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We analyze recent tree rings based precipitation
reconstructions from Central Europe, the south-
ern Colorado Plateau and the high mountains
of North Pakistan, by (i) detrended fluctuation
analysis (DFA2), (ii) the Haar wavelet technique
(WT2) and (iii) conditional averages. We also
study (iv) the PDFs of the return intervals for
return periods of 5y, 10y, 20y, and 40y. We
find a strong persistence that can be modeled by
Hurst exponentsα between 0.8 and 0.9. This
result, however, is not in agreement with nei-
ther observational data of the past two centuries
nor millennium simulations with contemporary
climate models, which both suggestα close to
0.5 for the precipitation data. This strong con-
trast in precipitation (highly correlated for the
reconstructed data, white noise for the obser-
vational and model data) rises concerns on tree
rings based climate reconstructions, which will
have to be taken into account in future investiga-
tions.

Data

We consider tree ring based precipitation reconstructions from
Central Europe[1], the southern Colorado Plateau[2] and the high
mountains of North Pakistan[3]. For comparison we use recent
model data (ECHAM6) from the MPI in Hamburg. In the model,
we selected only those time spans which have been used in the
reconstructions(April-June for Central Europe, October-July for
Colorado, the whole year for North Pakistan). We also compare
with observational data (Potsdam, Germany). In order to elimi-
nate the short-term persistence due to weather fronts (”Grosswet-
terlagen”), we averaged the observational data over two weeks.
For eliminating the annual seasonal trend, we subtracted the sea-
sonal mean and divided by the seasonal standard deviation.
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Fig. 1: Reconstructedprecipitation in a) Central Europe (398 BC - 2000 AD, April-June),

b) Colorado (1000-1988, Oct-July) and c) North Pakistan (1000-1998, all year) compared

with d) model simulation from Central Europe (850-1850, April-June). The red line denotes

a threshold which is passed on average every 40 years. The green line represents the 30y

running average.

Correlation analyis

To reveal the memory in the data, we use 4 techniques.

[A] Detrended Fluctuation Analysis (DFA2) and Haar
Wavelet analyses (WT2)

In both DFA2 and WT2 one considers a record{xi}, i =
1, 2, . . . , N , with zero mean, and divides the record into non-
overlapping windowsν of lengthss.

In WT2 one determines in each segmentν, the mean value
xν(s) of the data and considers the linear combination∆

(2)
ν (s) =

xν(s) − 2xν+1(s) + xν+2(s), averages[∆(2)
ν (s)]2 over all seg-

mentsν and takes the square root to arrive at the desired fluc-
tuation functionF (s). For uncorrelated records (”white noise”),
F (s) ∼ s−1/2. For long-term persistent records we have

F (s) ∼ sα−1. (1)

The exponentα can be associated with the Hurst exponent, and
is related to the correlation exponentγ and the spectral exponent
β by α = (1 + β)/2 andα = 1 − γ/2.

In DFA2 one focuses, in each segmentν, on the cumulated
sumYi of the data and determines the varianceG2

ν (s) of theYi

around the best polynomial fit of order 2. After averagingG2
ν(s)

over all segmentsν and taking the square root, we arrive at the de-
sired fluctuation functionG(s). One can show thatG(s) ∼ s1/2

for uncorrelated records, while for long-term persistent records

G(s) ∼ sα. (2)

[B] Conditional averages and persistence length

We distinguish between ”rainy” and ”dry” years (where the pre-
cipitation is either above or below the median). We study the
average precipitation̄pn after n successive rainy (or dry) years
and determine the distributionH(l) of the length of ”rainy” or
”dry” periods. For uncorrelated records,p̄n does not depend on
the history andH(l) is a simple exponential.

[C] Return interval approach

We consider events above a certain thresholdQ (as in Fig.1) and
are interested in the distributionPQ(r) of the lengths of the inter-
vals between them. For uncorrelated data,PQ(r) = 1

RQ
e−r/RQ

whereRQ is the mean return interval at fixed thresholdQ. For
long-term correlated data characterized by a correlation exponent
γ, 0 ≤ γ ≤ 1, PQ(r) decays, forr/RQ ≫ 1, by a stretched ex-
ponential,ln(RQPQ(r)) ∼ −(r/RQ)γ, while for r/RQ ≪ 1,
PQ(r) decays by a power law,RQPQ(r) ∼ (r/RQ)γ−1 [4].

Results

[A] DFA2 and WT2

Figure 2 shows that, in contrast to the model data and the obser-
vational data, which can be approximately considered as white
noise with a Hurst exponentα ≃ 0.5, the reconstructed data
show a strong persistence, over long periods of time, which may
be compared with the persistence of long-term correlated records
with α ≃ 0.8. The result for the observational data is in line with
[5], where 100 observational records distributed worldwide were
analysed.
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Fig. 2: a) DFA2 fluctuation functionsG(s)/s for the reconstructionsfrom (top to down)

(i) Central Europe (398 BC - 602 AD), (ii) Central Europe (1000 - 2000 AD), (iii) Colorado

(1000-1988 AD), (iv) North Pakistan (1000-1998 AD) and the (v) observational data for

Potsdam (1890-2000). b) Same as a) but for the corresponding model data (850-1850). c),

d) same as a), b) but for the WT2 fluctuation functionF (s).

[B] Conditional averages and persistence length

Figure 3 shows the distribution of the persistence lengthsl for the
same records as in Fig.2 as well as the conditional averages (in-
set). The figure shows that reconstructed (a) and model data (c)
behave very different. The model data do not show signs of per-
sistence (compare with (d)), while the reconstructed data show a
strong persistence, reminiscent of long-term correlated data with

α between 0.8 and 0.9 (compare with (b)).
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Fig. 3: Conditional average and length of ”rainy” and ”dry” periods. a) Distribution
H(l) of the length of the ”rainy” and ”dry” periods for the same reconstructed data sets as
in Fig. 2(a). Inset: For the same records the conditional meanprecipitation above or below
the mean precipitation in units of standard deviations. b) Same as a) but for generated long
term persistent data withα = 0.8 andα = 0.9. c) same as a) but for the geographically
corresponding model data as in a). Same as b) but for generatedlong term persistent data
with α = 0.5.

[C] Return interval approach

We concentrate on the 2400y reconstruction from Central Eu-
rope. Figure 4 compares the PDF of the return intervals, in
scaled form (P (r)RQ versusr/RQ), with the PDF of the model
data, for 4 thresholds characterized by the mean return intervals
RQ =5y, 10y, 20y and 40y. We compare also with synthetic
long-term persistent data of the same length withα = 0.9 ob-
tained by the standard Fourier filtering technique. To reduce the
fluctuations, we averaged over 5 records each.
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Fig. 4: PDF of the return intervals for (i) reconstructed precipitation for central Europe
(398 BC - 2008 AD) (symbols in the upper part) forRQ = 5,10, 20,40, (ii) the average
over 5 long term persistent records withα = 0.9 in corresponding colors, (iii) the shuffled
datasets from (i) (same symbols as in (i)) and (iv) model datafrom Central Europe (remaining
symbols in the lower part). The lower straight line shows a simple exponential.

The figure shows that for each data set, the data collapse ap-
proximately. For the model precipitation data, the form ofPQ(r)
is well described by the simple exponential, which is expected
for uncorrelated records. The reconstructed data, in contrast,
show a strong persistent behavior at all time scales. The figure
shows that this behavior can be quantified by long-term correla-
tions with the comperatively large Hurst exponentα = 0.9.

Summary

We have observed a strong contrast in the persistency of
tree-ring based precipitation reconstructions on one side and
model/observational data on the other side. The Hurst exponent
for reconstructed precipitation data is well above the accepted
Hurst exponent (α ≃ 0.65 ± 0.05) [6] for continental tempera-
tures. This rises questions on the tree-ring based climate recon-
structions.
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