Towards downscaling small-scale coastal dynamics / 近岸小尺度水动力的降尺度研究

Helmholtz-Zentrum
Geesthacht
Centre for Materials and Coastal Research

entre for materials and coastar ne.

Hans von Storch , Meng Zhang (张萌), Institute for Coastal Research Helmholtz-Zentrum Geesthacht, Germany and Center of Ecxcellence CLISAP, Hamburg University, Germany

Motivation

Temporal variability and changes of coastal small-scale dynamics are not well resolved by observations or re-analysis data sets. We suggest to apply empirical statistical downscaling methods to specifying those small-scale dynamics. For doing so, homogeneous data set across several decades is needed to build the links between large-scale states and small-scale statistics. We have examined one such simulation STORM with the 0.1 grid resolution forced by NCEP atmospheric re-analyses.

Outlook

Based on the STORM data set, three small-scale phenomena will be specified by constructing empirical statistical downscaling models:

- (1) the coastal upwelling off Vietnam
- (2) the curents deflecting from isobaths to deeper water while passing the Dongsha Island
- (3) mesoscale eddies in the South China Sea (SCS). Their variability in the past and possible projections in future will be explored.

Analysis

As a preparational step, we examine first, how well the re-analysis driven OGCM simulation STORM may serve as a substitute for real observations for fitting statistical linkages across scales.

For doing so we compare the derived products C-GLORS and STORM compare with AVISO in terms of SSHA. The realism of C-GLORS leads us to assessing the quality of STORM with respect to other variables [sea surface currents (SSC) and SST] by comparing it with C-GLORS.

- Statistical analysis demonstrates that C-GLORS and STORM have the ability to capture the main variability features of the SCS dynamic in terms of SSHA. (see figure)
- C-GLORS shows greater similarity, which is not surprising as it has assimilated AVISO satellite data. (see figure)
- The seasonal mean surface current fields of STORM and C-GLORS show similar variability: the strong current along the western boundary and the gyre in the south SCS with opposite directions in winter and summer. (not shown)
- Their EOF1 patterns presents the strong alongshore southward currents and a gyre located in the middle SCS. (see figure)
- STORM agrees well with C-GLORS in the seasonal SST pattern. (not shown)
- STORM shows more details along the coast area, due to its higher resolution. (not shown)

Data sets	Data type	Time period	Grid	Variables
STORM	Ocean Simulation	1950-2010	0.1	Sea surface height anomaly (SSHA)
AVISO	Satallite observations	1993-2010	0.25	SSHA, Sea surface temperature (SST) and so on
C-GLORS	Ocean re-analysis data	1982-2013	0.25	SSHA, SST and so on

Results

SSHA

The first two modes from EOF (Empirical Orthogonal Functions) decompositon (removing mean annual cycle

Conclusions

- STORM realistically captures regional-scale dynamical features in the South China Sea.
- The STORM simulation is suitable for building empirical downscaling models in the SCS.