 12.7 10.l 7.51 5.25 4.57 4.29 3.93 3.95 3.76 3.59 
0.35 21.5 19.8 15.9 12.0 8.80 5.71 4.63 4.50 4.26 3.89 3.90 3.93 
0.40 21.8 20.9 19.7 14.1 11.3 6.32 5.44 4.96 4.58 4.36 4.25 4.22 
0.45 22.3 23.0 23.0 17.6 13.6 7.65 6.20 5.49 4.92 4.83 4.61 4.41 
0.50 23.3 23.7 24.9 19.6 16.4 9.56 7.13 6.00 5.49 5.17 4.90 4.75 
0.55 23.3 25.0 25.7 22.6 19.2 12.0 
0.60 22.9 25.9 26.3 26.1 22.0 14.5 
0.65 22.l 26.8 26.3 28.6 27.6 20.6 
0.70 22.0 26.3 27.8 30.8 30.4 26.5 
0.75 24.3 27.3 29.9 29.7 29.8 
0.80 26.8 29.8 31.3 33.5 
0.85 29.3 30.9 36.3 
0.90 30.8 33.8 
0.95 

obtained simply by asking how a measure of the dif­
ference between two samples ( or a sample and reference 
point) should be scaled so that the difference can be 
expressed in units of standard deviations. Different 
measures of discrepancy will therefore result in different 
scaling factors. Thus the equivalent sample size is only 
one of many scaling factors and has no intrinsic phys­
ical interpretation of its own. 

Next, we carefully revisited the subject of equivalent 
sample size estimation and examined the properties of 
the f'usual" serial correlation compensated t test in 
section 3. We were able to improve the ARMA ne es­
timator of TZ but found that this improvement had 
little effect on the operation of the test. W e showed 
that the test is conservative when ne is known or sub­
jectively estimated conservatively. We also showed that 
the test is liberal when ne is estimated objectively with 
the improved ARMA estimator. In both cases (ne 
"known" or objectively estimated), we found that the 
test has actual significance levels that are practically 
indistinguishable from the nominal levels when the true 
ne > 30. 

We then considered two competing tests ofthe mean: 
the LR test and a table lookup test. Both are compu­
tationally intensive. The LR ratio test requires nu­
merical minimization of a complex quadratic form 
while the table lookup test requires extensive simula-

8.75 6.60 6.25 5.82 5.56 5.07 
9.83 8.50 7.01 6.43 5.63 5.62 

14.4 9.76 8.43 7.29 6.43 5.88 
17.8 12.8 10.7 8.69 7.72 7.09 
25.0 20.6 14.l 10.6 8.97 7.96 
32.0 28.5 26.8 15.7 10.7 9.92 
38.4 41.2 35.l 26.5 15.8 13.2 
39.1 42.9 42.9 41.1 35.8 21.4 
37.6 39.5 41.4 46.3 54.3 61.5 

tion to develop the conditional reference distributions 
that are used in that test. The LR test, which is an 
asymptotic test, operates at significance levels that are 
similar to the nominal levels when ne > 15. The table 
lookup test operates at significance levels that are close 
to the nominal levels for all but the smallest sample 
sizes tested. Moreover, the power of the two tests is 
virtually indistinguishable for samples !arge enough so 
that the actual significance level ofthe LR test is equal 
to its nominal level. 

Comparison and analysis ofthe three competing tests 
was performed in the one-sample setting in which 
comparisons are made between a sample mean and a 
fixed standard. The more usual setting requires the 
comparison of the means of two samples. Procedures 
for the application of the three tests in both the one­
and two-sample setting were detailed in section 2. Rec­
ommendations for when to use the various tests were 
also given in section 2. 

The working assumption in this paper has been that 
the stochastic behavior of the atmosphere can be ap­
proximated by a Gaussian autoregressive process of 
order l [AR ( l ) process-see ( l ) ] . The Gaussian part 
of the assumption is important. The tests discussed 
above may be compromised to a considerable extent 
if applied to non-Gaussian data (such as daily precip­
itation accumulations). For processes that are Gauss-
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ian, or nearly so (such as most thermodynamic vari­
ables of the free atmosphere that are not affected by 
long timescale quasi-periodic signals) the details ofthe 
stochastic behavior may be somewhat more complex 
than that of an AR( 1) process without compromising 
the tests. Most such processes will exhibit power spectra 
that have maxima at the origin and have decreasing 
power with increasing frequency. Such spectra can be 
reasonably weil approximated by AR( 1) processes. 

Finally, we reiterate a point made strongly in sections 
1 and 2. The assumptions required to conduct a given 
statistical test impose a statistical model upon the ob­
servations. The reliability of the test will be compro­
mised if the model does not have reasonable fidelity. 
lt is therefore important to explore the validity of the 
assumptions before conducting the statistical test. 

APPENDIX 

T test with ne Known 

We present corroborating evidence in this appendix 
that the t test with ne known is conservative when data 
come from a Gaussian AR( 1) processes with positive 
lag-1 correlation coefficient. For simplicity, we consider 
only the one-sample problem. We assume, without loss 
of generality, that the AR( 1) process has zero mean 
and unit variance. Then we begin by writing the one­
sample t statistic with ne known as 

t = .i(ne)l/2 = n .i(ne)l/2 

s [2:(x,-.i)2/(n-l)]112 
1~1 

N(x1, ... , Xn) 

D(x1, ... , Xn) 

Next, we write 

F = t2 = N2/D2, 

suppressing the arguments of N(x1, •.. , Xn) and D(x1, 

•.. , Xn) for clarity. 
When observations are independent and identically 

distributed Gaussian, it can be shown that N 2 is a X 2 

random variable with 1 df, that N 2 and D 2 are inde­
pendent, and that (n - 1 )D 2 is a x2 random variable 
with n - 1 df. Consequently, F has an F distribution 
with(l,n- l)df. 

The derivation ofthis result ( or the equivalent result 
that t is distributed as Student's t with n - 1 df) depends 
critically upon the assumption ofthe independence of 
the observations. 

The t test with ne known attempts to accommodate 
serial correlation by comparing realizations oft against 
critical values for the Student's t distribution with ne 
- 1 df. When the test is two-sided, this is equivalent 
to comparing realizations of F to the critical values of 
the F distribution with ( 1, ne - 1 ) df. lmplicitly then, 
this accommodation for serial correlation attempts to 

approximate the true distribution of F with that of a 
ratio of independent X 2 random variables with 1 and 
ne - 1 df, respectively. 

The approximation will work reasonably well if 

(i) N 2 has a X 2 distribution with 1 df, 
(ii) N 2 and D 2 are independent of each other, and 
(iii) (ne - 1 )D 2 has a distribution that is well ap-

proximated by the X 2 distribution with ne - 1 df. 

We examine the extent to which this approximation 
works. 

The first condition is completely satisfied. Here N is 
Gaussian with mean 0 and variance 1 because the 
sample mean .Xis a linear combination of zero mean 
Gaussian random variables and because the factor 
( ne) 112 is defined as the constant that scales the variance 
of .X to unity. lt therefore follows that N 2 is a X 2 random 
variable with 1 df. 

The second condition is not satisfied. However, we 
will demonstrate below that N 2 and D 2 are not strongly 
related, at least when sample sizes are small. lt is our 
opinion that the weak dependence between N 2 and D 2 

is not an important factor in developing an under­
standing of why the distribution of F is not weil ap­
proximated by the F distribution with ( 1, ne - 1 ) df. 

The third condition is also not satisfied. We will 
demonstrate that the mean of(ne - 1 )D 2 is very close 
to that of a X 2 random variable with ne - 1 df, but 
that the variance of ( ne - 1 )D 2 is considerably less 
than anticipated. lt follows that extreme values of F 
(or equivalently t) will occur less frequently than pre­
dicted by the approximation and therefore that the F 
or t test with ne known will be conservative. 

We begin by re-expressing N 2 and D 2 as quadratic 
forms in vector-matrix notation. Let X= (x1, ... , Xn) 1 

and let e = ( l/n, ... , l/n) 1
• Then 

= neX 1(ee 1)X = neX 1AX, 

where A is the n X n array ee1
• Similarly, D 2 may be 

written as 

1 n 1 
D 2 = 2: Cx1 - x) 2 = x 1u - A)X. 

(n-1) 1~ 1 (n-1) 

Note that X has a multivariate Gaussian distribution 
with mean 0 and variance-covariance matrix ~- The 
(i,j) element of ~ is given by u;J = p lHI, where p1 is 
the lag-1 correlation coefficient of the AR ( 1 ) process 
generating the data. Graybill (1983, Theorem 10.9.10) 
provides results concerning the variances and covari­
ances of quadratic forms. In particular, if Xis an n­
dimensional zero mean Gaussian random vector with 
variance-covariance matrix ~. and if C and D are any 
symmetric n X n matrices of constants, then 
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cov(X'CX, X'DX) = 2 tr (C~D~) 

var(X'CX) = 2 tr ( C~C~), 

where tr denotes the trace of a matrix. 

(A.1) 

(A.2) 

Equations ( A. l ) and ( A.2) can be applied to obtain 
general expressions for the variances of N 2 and D 2 and 
their correlation. In practice, these expressions, com­
plicated ratios of polynomials in p 1 , are virtually im­
possible to derive reliably by band. We therefore used 
a symbolic manipulator [Maple V(Char et al. 1992)] 
to derive expressions for specific sample sizes that are 
general in p 1 and used these expressions to make in­
ferences about the behavior of N 2 and D 2

• Space lim­
itations prevent us from displaying these expressions 
here. 

Calculations of the correlation between N 2 and D 2 

show that they are not independent but also not 
strongly correlated, at least for the moderate sample 
sizes (n = 5, 10, 20, 30) considered. The correlation is 
0 when p 1 = 0, grows to a maximum at a value of p 1 

near 1, and then falls to 0asp1 approaches l. The value 
ofthe maximum increases slowly with sample size and 
its location approaches 1 with increasing sample size. 
For n = 30, the maximum correlation between N 2 and 
D 2 is about 0.038 and occurs at p 1 = 0.95. Dependence 
between N 2 and D 2 would not appear to have a sub­
stantial effect on the behavior of the F ratio under serial 
correlation. 

lt can easily be shown that the mean of (ne - 1 )D 2 

is given by 

E[(ne - 1 )D 2 ] = ne -
1 

tr [(/- A)~] 
n - 1 

= (ne - 1 >(-n- ne - 1) 
n - 1 ne 

Thus (ne - 1 )D 2 has only a small negative bias as an 
estimator of the mean of a X 2 random variable with 
ne - 1 df. 7 However, calculations of the variance of 
(ne - 1 )D2 for samples sizes n = 5, 10, 20, 30 indicate 
that the variance is substantially less than that of a X 2 

random variable with ne - 1 df except when p 1 = 0.8 

For the sample sizes considered, Var[(ne - 1 )D2 ]/ 

( 2ne - 2) decreases monotonically from 1 to 0 as p 1 

varies from 0 to 1. We conjecture that this is generally 
true for all sample sizes. 
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